Machine Learning Algorithms in Predicting Prices in Volatile Cryptocurrency Markets
Downloads
Doi: 10.28991/HIJ-2025-06-01-017
Full Text: PDF
Squarepants, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal. doi:10.2139/ssrn.3977007.
Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. doi:10.1016/j.frl.2016.09.025.
Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, United States.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. doi:10.1016/0304-4076(86)90063-1.
Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395. doi:10.1016/j.cam.2019.112395.
Han, D., Liu, P., Xie, K., Li, H., Xia, Q., Cheng, Q., Wang, Y., Yang, Z., Zhang, Y., & Xia, J. (2023). An attention-based LSTM model for long-term runoff forecasting and factor recognition. Environmental Research Letters, 18(2), 24004. doi:10.1088/1748-9326/acaedd.
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. doi:10.1016/j.ejor.2017.11.054.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 32(23), 17351–17360. doi:10.1007/s00521-020-04867-x.
Valencia, F., Gómez-Espinosa, A., & Valdés-Aguirre, B. (2019). Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy, 21(6), 589–589. doi:10.3390/e21060589.
Regal, A., Morzán, J., Fabbri, C., Herrera, G., Yaulli, G., Palomino, A., & Gil, C. (2019). Cryptocurrency price projection based on tweets using LSTM. Ingeniare. Revista Chilena de Ingeniería, 27(4), 696–706. doi:10.4067/s0718-33052019000400696.
Mariappan, L. T., Pandian, J. A., Kumar, V. D., Geman, O., Chiuchisan, I., & Nčƒstase, C. (2023). A Forecasting Approach to Cryptocurrency Price Index Using Reinforcement Learning. Applied Sciences (Switzerland), 13(4), 2692–2692–2704. doi:10.3390/app13042692.
Hamayel, M. J., & Owda, A. Y. (2021). A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI (Switzerland), 2(4), 477–496. doi:10.3390/ai2040030.
Yang, Y., Xiong, J., Zhao, L., Wang, X., Hua, L., & Wu, L. (2023). A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model. Fractal and Fractional, 7(7), 547–565. doi:10.3390/fractalfract7070547.
Sung, S. H., Kim, J. M., Park, B. K., & Kim, S. (2022). A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model. Axioms, 11(9), 448. doi:10.3390/axioms11090448.
Maleki, N., Nikoubin, A., Rabbani, M., & Zeinali, Y. (2023). Bitcoin price prediction based on other cryptocurrencies using machine learning and time series analysis. Scientia Iranica, 30(1 E), 285–301. doi:10.24200/sci.2020.55034.4040.
Jin, C., & Li, Y. (2023). Cryptocurrency Price Prediction Using Frequency Decomposition and Deep Learning. Fractal and Fractional, 7(10), 708–708–736. doi:10.3390/fractalfract7100708.
Kang, C. Y., Lee, C. P., & Lim, K. M. (2022). Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit. Data, 7(11), 149–149–161. doi:10.3390/data7110149.
Aljadani, A. (2022). DLCP2F: a DL-based cryptocurrency price prediction framework. Discover Artificial Intelligence, 2(1). doi:10.1007/s44163-022-00036-2.
Belcastro, L., Carbone, D., Cosentino, C., Marozzo, F., & Trunfio, P. (2023). Enhancing Cryptocurrency Price Forecasting by Integrating Machine Learning with Social Media and Market Data. Algorithms, 16(12), 542. doi:10.3390/a16120542.
Quiroga Juárez, C. A., & Villalobos Escobedo, A. (2023). Cryptocurrency market scenarios based on a statistical study. Revista CEA, 9(20), e2530. doi:10.22430/24223182.2530.
Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal and Fractional, 7(2), 203. doi:10.3390/fractalfract7020203.
Murray, K., Rossi, A., Carraro, D., & Visentin, A. (2023). On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles. Forecasting, 5(1), 196–209. doi:10.3390/forecast5010010.
Samson, T. K. (2024). Comparative Analysis of Machine Learning Algorithms for Daily Cryptocurrency Price Prediction. Information Dynamics and Applications, 3(1), 64–76. doi:10.56578/ida030105.
Fang, F., Chung, W., Ventre, C., Basios, M., Kanthan, L., Li, L., & Wu, F. (2024). Ascertaining price formation in cryptocurrency markets with machine learning. European Journal of Finance, 30(1), 78–100. doi:10.1080/1351847X.2021.1908390.
Kiranmai Balijepalli, N. S. S., & Thangaraj, V. (2025). Prediction of cryptocurrency's price using ensemble machine learning algorithms. European Journal of Management and Business Economics, 244. doi:10.1108/EJMBE-08-2023-0244.
Hossain, M. F. B., Lamia, L. Z., Rahman, M. M., & Khan, M. M. (2024). FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics. arXiv Preprint, arXiv:2411.12748. doi:10.48550/arXiv.2411.12748.
Islam, M. Z., Islam, M. S., Montaser, M. A. A., Rasel, M. A. B., Bhowmik, P. K., Dalim, H. M., & pant, L. (2024). Evaluating the Effectiveness of Machine Learning Algorithms in Predicting Cryptocurrency Prices Under Market Volatility: A Study Based on the Usa Financial Market. The American Journal of Management and Economics Innovations, 06(12), 15–38. doi:10.37547/tajmei/volume06issue12-03.
Lee, K., Lim, H., Hwang, J., & Lee, D. (2024). Evaluating missing data handling methods for developing building energy benchmarking models. Energy, 308, 132979. doi:10.1016/j.energy.2024.132979.
Núñez Sánchez, N. D. (2023). Analysis of Algorithms for Data Imputation and Prediction Models. Ph.D. Thesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. (In Spanish).
Camarillo-Peñaranda, J. R., Saavedra-Montes, A. J., & Ramos-Paja, C. A. (2013) Recommendations for Selecting Indexes for Model Validation. TecnoLógicas, 109. doi:10.22430/22565337.372.
Mahdi, E., Leiva, V., Mara'beh, S., & Martin-Barreiro, C. (2021). A new approach to predicting cryptocurrency returns based on the gold prices with support vector machines during the COVID-19 pandemic using sensor-related data. Sensors, 21(18), 6319. doi:10.3390/s21186319.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
