Noise Separation Techniques for Accurate Substation Anomaly Detection: An Intelligent Methodology
Downloads
To better monitor and characterize sounds produced by substations, this study aims to separate sounds produced by the equipment from environmental ambient noise as a means of improving the relevancy (and ultimately reliability) of the power grid. To do so, we propose a deep learning-based noise monitoring system in an end-network-cloud architecture that enables remote data collection, analysis, and management. This is achieved by developing a deep learning-based noise monitoring system, enabling remote data collection, processing, and management. The proposed method consists of two basic components: a self-designed Panel Response Acquisition device that can collect sufficient acoustic information, and a refined Deep Belief Network (DBN) that is trained with a Dynamic version of the Dwarf Mongoose Optimizer (DDMO) to improve the accuracy of the noise separation process. The performance of the DBN/DDMO model is 13.1 dB for SI-SDRi and 15.7 dB for SDRi, which are large improvements for SI-SNRi and SDRi over AlexNet and CNN-VGG19. This approach minimizes SPL deviations, as shown by a thorough computation regarding several data sets; therefore, it guarantees precise noise quantification under disturbing sounds. By allowing for proactive identification of unusual noise levels, this research supports predictive maintenance methods that can avoid sudden failures and improve the overall reliability of substations.
Downloads
[1] Hong, P., Quan, W., Chen, Z., Liu, X., & Gao, S. (2025). Visual Anomaly Detection through the Joint Entropy-Energy Optimization for High-Speed Railway Traction Substation. IEEE Transactions on Instrumentation and Measurement, 74. doi:10.1109/TIM.2025.3554319.
[2] Fan, S., Liu, J., Li, L., & Li, S. (2024). Noise Separation Technique for Enhancing Substation Noise Assessment Using the Phase Conjugation Method. Applied Sciences (Switzerland), 14(5), 1761. doi:10.3390/app14051761.
[3] Priyadarsini, M., & Sonekar, N. (2025). A CNN-based approach for anomaly detection in smart grid systems. Electric Power Systems Research, 238, 111077. doi:10.1016/j.epsr.2024.111077.
[4] Chen, W., Liu, Y., Gao, Y., Hu, J., Liao, Z., & Zhao, J. (2024). Intelligent Substation Noise Monitoring System: Design, Implementation and Evaluation. Energies, 17(13), 3083. doi:10.3390/en17133083.
[5] Srivastava, A. K., Pandey, S., Ahmed, A., Basumalik, S., & Sadanandan, S. K. (2025). Synchrophasor Data Anomaly Detection for Wide-Area Monitoring and Control in Cyber-Power Systems. Smart Cyber-Physical Power Systems: Fundamental Concepts, Challenges, and Solutions, 1, 425–449. doi:10.1002/9781394191529.ch17.
[6] Melo, J. V. J., Lira, G. R. S., Costa, E. G., Vilar, P. B., Andrade, F. L. M., Marotti, A. C. F., Costa, A. I., Leite Neto, A. F., & Santos Júnior, A. C. dos. (2024). Separation and Classification of Partial Discharge Sources in Substations. Energies, 17(15), 3804. doi:10.3390/en17153804.
[7] Amusan, O., & Wu, D. (2025). Anomaly Detection and Localization via Graph Learning. Energies, 18(6), 1475. doi:10.3390/en18061475.
[8] Xu, L., Qiu, N., Yang, B., & Peng, S. (2023). Separation of Urban Substation Noise and Environmental Noise based on Independent Component Analysis. Journal of Physics: Conference Series, 2427(1), 012021. doi:10.1088/1742-6596/2427/1/012021.
[9] Itai, U., Bar Ilan, A., & Lazebnik, T. (2026). Tighten the lasso: a convex hull volume-based anomaly detection method. International Journal of Data Science and Analytics, 21(1), 32. doi:10.1007/s41060-025-00928-3.
[10] Zhou, T., Wang, Y., Lin, Y., Ai, B., & Liu, L. (2024). Deep Learning and Hybrid Fusion-Based LOS/NLOS Identification in Substation Scenarios for Power Internet of Things. IEEE Internet of Things Journal, 11(20), 33903–33914. doi:10.1109/JIOT.2024.3432798.
[11] Fan, S., Li, J., Li, L., & Chu, Z. (2022). Noise Annoyance Prediction of Urban Substation Based on Transfer Learning and Convolutional Neural Network. Energies, 15(3), 749. doi:10.3390/en15030749.
[12] Shao, X., Jiang, Y., Jiang, H., & Li, J. (2024). Research on substation intrusion event identification method based on MTF and CNN. Measurement Science and Technology, 35(2), 26104. doi:10.1088/1361-6501/ad092f.
[13] Yang, F., & Li, X. (2023). Research on Substation Monitoring and Fault Diagnosis Based on Distributed Computing and Artificial Neural Network. Parallel Processing Letters, 33(3), 2340004. doi:10.1142/S0129626423400042.
[14] Yan, C., & Razmjooy, N. (2023). Kidney stone detection using an optimized Deep Believe network by fractional coronavirus herd immunity optimizer. Biomedical Signal Processing and Control, 86, 104951. doi:10.1016/j.bspc.2023.104951.
[15] Liu, Z., Wang, Y., Wang, Q., & Hu, M. (2025). Vision Transformer-Based Anomaly Detection in Smart Grid Phasor Measurement Units Using Deep Learning Models. IEEE Access, 13, 44565–44576. doi:10.1109/ACCESS.2025.3549679.
[16] Kale, A. P., Wahul, R. M., Patange, A. D., Soman, R., & Ostachowicz, W. (2023). Development of Deep Belief Network for Tool Faults Recognition. Sensors, 23(4), 1872. doi:10.3390/s23041872.
[17] Alqahtani, N., Alam, S., Aqeel, I., Shuaib, M., Mohsen Khormi, I., Khan, S. B., & Malibari, A. A. (2023). Deep Belief Networks (DBN) with IoT-Based Alzheimer’s Disease Detection and Classification. Applied Sciences (Switzerland), 13(13), 7833. doi:10.3390/app13137833.
[18] Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. doi:10.1016/j.eswa.2021.116158.
[19] Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731. doi:10.1016/j.engappai.2020.103731.
[20] Samareh Moosavi, S. H., & Bardsiri, V. K. (2019). Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Engineering Applications of Artificial Intelligence, 86, 165–181. doi:10.1016/j.engappai.2019.08.025.
[21] Dehghani, M., & Trojovský, P. (2021). Teamwork optimization algorithm: A new optimization approach for function minimization/maximization. Sensors, 21(13), 4567. doi:10.3390/s21134567.
[22] Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300. doi:10.1016/j.engappai.2019.103300.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.






















