UAV-Based Structural Health Monitoring Using a Two-Stage CNN Model with Lighthouse Localization in GNSS-Denied Environments
Downloads
This study presents a UAV-based Structural Health Monitoring (SHM) system that combines Lighthouse localization with a two-stage CNN architecture—AlexNet for crack classification and YOLOv4 for segmentation—to enable reliable crack detection and spatial mapping in GNSS-denied environments. This study explores the effectiveness of this combination as a practical and computationally efficient solution for indoor SHM tasks. The UAV was deployed within a 1.5 m × 1.2 m × 1.2 m test volume to inspect synthetic cracks derived from Özgenel’s dataset, as well as a real-world wall crack. Two experiments were conducted: evaluating UAV localization accuracy and assessing the system’s ability to detect cracks and provide corresponding pose data. The system achieved a 1–2 cm margin of error in pose estimation, alongside 100% precision, 83.33% recall, and 91.89% accuracy in crack detection. This level of localization accuracy supports stable autonomous UAV flight and ensures that cracks are detected and spatially localized with minimal deviation. Beyond classification and segmentation, the system returns pose data tied to each detected crack, allowing users to identify defect locations precisely and use this information to guide inspection or maintenance tasks. Future work includes expanding the dataset, generalization, and evaluating scalability via multi-base station setups.
Downloads
[1] Kot, P., Muradov, M., Gkantou, M., Kamaris, G. S., Hashim, K., & Yeboah, D. (2021). Recent advancements in non-destructive testing techniques for structural health monitoring. Applied Sciences (Switzerland), 11(6), 2750. doi:10.3390/app11062750.
[2] Say, M. F. Q., Sybingco, E., Bandala, A. A., Vicerra, R. R. P., & Chua, A. Y. (2021). 2D Position Control of a UAV Using Fuzzy Logic Control. 2021 IEEE/SICE International Symposium on System Integration, SII 2021, 679–683. doi:10.1109/IEEECONF49454.2021.9382784.
[3] Piquero, J. (2019). A new sliding mode controller implementation on an autonomous quadcopter system. International Journal of Automation and Smart Technology, 9(2), 53-63. doi:10.5875/ausmt.v9i2.1876.
[4] Aniceto1, S. B. P., McGrah, R. V. S., Ochengco, C. J. I., Regalado, M. G., & Chua, A. Y. (2020). A novel low-cost obstacle avoidance system for a quadcopter UAV using fuzzy logic. International Journal of Mechanical Engineering and Robotics Research, 9(5), 733–738. doi:10.18178/ijmerr.9.5.733-738.
[5] Rathod, V. V., Rana, D. P., & Mehta, R. G. (2024). Deep learning-driven UAV vision for automated road crack detection and classification. Nondestructive Testing and Evaluation, 1–30. doi:10.1080/10589759.2024.2446650.
[6] Jin, T., Zhang, W., Chen, C., Chen, B., Zhuang, Y., & Zhang, H. (2023). Deep-Learning- and Unmanned Aerial Vehicle-Based Structural Crack Detection in Concrete. Buildings, 13(12), 3114. doi:10.3390/buildings13123114.
[7] Duan, Z., Liu, J., Ling, X., Zhang, J., & Liu, Z. (2024). ERNet: A Rapid Road Crack Detection Method Using Low-Altitude UAV Remote Sensing Images. Remote Sensing, 16(10), 1741. doi:10.3390/rs16101741.
[8] Beguni, C., Done, A., Căilean, A. M., Avătămăniței, S. A., & Zadobrischi, E. (2023). Experimental Demonstration of a Visible Light Communications System Based on Binary Frequency-Shift Keying Modulation: A New Step toward Improved Noise Resilience. Sensors, 23(11), 5001. doi:10.3390/s23115001.
[9] Krishnan, S. S. R., Karuppan, M. K. N., Khadidos, A. O., Khadidos, A. O., Selvarajan, S., Tandon, S., & Balusamy, B. (2025). Comparative analysis of deep learning models for crack detection in buildings. Scientific Reports, 15(1), 2125. doi:10.1038/s41598-025-85983-3.
[10] Qayyum, W., Ehtisham, R., Bahrami, A., Camp, C., Mir, J., & Ahmad, A. (2023). Assessment of Convolutional Neural Network Pre-Trained Models for Detection and Orientation of Cracks. Materials, 16(2), 826. doi:10.3390/ma16020826.
[11] Sorilla, J., Chu, T. S. C., & Chua, A. Y. (2024). A UAV Based Concrete Crack Detection and Segmentation Using 2-Stage Convolutional Network with Transfer Learning. HighTech and Innovation Journal, 5(3), 690–702. doi:10.28991/HIJ-2024-05-03-010.
[12] Xie, D., Wang, X., Tang, A., & Zhu, H. (2022). A Portable RFID Localization Approach for Mobile Robots. IEEE Internet of Things Journal, 9(23), 23332–23347. doi:10.1109/JIOT.2022.3202136.
[13] Buffi, A., Motroni, A., Nepa, P., Tellini, B., & Cioni, R. (2019). A SAR-Based Measurement Method for Passive-Tag Positioning with a Flying UHF-RFID Reader. IEEE Transactions on Instrumentation and Measurement, 68(3), 845–853. doi:10.1109/TIM.2018.2857045.
[14] Motroni, A., & Nepa, P. (2023). UAV-based 3D localization of passive UHF-RFID tags empowering outdoor stock management. 2023 35th General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2023, 1–4. doi:10.23919/URSIGASS57860.2023.10265434.
[15] Böller, S., Bödder, A., Riegler, J., & Grenter, T. (2024). SHF RFID based Localization: Combining Time-of-Flight and Angle-of-Arrival. 2024 IEEE International Conference on RFID Technology and Applications, RFID-TA 2024, 70–73. doi:10.1109/RFID-TA64374.2024.10965186.
[16] Buffi, A., Nepa, P., & Cioni, R. (2017). SARFID on drone: Drone-based UHF-RFID tag localization. 2017 IEEE International Conference on RFID Technology and Application, RFID-TA 2017, 40–44. doi:10.1109/RFID-TA.2017.8098872.
[17] Kabiri, M., Cimarelli, C., Bavle, H., Sanchez-Lopez, J. L., & Voos, H. (2023). A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives. Sensors, 23(1), 188. doi:10.3390/s23010188.
[18] De Guzman, C. J. P., Chua, A. Y., & Chu, T. S. C. (2024). Path Planning of Multiple Quadrotors with Ultrawideband Localization for Warehouse Inventory Management. Journal of Robotics, 2566619. doi:10.1155/2024/2566619.
[19] Yang, B., Yang, E., Yu, L., & Loeliger, A. (2022). High-Precision UWB-Based Localisation for UAV in Extremely Confined Environments. IEEE Sensors Journal, 22(1), 1020–1029. doi:10.1109/JSEN.2021.3130724.
[20] Queralta, J. P., Martinez Almansa, C., Schiano, F., Floreano, D., & Westerlund, T. (2020). UWB-based system for UAV localization in GNSS-Denied environments: Characterization and dataset. IEEE International Conference on Intelligent Robots and Systems, 4521–4528. doi:10.1109/IROS45743.2020.9341042.
[21] Sorescu, T. G., Militaru, A. V., Chiriac, V. M., Comsa, C. R., & Alecsandrescu, I. E. (2024). UWB Indoor Localization: Accuracy Evaluation in a Controlled Environment. Proceedings of the 16th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2024, 1–6. doi:10.1109/ECAI61503.2024.10607552.
[22] Preiss, J. A., Honig, W., Sukhatme, G. S., & Ayanian, N. (2017). Crazyswarm: A large nano-quadcopter swarm. Proceedings - IEEE International Conference on Robotics and Automation, 3299–3304. doi:10.1109/ICRA.2017.7989376.
[23] Mu, L., Cao, S., Zhang, Y., Zhang, X., Feng, N., & Zhang, Y. (2025). Autonomous Landing Guidance for Quad-UAVs Based on Visual Image and Altitude Estimation. Drones, 9(1), 57. doi:10.3390/drones9010057.
[24] Murhij, Y., Gavrilov, D., Buzdin, V., Kafa, W., Tatarinova, E., Fateev, A., Shkatula, S., & Krichevets, D. (2024). Visual Localization system for GPS-Blind Environments in Unmanned Aerial Vehicles. Proceedings of the 2024 8th International Conference on Information, Control, and Communication Technologies, ICCT 2024, 1–5. doi:10.1109/ICCT62929.2024.10875019.
[25] Wu, P., Tong, P., Zhou, X., & Yang, X. (2024). Dyn-DarkSLAM: YOLO-based Visual SLAM in Low-light Conditions. Proceedings of 2024 IEEE 25th China Conference on System Simulation Technology and Its Application, CCSSTA 2024, 346–351. doi:10.1109/CCSSTA62096.2024.10691775.
[26] Gibson, J., Haseler, C., Lassiter, H., Liu, R., Morrow, G., Oslund, B., Zrimm, M., & Lewin, G. (2016). Lighthouse localization for unmanned applications. 2016 IEEE Systems and Information Engineering Design Symposium, SIEDS 2016, 187–192. doi:10.1109/SIEDS.2016.7489296.
[27] Campos, F. M. R., Schindler, C. B., Kilberg, B. G., & Pister, K. S. J. (2020). Lighthouse Localization of Wireless Sensor Networks for Latency-Bounded, High-Reliability Industrial Automation Tasks. IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2020-April, 1–8. doi:10.1109/WFCS47810.2020.9114443.
[28] Greiff, M., Robertsson, A., & Berntorp, K. (2019). Performance Bounds in Positioning with the VIVE Lighthouse System. FUSION 2019 - 22nd International Conference on Information Fusion, 1–8. doi:10.23919/fusion43075.2019.9011242.
[29] Martin, T., Blanco, J. R., Mouret, J. B., & Raharijaona, T. (2024). Compact Docking Station for Sub-150g UAV Indoor Precise Landing. International Conference on Unmanned Aircraft Systems, ICUAS 2024, 1267–1274. doi:10.1109/ICUAS60882.2024.10557124.
[30] Bitcraze (2024). Lighthouse Kalman Measurment Model. Bitcraze, Malmö, Sweden. Available online: https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/lighthouse/kalman_measurement_model/ (accessed on May 2025).
[31] Özgenel, Ç. F. (2019), Concrete Crack Images for Classification. Mendeley Data, V2. doi:10.17632/5y9wdsg2zt.2.
[32] Yang, Z. (2024). Consider Computer Vision for Building Component Recognition and Defect Detection. 2024 5th International Conference on Machine Learning and Computer Application, 457–460. doi:10.1109/ICMLCA63499.2024.10754392.
[33] Zaman, F., Xu, Z., Hussain, A., Tariq, Aslam, A., & Abdullahi, M. R. (2024). Concrete and Pavement Cracks Detection Leveraging Vision Transformer (ViT) Model. Proceedings - IEIT 2024, International Conference on Electrical and Information Technology, 90–95. doi:10.1109/IEIT64341.2024.10762971.
[34] Bakirci, M., & Avran, M. N. (2025). Automated Detection and Localization of Wind Turbine Deformations Through YOLO11 and UAV Systems. Proceedings - 2025 International Russian Smart Industry Conference, SmartIndustryCon 2025, 109–114. doi:10.1109/SmartIndustryCon65166.2025.10986124.
[35] Bitcraze (2024). Lighthouse more than 4 base stations. Bitcraze, Malmö, Sweden. Available online: https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/lighthouse/multi_base_stations/ (accessed on May 2024).
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
