A Review on Federated Learning on Sensor-Based Human Activity Recognition
Downloads
Deep learning has demonstrated exceptional human activity recognition (HAR) performance by extracting complex features from inertial data. However, this centralized training approach aggregates data from multiple user devices into a central server and raises significant privacy concerns. Federated learning (FL) is proposed as an alternative. It provides a privacy-preserving scheme by training data analytics models on local users’ devices rather than transferring raw data to a central server for data processing. Although FL is widely applied to various pattern recognition applications, its use in sensor-based HAR is limited, and reviews of the HAR application are even scarcer. Therefore, this paper provides a comprehensive review of FL in HAR. This paper analyzes FL’s architectural design, data model training strategies, and model aggregation techniques. A comparative analysis between FL-based and machine learning methods is presented. The challenges, including data heterogeneity, data privacy, and communication costs, are identified through the findings, while the potential research direction of FL in HAR is underscored. This paper provides insights into the current state of FL for HAR, pinpoints research gaps, and outlines encountered challenges and potential research directions.
Downloads
[1] Sun, Y., Wang, X., & Tang, X. (2014). Deep Learning Face Representation from Predicting 10,000 Classes. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1891–1898. doi:10.1109/cvpr.2014.244.
[2] Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning. Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings, 17-36.
[3] Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A. Y. (2011). On optimization methods for deep learning. Proceedings of the 28th international conference on international conference on machine learning, 28 June - 2 July, 2011, Bellevue, United States.
[4] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. Proceedings of the 28th International Conference on Machine Learning, Bellevue, United States.
[5] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197-387. doi:10.1561/2000000039.
[6] Liu, X., Xie, L., Wang, Y., Zou, J., Xiong, J., Ying, Z., & Vasilakos, A. V. (2021). Privacy and Security Issues in Deep Learning: A Survey. IEEE Access, 9, 4566–4593. doi:10.1109/ACCESS.2020.3045078.
[7] Bae, H., Jang, J., Jung, D., Jang, H., Ha, H., Lee, H., & Yoon, S. (2018). Security and privacy issues in deep learning. arXiv Preprint, arXiv:1807.11655. doi:10.48550/arXiv.1807.11655.
[8] Mireshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., & Esmaeilzadeh, H. (2020). Privacy in deep learning: A survey. arXiv Preprint, arXiv:2004.12254. doi:10.48550/arXiv.2004.12254.
[9] Tayyab, M., Marjani, M., Jhanjhi, N. Z., Hashem, I. A. T., Usmani, R. S. A., & Qamar, F. (2023). A comprehensive review on deep learning algorithms: Security and privacy issues. Computers & Security, 131, 103297. doi:10.1016/j.cose.2023.103297.
[10] Cheng, D., Zhang, L., Bu, C., Wang, X., Wu, H., & Song, A. (2023). ProtoHAR: Prototype Guided Personalized Federated Learning for Human Activity Recognition. IEEE Journal of Biomedical and Health Informatics, 27(8), 3900–3911. doi:10.1109/JBHI.2023.3275438.
[11] Guendouzi, B. S., Ouchani, S., EL Assaad, H., & EL Zaher, M. (2023). A systematic review of federated learning: Challenges, aggregation methods, and development tools. Journal of Network and Computer Applications, 220, 103714. doi:10.1016/j.jnca.2023.103714.
[12] Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., & Raad, A. (2023). Reviewing Federated Learning Aggregation Algorithms; Strategies, Contributions, Limitations and Future Perspectives. Electronics (Switzerland), 12(10), 2287. doi:10.3390/electronics12102287.
[13] Ouyang, X., Xie, Z., Zhou, J., Huang, J., & Xing, G. (2021). Clusterfl: a similarity-aware federated learning system for human activity recognition. Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, 54–66. doi:10.1145/3458864.3467681.
[14] Zhou, X., Liang, W., Ma, J., Yan, Z., & Wang, K. I. K. (2022). 2D Federated Learning for Personalized Human Activity Recognition in Cyber-Physical-Social Systems. IEEE Transactions on Network Science and Engineering, 9(6), 3934–3944. doi:10.1109/TNSE.2022.3144699.
[15] Haque, S., Eberhart, Z., Bansal, A., & McMillan, C. (2022). Semantic similarity metrics for evaluating source code summarization. Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, 36–47. doi:10.1145/3524610.3527909.
[16] Xiao, Z., Xu, X., Xing, H., Song, F., Wang, X., & Zhao, B. (2021). A federated learning system with enhanced feature extraction for human activity recognition. Knowledge-Based Systems, 229, 107338. doi:10.1016/j.knosys.2021.107338.
[17] Gad, G., Fadlullah, Z. M., Rabie, K., & Fouda, M. M. (2023). Communication-Efficient Privacy-Preserving Federated Learning via Knowledge Distillation for Human Activity Recognition Systems. ICC 2023 - IEEE International Conference on Communications, 1572–1578. doi:10.1109/icc45041.2023.10278987.
[18] Tu, L., Ouyang, X., Zhou, J., He, Y., & Xing, G. (2021). Feddl: Federated learning via dynamic layer sharing for human activity recognition. Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, 15–28. doi:10.1145/3485730.3485946.
[19] Presotto, R., Civitarese, G., & Bettini, C. (2022). FedCLAR: Federated Clustering for Personalized Sensor-Based Human Activity Recognition. 2022 IEEE International Conference on Pervasive Computing and Communications, PerCom 2022, 227–236. doi:10.1109/PerCom53586.2022.9762352.
[20] Yu, H., Chen, Z., Zhang, X., Chen, X., Zhuang, F., Xiong, H., & Cheng, X. (2023). FedHAR: Semi-Supervised Online Learning for Personalized Federated Human Activity Recognition. IEEE Transactions on Mobile Computing, 22(6), 3318–3332. doi:10.1109/TMC.2021.3136853.
[21] Pfitzner, B., Steckhan, N., & Arnrich, B. (2021). Federated Learning in a Medical Context: A Systematic Literature Review. ACM Transactions on Internet Technology, 21(2), 1–31. doi:10.1145/3412357.
[22] Che, L., Wang, J., Zhou, Y., & Ma, F. (2023). Multimodal Federated Learning: A Survey. Sensors, 23(15), 6986. doi:10.3390/s23156986.
[23] Aouedi, O., Sacco, A., Khan, L. U., Nguyen, D. C., & Guizani, M. (2024). Federated Learning for Human Activity Recognition: Overview, Advances, and Challenges. IEEE Open Journal of the Communications Society, 5, 7341–7367. doi:10.1109/ojcoms.2024.3484228.
[24] Grataloup, A., & Kurpicz-Briki, M. (2024). A systematic survey on the application of federated learning in mental state detection and human activity recognition. Frontiers in Digital Health, 6, 1495999. doi:10.3389/fdgth.2024.1495999.
[25] Liu, X., Zhou, W., Dong, Y., Zhu, L., & Chen, N. (2024). Application of Smart Model in the Analysis of Opera Heritage Archiving and Protection. HighTech and Innovation Journal, 5(2), 349–360. doi:10.28991/HIJ-2024-05-02-09.
[26] Diraco, G., Rescio, G., Caroppo, A., Manni, A., & Leone, A. (2023). Human Action Recognition in Smart Living Services and Applications: Context Awareness, Data Availability, Personalization, and Privacy. Sensors, 23(13), 6040. doi:10.3390/s23136040.
[27] Sandi, G., Supangkat, S. H., & Ermawati. (2023). Smart Healthcare for Personalized Healthcare: Literature Review. 10th International Conference on ICT for Smart Society (ICISS), 1–7. doi:10.1109/iciss59129.2023.10291631.
[28] Raza, A., Tran, K. P., Koehl, L., Li, S., Zeng, X., & Benzaidi, K. (2021). Lightweight transformer in federated setting for human activity recognition. arXiv Preprint, arXiv:2110.00244. doi:10.48550/arXiv.2110.00244.
[29] Orzikulova, A., Kwak, J., Shin, J., & Lee, S.-J. (2024). Federated learning for time-series healthcare sensing with incomplete modalities. arXiv. Retrieved November 2, 2025, from https://arxiv.org/abs/2405.11828.
[30] Chen, K., Zhang, D., Guan, S., Mi, B., Shen, J., & Wang, G. (2024). Private Data Leakage in Federated Human Activity Recognition for Wearable Healthcare Devices. arXiv Preprint, arXiv:2405.10979. doi:10.48550/arXiv.2405.10979.
[31] Anicai, C., & Shakir, M. Z. (2023). Federated Learning and Genetic Mutation for Multi-Resident Activity Recognition. 2023 IEEE 19th International Conference on E-Science (e-Science), 1–6. doi:10.1109/e-science58273.2023.10254878.
[32] Huang, W., Li, T., Wang, D., Du, S., Zhang, J., & Huang, T. (2022). Fairness and accuracy in horizontal federated learning. Information Sciences, 589, 170–185. doi:10.1016/j.ins.2021.12.102.
[33] Li, Y., Wang, X., & An, L. (2023). Hierarchical Clustering-based Personalized Federated Learning for Robust and Fair Human Activity Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7(1), 1–38. doi:10.1145/3580795.
[34] Shen, Q., Feng, H., Song, R., Teso, S., Giunchiglia, F., & Xu, H. (2022). Federated Multi-Task Attention for Cross-Individual Human Activity Recognition. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 3423–3429. doi:10.24963/ijcai.2022/475.
[35] İşgüder, E., & İncel, Ö. D. (2023). FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based Human Activity Recognition. arXiv Preprint, arXiv:2311.07765. doi:10.48550/arXiv.2311.07765.
[36] Chai, Y., Liu, H., Zhu, H., Pan, Y., Zhou, A., Liu, H., Liu, J., & Qian, Y. (2024). A profile similarity-based personalized federated learning method for wearable sensor-based human activity recognition. Information & Management, 61(7), 103922. doi:10.1016/j.im.2024.103922.
[37] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 20-22 April, 2017, Fort Lauderdale, United States.
[38] Barros, P. H., Guevara, J. C., Villas, L., Guidoni, D., Da Fonseca, N. L. S., & Ramos, H. S. (2024). A Novel Federated Meta-Learning Approach for Discriminating Sedentary Behavior From Wearable Data. IEEE Internet of Things Journal, 11(19), 31909–31916. doi:10.1109/JIOT.2024.3420891.
[39] Thakur, D., Guzzo, A., & Fortino, G. (2024). Hardware-algorithm co-design of Energy Efficient Federated Learning in Quantized Neural Network. Internet of Things (Netherlands), 26, 101223. doi:10.1016/j.iot.2024.101223.
[40] Gad, G. (2023). Light-weight federated learning with augmented knowledge distillation for human activity recognition. Ph.D. Thesis, LakeheadUniversity, ThunderBay, Canada.
[41] Sandhu, M., Silvera-Tawil, D., Lu, W., Borges, P., & Kusy, B. (2024). Exploring Activity Recognition in Multi-device Environments using Hierarchical Federated Learning. 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events, PerCom Workshops 2024, 720–726. doi:10.1109/PerComWorkshops59983.2024.10503023.
[42] Wang, L., Wang, W., & Li, B. (2019). CMFL: Mitigating Communication Overhead for Federated Learning. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 954–964. doi:10.1109/icdcs.2019.00099.
[43] Yang, X., & Ardakanian, O. (2023). Blinder: End-to-end Privacy Protection in Sensing Systems via Personalized Federated Learning. ACM Transactions on Sensor Networks, 20(1), 1–32. doi:10.1145/3623397.
[44] Shahid, Z. (2021). Distributed Machine Learning for Anomalous Human Activity Recognition using IoT Systems. Research Report, Luleå tekniska universitet, Luleå, Sweden.
[45] Ek, S., Portet, F., Lalanda, P., & Baez, G. E. V. (2021). Evaluating Federated Learning for human activity recognition. Workshop AI for Internet of Things, in conjunction with IJCAI-PRICAI 2020, 7-8 January, 2021, Yokohama, Japan. (Virtual venue).
[46] Gad, G., & Fadlullah, Z. (2023). Federated Learning via Augmented Knowledge Distillation for Heterogenous Deep Human Activity Recognition Systems. Sensors, 23(1), 6. doi:10.3390/s23010006.
[47] Ek, S., Portet, F., Lalanda, P., & Vega, G. (2021). A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison. 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), 1–10. doi:10.1109/percom50583.2021.9439129.
[48] Shen, Q., Feng, H., Song, R., Song, D., & Xu, H. (2023). Federated Meta-Learning with Attention for Diversity-Aware Human Activity Recognition. Sensors, 23(3), 1083. doi:10.3390/s23031083.
[49] Presotto, R., Civitarese, G., & Bettini, C. (2023). Federated Clustering and Semi-Supervised learning: A new partnership for personalized Human Activity Recognition. Pervasive and Mobile Computing, 88, 101726. doi:10.1016/j.pmcj.2022.101726.
[50] Arikumar, K. S., Prathiba, S. B., Alazab, M., Gadekallu, T. R., Pandya, S., Khan, J. M., & Moorthy, R. S. (2022). FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems. Sensors, 22(4), 1377. doi:10.3390/s22041377.
[51] Shaik, T., Tao, X., Higgins, N., Gururajan, R., Li, Y., Zhou, X., & Acharya, U. R. (2022). FedStack: Personalized activity monitoring using stacked federated learning. Knowledge-Based Systems, 257, 109929. doi:10.1016/j.knosys.2022.109929.
[52] Al-Saedi, A. A., Boeva, V., & Casalicchio, E. (2021). Reducing Communication Overhead of Federated Learning through Clustering Analysis. 2021 IEEE Symposium on Computers and Communications (ISCC), 1-7. doi:10.1109/iscc53001.2021.9631391.
[53] Craighero, M., Quarantiello, D., Rossi, B., Carrera, D., Fragneto, P., & Boracchi, G. (2024). On-Device Personalization for Human Activity Recognition on STM32. IEEE Embedded Systems Letters, 16(2), 106–109. doi:10.1109/les.2023.3293458.
[54] Wu, Q., Chen, X., Zhou, Z., & Zhang, J. (2022). FedHome: Cloud-Edge Based Personalized Federated Learning for In-Home Health Monitoring. IEEE Transactions on Mobile Computing, 21(8), 2818–2832. doi:10.1109/tmc.2020.3045266.
[55] Dayakaran, D., & Kadiresan, N. (2024). Federated Learning Framework for Human Activity Recognition Using Smartphones. Procedia Computer Science, 235, 2069–2078. doi:10.1016/j.procs.2024.04.196.
[56] de Souza, A. M., Maciel, F., da Costa, J. B. D., Bittencourt, L. F., Cerqueira, E., Loureiro, A. A. F., & Villas, L. A. (2024). Adaptive client selection with personalization for communication efficient Federated Learning. Ad Hoc Networks, 157, 103462. doi:10.1016/j.adhoc.2024.103462.
[57] Gao, L., & Konomi, S. (2023). Personalized Federated Human Activity Recognition through Semi-supervised Learning and Enhanced Representation. Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing, 463–468. doi:10.1145/3594739.3610739.
[58] Gudur, G. K., & Perepu, S. K. (2020). Federated learning with heterogeneous labels and models for mobile activity monitoring. arXiv Preprint, arXiv:2012.02539. doi:10.48550/arXiv.2012.02539.
[59] Li, C., Niu, D., Jiang, B., Zuo, X., & Yang, J. (2021). Meta-HAR: Federated Representation Learning for Human Activity Recognition. Proceedings of the Web Conference 2021, 912–922. doi:10.1145/3442381.3450006.
[60] Sarkar, A., Sen, T., & Roy, A. K. (2021). GraFeHTy: Graph Neural Network using Federated Learning for Human Activity Recognition. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 1124–1129. doi:10.1109/icmla52953.2021.00184.
[61] Kirsten, K., Pfitzner, B., Loper, L., & Arnrich, B. (2021). Sensor-Based Obsessive-Compulsive Disorder Detection With Personalised Federated Learning. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 333–339. doi:10.1109/icmla52953.2021.00058.
[62] Cho, H., Mathur, A., & Kawsar, F. (2022). FLAME: Federated Learning across Multi-device Environments. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(3), 1–29. doi:10.1145/3550289.
[63] Albaseer, A., Abdallah, M., Al-Fuqaha, A., Erbad, A., & Dobre, O. A. (2022). Semi-Supervised Federated Learning Over Heterogeneous Wireless IoT Edge Networks: Framework and Algorithms. IEEE Internet of Things Journal, 9(24), 25626–25642. doi:10.1109/JIOT.2022.3194833.
[64] Wang, P., Ouyang, T., Wu, Q., Huang, Q., Gong, J., & Chen, X. (2024). Hydra: Hybrid-model federated learning for human activity recognition on heterogeneous devices. Journal of Systems Architecture, 147, 103052. doi:10.1016/j.sysarc.2023.103052.
[65] Pham, C. H., Huynh-The, T., Sedgh-Gooya, E., El-Bouz, M., & Alfalou, A. (2024). Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption. Computer Methods and Programs in Biomedicine, 243, 107854. doi:10.1016/j.cmpb.2023.107854.
[66] Khan, A. R., Manzoor, H. U., Ayaz, F., Imran, M. A., & Zoha, A. (2023). A Privacy and Energy-Aware Federated Framework for Human Activity Recognition. Sensors, 23(23), 9339. doi:10.3390/s23239339.
[67] Jiang, X., Hu, H., On, T., Lai, P., Mayyuri, V. D., Chen, A., Shila, D. M., Larmuseau, A., Jin, R., Borcea, C., & Phan, N. (2024). FLSys: Toward an Open Ecosystem for Federated Learning Mobile Apps. IEEE Transactions on Mobile Computing, 23(1), 501–519. doi:10.1109/tmc.2022.3223578.
[68] Konečný, J., McMahan, H. B., Ramage, D., & Richtárik, P. (2016). Federated optimization: Distributed machine learning for on-device intelligence. arXiv Preprint, arXiv:1610.02527. doi:10.48550/arXiv.1610.02527.
[69] Shokri, R., & Shmatikov, V. (2015). Privacy-Preserving Deep Learning. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 1310–1321. doi:10.1145/2810103.2813687.
[70] Ahmed, N., Rafiq, J. I., & Islam, M. R. (2020). Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors (Switzerland), 20(1), 317. doi:10.3390/s20010317.
[71] Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216, 106775. doi:10.1016/j.knosys.2021.106775.
[72] Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., & Raad, A. (2023). Reviewing Federated Machine Learning and Its Use in Diseases Prediction. Sensors, 23(4), 2112. doi:10.3390/s23042112.
[73] Jiang, J. C., Kantarci, B., Oktug, S., & Soyata, T. (2020). Federated learning in smart city sensing: Challenges and opportunities. Sensors (Switzerland), 20(21), 1–29. doi:10.3390/s20216230.
[74] Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., & Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2), 513–535. doi:10.1007/s13042-022-01647-y.
[75] Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang, Y., Zhang, Y. Q., & Yang, Q. (2024). Vertical Federated Learning: Concepts, Advances, and Challenges. IEEE Transactions on Knowledge and Data Engineering, 36(7), 3615–3634. doi:10.1109/TKDE.2024.3352628.
[76] Chen, Y., Qin, X., Wang, J., Yu, C., & Gao, W. (2020). FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intelligent Systems, 35(4), 83–93. doi:10.1109/MIS.2020.2988604.
[77] Saha, S., & Ahmad, T. (2021). Federated transfer learning: Concept and applications. Intelligenza Artificiale, 15(1), 35-44.
[78] Truong, N., Sun, K., Wang, S., Guitton, F., & Guo, Y. K. (2021). Privacy preservation in federated learning: An insightful survey from the GDPR perspective. Computers & Security, 110, 102402. doi:10.1016/j.cose.2021.102402.
[79] Alexandrov, I. A., Kuklin, V. Z., Chervyakov, L. M., & Sheptunov, S. A. (2024). Development of a Technique for Discrete-Logical Decision-Making in Medical Information Systems. HighTech and Innovation Journal, 5(4), 1008–1023. doi:10.28991/HIJ-2024-05-04-010.
[80] Suzuki, K. (Ed.). (2011). Artificial Neural Networks - Methodological Advances and Biomedical Applications. IntechOpen Limited, London, United Kingdom. doi:10.5772/644.
[81] Sarkar, A., & Vajpayee, L. (2024). Augmenting the FedProx Algorithm by Minimizing Convergence. arXiv preprint arXiv:2406.00748. doi:10.48550/arXiv.2406.00748.
[82] Wang, J., Liu, Q., Liang, H., Joshi, G., & Poor, H. V. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. Advances in neural information processing systems, 6-12 December, 2020. (Virtual).
[83] Zhao, D., Jiang, R., Feng, M., Yang, J., Wang, Y., Hou, X., & Wang, X. (2022). A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging. Technology and Health Care, 30(2), 323–336. doi:10.3233/THC-212847.
[84] Tang, Q., Liang, J., & Zhu, F. (2023). A comparative review on multi-modal sensors fusion based on deep learning. Signal Processing, 213, 109165. doi:10.1016/j.sigpro.2023.109165.
[85] Yuan, L., Andrews, J., Mu, H., Vakil, A., Ewing, R., Blasch, E., & Li, J. (2022). Interpretable passive multi-modal sensor fusion for human identification and activity recognition. Sensors, 22(15), 5787.
[86] da Silva, L. G. F., Sadok, D. F. H., & Endo, P. T. (2023). Resource optimizing federated learning for use with IoT: A systematic review. Journal of Parallel and Distributed Computing, 175, 92–108. doi:10.1016/j.jpdc.2023.01.006.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.





















