Assessing AI-Driven Personalization in Smart Cities Using Hybrid Machine Learning and MCDM Approach
Downloads
This study aims to assess AI-driven personalization strategies in smart cities, focusing on promoting digital inclusion across diverse urban populations. As artificial intelligence becomes increasingly central to urban service delivery, ensuring equitable and effective personalization is critical to preventing the amplification of digital inequality. To address this challenge, a hybrid evaluation framework is proposed, integrating Multi-Criteria Decision Making (MCDM) techniques, specifically Step-wise Weight Assessment Ratio Analysis (SWARA), Linguistic q-Rung Orthopair Fuzzy Numbers (Lq-ROFNs), and the Multi-Attributive Border Approximation Area Comparison (MABAC) with a Machine Learning (ML) classification model based on Random Forest. The framework is applied to stakeholder input from ten Indonesian smart cities, evaluating personalization readiness across five dimensions: accessibility, affordability, user engagement, privacy, and personalization effectiveness. The results indicate that accessibility and user engagement are the most influential criteria, while affordability and privacy are areas requiring strategic policy focus. The integrated model classifies cities by readiness level and identifies sensitivity patterns relevant to inclusive digital policy-making. The novelty of this research lies in its synthesis of MCDM and ML approaches to produce a transparent, scalable, and data-driven tool for evaluating AI personalization. This contributes to inclusive smart city development by aligning AI implementation with broader social equity objectives.
Downloads
[1] Alkhereibi, A. H., Abulibdeh, R., & Abulibdeh, A. (2025). Global smart cities classification using a machine learning approach to evaluating livability, technology, and sustainability performance across key urban indices. Journal of Cleaner Production, 503, 145394. doi:10.1016/j.jclepro.2025.145394.
[2] Aljohani, A. (2024). Deep learning-based optimization of energy utilization in IoT-enabled smart cities: A pathway to sustainable development. Energy Reports, 12, 2946–2957. doi:10.1016/j.egyr.2024.08.075.
[3] Chen, T., Ramon Gil-Garcia, J., & Gasco-Hernandez, M. (2022). Understanding social sustainability for smart cities: The importance of inclusion, equity, and citizen participation as both inputs and long-term outcomes. Journal of Smart Cities and Society, 1(2), 135–148. doi:10.3233/scs-210123.
[4] Kaiser, Z. R. M. A. (2024). Smart governance for smart cities and nations. Journal of Economy and Technology, 2, 216–234. doi:10.1016/j.ject.2024.07.003.
[5] Ghaly, M., Elbeltagi, E., Elsmadony, A., & Tantawy, M. A. (2024). Integration of Blockchain-Enabled Smart Contracts in Construction: SWOT Framework and Social Network Analysis. Civil Engineering Journal, 10(5), 1662–1697. doi:10.28991/CEJ-2024-010-05-020.
[6] Nalubega, T., & Uwizeyimana, D. E. (2024). Artificial intelligence technologies usage for improved service delivery in Uganda. Africa’s Public Service Delivery & Performance Review, 12(1), 770. doi:10.4102/apsdpr.v12i1.770.
[7] Rasoulzadeh Aghdam, S., Bababei Morad, B., Ghasemzadeh, B., Irani, M., & Huovila, A. (2024). Social smart city research: interconnections between participatory governance, data privacy, artificial intelligence and ethical sustainable development. Frontiers in Sustainable Cities, 6. doi:10.3389/frsc.2024.1514040.
[8] Hermann, E. (2022). Artificial intelligence and mass personalization of communication content—An ethical and literacy perspective. New Media & Society, 24(5), 1258–1277. doi:10.1177/14614448211022702.
[9] Lawelai, H., Iswanto, I., & Raharja, N. M. (2023). Use of Artificial Intelligence in Public Services: A Bibliometric Analysis and Visualization. TEM Journal, 12(2), 798–807. doi:10.18421/TEM122-24.
[10] Hussain, A., Azam, M., Bano, S., Nasir, A., Zara, A., & Parveen, S. (2024). Smart Healthcare Management Model for Proactive Patient Monitoring. The Asian Bulletin of Big Data Management, 4(1), 53–65. doi:10.62019/abbdm.v4i1.115.
[11] Sengupta, U., & Sengupta, U. (2022). Why government supported smart city initiatives fail: Examining community risk and benefit agreements as a missing link to accountability for equity-seeking groups. Frontiers in Sustainable Cities, 4. doi:10.3389/frsc.2022.960400.
[12] Samasti, M., Cakmak, E., & Ozpinar, A. (2025). Strategic classification of smart city strategies in developing countries. Engineering Science and Technology, an International Journal, 61, 101936. doi:10.1016/j.jestch.2024.101936.
[13] Cengiz, B., Adam, I. Y., Ozdem, M., & Das, R. (2025). A survey on data fusion approaches in IoT-based smart cities: Smart applications, taxonomies, challenges, and future research directions. Information Fusion, 121, 103102. doi:10.1016/j.inffus.2025.103102.
[14] Liu, X., Zhou, W., Dong, Y., Zhu, L., & Chen, N. (2024). Application of Smart Model in the Analysis of Opera Heritage Archiving and Protection. HighTech and Innovation Journal, 5(2), 349–360. doi:10.28991/HIJ-2024-05-02-09.
[15] Shahrabani, M. M. N., & Apanaviciene, R. (2024). An AI-Based Evaluation Framework for Smart Building Integration into Smart City. Sustainability (Switzerland), 16(18), 8032. doi:10.3390/su16188032.
[16] Berčič, T., Bohanec, M., & Ažman Momirski, L. (2024). Integrating Multi-Criteria Decision Models in Smart Urban Planning: A Case Study of Architectural and Urban Design Competitions. Smart Cities, 7(2), 786–805. doi:10.3390/smartcities7020033.
[17] Chen, G., & Zhang, J. wan. (2024). Intelligent transportation systems: Machine learning approaches for urban mobility in smart cities. Sustainable Cities and Society, 107, 105369. doi:10.1016/j.scs.2024.105369.
[18] Liu, J., Kadzinski, M., Liao, X., & Mao, X. (2021). Data-driven preference learning methods for value-driven multiple criteria sorting with interacting criteria. INFORMS Journal on Computing, 33(2), 586–606. doi:10.1287/ijoc.2020.0977.
[19] Zapolskytė, S., Trépanier, M., Burinskienė, M., & Survilė, O. (2022). Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities. Sustainability (Switzerland), 14(2), 715. doi:10.3390/su14020715.
[20] Ali, R., Hussain, A., Nazir, S., Khan, S., & Khan, H. U. (2023). Intelligent Decision Support Systems—An Analysis of Machine Learning and Multicriteria Decision-Making Methods. Applied Sciences (Switzerland), 13(22), 12426. doi:10.3390/app132212426.
[21] Bokhari, S. A. A., & Myeong, S. (2022). Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability (Switzerland), 14(2), 620. doi:10.3390/su14020620.
[22] Alahakoon, D., Nawaratne, R., Xu, Y., De Silva, D., Sivarajah, U., & Gupta, B. (2023). Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Information Systems Frontiers, 25(1), 221–240. doi:10.1007/s10796-020-10056-x.
[23] Fontes, C., Al Haddad, C., Antoniou, C., & Lütge, C. (2024). Assessing the collective challenges of AI: An applied framework focused on people centeredness and public participation. Urban Governance, 4(4), 245–254. doi:10.1016/j.ugj.2024.12.003.
[24] Brito, C., Pina, N., Esteves, T., Vitorino, R., Cunha, I., & Paulo, J. (2025). Promoting sustainable and personalized travel behaviors while preserving data privacy. Transportation Engineering, 19, 100237. doi:10.1016/j.treng.2024.100237.
[25] Nassereddine, H., & Khoshkenar, A. (2025). Smart cities: digital transformation for sustainable urban development. Digital Transformation in the Construction Industry, 389–415.Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-443-29861-5.00019-6.
[26] Li, W., Yigitcanlar, T., Nili, A., Browne, W., & Li, F. (2025). Responsible smart home technology adoption: exploring public perceptions and key adoption factors. Internet of Things, 32, 101622. doi:10.1016/j.iot.2025.101622.
[27] Lin, S. S., & Zheng, X. J. (2025). Enhancing smart city assessment: An advanced MCDM approach for urban performance evaluation. Sustainable Cities and Society, 118, 105930. doi:10.1016/j.scs.2024.105930.
[28] Aytaç Adali, E., Öztaş, G. Z., Öztaş, T., & Tuş, A. (2022). Assessment of European cities from a smartness perspective: An integrated grey MCDM approach. Sustainable Cities and Society, 84, 104021. doi:10.1016/j.scs.2022.104021.
[29] Ozkaya, G., & Erdin, C. (2020). Evaluation of smart and sustainable cities through a hybrid MCDM approach based on ANP and TOPSIS technique. Heliyon, 6(10), 5052. doi:10.1016/j.heliyon.2020.e05052.
[30] Faisal, M., Rahman, T. K. A., Mulyadi, I., Aryasa, K., Irmawati, & Thamrin, M. (2024). A Novelty Decision-Making Based on Hybrid Indexing, Clustering, and Classification Methodologies: An Application to Map the Relevant Experts Against the Rural Problem. Decision Making: Applications in Management and Engineering, 7(2), 132–171. doi:10.31181/dmame7220241023.
[31] Faisal, M., Irmawati, Rahman, T. K. A., Jufri, Sahabuddin, Herlinah, & Mulyadi, I. (2025). A Hybrid MOO, MCGDM, and Sentiment Analysis Methodologies for Enhancing Regional Expansion Planning: A Case Study Luwu - Indonesia. International Journal of Mathematical, Engineering and Management Sciences, 10(1), 163–188. doi:10.33889/IJMEMS.2025.10.1.010.
[32] Fisher, E., Flynn, M. A., Pratap, P., & Vietas, J. A. (2023). Occupational Safety and Health Equity Impacts of Artificial Intelligence: A Scoping Review. International Journal of Environmental Research and Public Health, 20(13), 6221. doi:10.3390/ijerph20136221.
[33] Aráuz, J. (2021). Supporting Mobility Planning in Small Cities and Communities with Low-power, Machine Learning Based Sensing. Procedia Computer Science, 185, 109–118. doi:10.1016/j.procs.2021.05.012.
[34] Santana, G. O., de Macedo Couto, R., Loureiro, R. M., Furriel, B. C. R. S., Rother, E. T., de Paiva, J. P. Q., & Correia, L. R. (2023). Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Exams for Medical Diagnosis in People With Skin, Neurological, and Pulmonary Diseases: Protocol for a Systematic Review. JMIR Research Protocols, 12(1), 48544. doi:10.2196/48544.
[35] Chima Abimbola Edeni, Olabisi Oluwakemi Adeleye, & Idowu Sulaimon Adeniyi. (2024). The role of AI-enhanced tools in overcoming socioeconomic barriers in education: A conceptual analysis. World Journal of Advanced Research and Reviews, 21(3), 944–951. doi:10.30574/wjarr.2024.21.3.0780.
[36] Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., Galley, J. Kl., Kousari, R., Ogbadu-Oladapo, L., Saurav, S. K., Srivastava, A., Tummuru, S. P., Uppala, S., & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development. doi:10.1177/02666669231200628.
[37] Joyce, K., Smith-Doerr, L., Alegria, S., Bell, S., Cruz, T., Hoffman, S. G., Noble, S. U., & Shestakofsky, B. (2021). Toward a Sociology of Artificial Intelligence: A Call for Research on Inequalities and Structural Change. Socius, 7. doi:10.1177/2378023121999581.
[38] Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to Foster Equity in Education: Opportunities, Challenges, and Emerging Strategies. Journal of Intelligent Learning Systems and Applications, 15(04), 123–143. doi:10.4236/jilsa.2023.154009.
[39] Ueda, D., Kakinuma, T., Fujita, S., Kamagata, K., Fushimi, Y., Ito, R., Matsui, Y., Nozaki, T., Nakaura, T., Fujima, N., Tatsugami, F., Yanagawa, M., Hirata, K., Yamada, A., Tsuboyama, T., Kawamura, M., Fujioka, T., & Naganawa, S. (2024). Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology, 42(1), 3–15. doi:10.1007/s11604-023-01474-3.
[40] Hassan, A. H., Sulaiman, R. bin, Abdulgabber, M. A., & Kahtan, H. (2023). Balancing Technological Advances with User Needs: User-centered Principles for AI-Driven Smart City Healthcare Monitoring. International Journal of Advanced Computer Science and Applications, 14(3), 365–376. doi:10.14569/IJACSA.2023.0140341.
[41] Chen, Y., Clayton, E. W., Novak, L. L., Anders, S., & Malin, B. (2023). Human-Centered Design to Address Biases in Artificial Intelligence. Journal of Medical Internet Research, 25, 43251. doi:10.2196/43251.
[42] Park, J. ho, Salim, M. M., Jo, J. H., Sicato, J. C. S., Rathore, S., & Park, J. H. (2019). CIoT-Net: a scalable cognitive IoT based smart city network architecture. Human-Centric Computing and Information Sciences, 9(1), 29. doi:10.1186/s13673-019-0190-9.
[43] Alkan, N. (2024). Evaluation of sustainable development and utilization-oriented renewable energy systems based on CRITIC-SWARA-CODAS method using interval valued picture fuzzy sets. Sustainable Energy, Grids and Networks, 38, 101263. doi:10.1016/j.segan.2023.101263.
[44] Soltani, E., & Mirzaei Aliabadi, M. (2023). Risk assessment of firefighting job using hybrid SWARA-ARAS methods in fuzzy environment. Heliyon, 9(11), 22230. doi:10.1016/j.heliyon.2023.e22230.
[45] Naz, S., Butt, S. A., ul Hassan, M. M., Escorcia-Gutierrez, J., Fatima, A., & ul Ain, F. (2025). A hybrid novel SWARA-ELECTRE-I method using probabilistic uncertain linguistic information for feature selection in image recognition. Neurocomputing, 612, 128615. doi:10.1016/j.neucom.2024.128615.
[46] Komal. (2024). Archimedean t-norm and t-conorm coupled q-rung orthopair fuzzy TOPSIS method for unknown criteria weighting information. Expert Systems with Applications, 257, 125048. doi:10.1016/j.eswa.2024.125048.
[47] Soni, A., Chakraborty, S., Das, P. K., & Saha, A. K. (2024). Selection of sustainable construction material from recycled waste plastics by q-rung orthopair fuzzy SWARA-MABAC approach. Chemosphere, 364, 143166. doi:10.1016/j.chemosphere.2024.143166.
[48] Wang, J., Wei, G., Wei, C., & Wei, Y. (2020). MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Defence Technology, 16(1), 208–216. doi:10.1016/j.dt.2019.06.019.
[49] Xing, F., Luo, R., Liu, M., Zhou, Z., Xiang, Z., & Duan, X. (2022). A New Random Forest Algorithm-Based Prediction Model of Post-operative Mortality in Geriatric Patients With Hip Fractures. Frontiers in Medicine, 9. doi:10.3389/fmed.2022.829977.
[50] Chintalapudi, R., Kannaiyan, G. N., Pappula, B., & Makgato, S. (2024). The novel Vogel’s approximation method integrated with a random forest algorithm in the vibration analysis of a two-directional functionally graded taper porous beam: Assessment. Scientific African, 26, 2397. doi:10.1016/j.sciaf.2024.e02397.
[51] Qazi, A., Hasan, N., Abayomi-Alli, O., Hardaker, G., Scherer, R., Sarker, Y., Kumar Paul, S., & Maitama, J. Z. (2022). Gender differences in information and communication technology use & skills: a systematic review and meta-analysis. Education and Information Technologies, 27(3), 4225–4258. doi:10.1007/s10639-021-10775-x.
[52] Faisal, M., & Rahman, T. K. A. (2023). Optimally Enhancement Rural Development Support Using Hybrid Multy Object Optimization (MOO) and Clustering Methodologies: A Case South Sulawesi - Indonesia. International Journal of Sustainable Development and Planning, 18(6), 1659–1669. doi:10.18280/ijsdp.180602.
[53] Mian, S. H., Abouel Nasr, E., Moiduddin, K., Saleh, M., Abidi, M. H., & Alkhalefah, H. (2024). Assessment of consolidative multi-criteria decision making (C-MCDM) algorithms for optimal mapping of polymer materials in additive manufacturing: A case study of orthotic application. Heliyon, 10(10), 30867. doi:10.1016/j.heliyon.2024.e30867.
[54] Choi, J., Jung, H. T., Ferrell, A., Woo, S., & Haddad, L. (2021). Machine learning-based nicotine addiction prediction models for youth e-cigarette and waterpipe (Hookah) users. Journal of Clinical Medicine, 10(5), 1–13. doi:10.3390/jcm10050972.
[55] Fayyaz, M., Fusco, G., Colombaroni, C., González-González, E., & Nogués, S. (2024). Optimizing Smart City Street Design with Interval-Fuzzy Multi-Criteria Decision Making and Game Theory for Autonomous Vehicles and Cyclists. Smart Cities, 7(6), 3936–3961. doi:10.3390/smartcities7060152.
[56] Khanyile, S. (2024). A Comparison of the Efficacy of Fuzzy Overlay and Random Forest Classification for Mapping and Shaping Perceptions of the Post-Mining Landscape of Gauteng, South Africa. Land, 13(11), 1761. doi:10.3390/land13111761.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.





















