High-Tech Models for Simulating the Wounding Effects of Projectiles of Small Calibres: Benefits for Security Management

Ludvík Juříček, Katarína Pagáčová, David Mazák, Olga Vojtěchovská

Abstract


The aim of this study is to analyse the effects of projectiles of small calibres on the human femur using an innovative indirect identification method. A heterogeneous physical model was developed that combines ballistic gelatine for soft tissues and porcine femur as an analogue for human bone to simulate gunshot injuries under ethical and economic conditions. The study evaluated three types of ammunition: 9 mm Luger pistol cartridges and two micro-calibre rifle cartridges, 5.56×45 mm (SS 109) and 5.45×39 mm (7H6). Ballistic testing measured impact and exit velocities, assessed bone tissue destruction, soft tissue damage, and the temporary cavity created by projectiles. The findings reveal that micro-calibre rifle projectiles cause up to twice the bone destruction and more extensive soft tissue damage compared to pistol ammunition. The study also highlights the significant role of liquid structures in the medullary cavity in amplifying bone damage. These results improve ballistic testing methodologies, offering valuable insights for crisis management, security operations, and the development of protective equipment. The proposed model serves as a critical tool for understanding the effects on human tissues, aiding in forensic analysis, and advancing experimental ballistics. This research opens new opportunities for applications in the security and health disciplines.

 

Doi: 10.28991/HIJ-2025-06-01-010

Full Text: PDF


Keywords


Physical Model; Ballistic Experiment; Complex Gunshot Injury; Indirect Identification Method; Projectiles of Small Calibres; Live Tissue Substitution; Wounding Effect of a Projectile; Wounding Potential of a Projectile.

References


Zapletal, L., & Hanuliaková, J. (2015). Sociologisch-pedagogische Grundlage und pädagogische Aufgaben der Manager. Ste.con, Karlsruhe, Germany.

Coupland, R. (1991). The Red Cross Wound Classification. International Committee of the Red Cross (ICRC), Geneva, Switzerland.

Berryman, H. E. (2019). A systematic approach to the interpretation of gunshot wound trauma to the cranium. Forensic science international, 301, 306-317. doi:10.1016/j.forsciint.2019.05.019.

Huelke, D. F., Harger, J. H., Buege, L. J., & Dingman, H. G. (1968). An experimental study in bio-ballistics: Femoral fractures produced by projectiles-II Shaft impacts. Journal of Biomechanics, 1(4), 313–321. doi:10.1016/0021-9290(68)90025-0.

Sellier, K. G., Kneubuehl, B. P., & Haag, L. C. (1995). Wound Ballistics and the Scientific Background. In The American Journal of Forensic Medicine and Pathology, 16(4), 13. doi:10.1097/00000433-199512000-00013.

Di Maio, V. J. M. (2015). Gunshot wounds: Practical aspects of firearms, ballistics, and forensic techniques, third edition. In Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques. CRC Press. doi:10.4324/9780367805715.

Tong, J., Kedar, S., Ghate, D., & Gu, L. (2019). Indirect traumatic optic neuropathy induced by primary blast: a fluid–structure interaction study. Journal of Biomechanical Engineering, 141(10), 101011. doi:10.1115/1.4043668.

MacPherson, D. (2017). Projectile penetration: Modeling the dynamics and consequences of projectiles. Ballistic Publishing, Adelaide, South Australia.

Sangeetha, M., Gavurová, B., Sekar, M., Al-Ansari, M. M., Al-Humaid, L. A., Le, Q. H., ... & Jhanani, G. K. (2023). Production of hydrogen as value added product from the photovoltaic thermal system operated with graphene nanoparticles: An experimental study. Fuel, 334, 126792. doi:10.1016/j.fuel.2022.126792.

Sun, Y., Wang, J., & Chen, Z. Biomechanical responses of bone tissue under ballistic impacts: Simulation and experimental validation. International Journal of Biomechanics, 42(3), 231–244. doi:10.1016/j.ijbiomech.2020.03.001.

Santos, A., Ramos, P., Fernandes, L., Magalhães, T., Almeida, A., & Sousa, A. (2015). Firing distance estimation based on the analysis of GSR distribution on the target surface using ICP-MS-An experimental study with a 7.65 mm × 17 mm Browning pistol (32 ACP). Forensic Science International, 247(1), 62–68. doi:10.1016/j.forsciint.2014.12.006.

Zysset, P. K., Guo, X. E., Hoffler, C. E., Moore, K. E., & Goldstein, S. A. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of biomechanics, 32(10), 1005-1012. doi:10.1016/S0021-9290(99)00111-6.

Zapletal, L. (2020). Etika v souvislostech dneška. Nová Forma, Týn nad Vltavou, Czech Republic.

Beneš, A. (1980). Chirurgie (Válečné lékařské obory). Naše vojsko, Praha, Czech Republic.

Shen, T., Wu, Y., Alahmadi, T. A., Alharbi, S. A., Maroušek, J., Xia, C., & Praveenkumar, T. R. (2023). Assessment of Combustion and Acoustic Characteristics of Scenedesmus dimorphus Blended With Hydrogen Fuel on Internal Combustion Engine. Journal of Energy Resources Technology, Transactions of the ASME, 145(5), 52302. doi:10.1115/1.4056446.

Yi-Chia, L., Sekar, M., Chinnathambi, A., Nasif, O., Gavurová, B., Jhanani, G. K., Brindhadevi, K., & Lan Chi, N. T. (2023). Role of chicken fat waste and hydrogen energy ratio as the potential alternate fuel with nano-additives: Insights into resources and atmospheric remediation process. Environmental Research, 216, 114742. doi:10.1016/j.envres.2022.114742.

Maroušek, J., Maroušková, A., Gavurová, B., Tuček, D., & Strunecký, O. (2023). Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresource Technology, 374, 128802. doi:10.1016/j.biortech.2023.128802.

Hu, Y., Wang, X., Zhang, S., Liu, Z., Hu, T., Wang, X., Peng, X., Dai, H., Wu, J., & Hu, F. (2024). Iron-carbon micro-electrolysis material enhanced high-solid anaerobic digestion: Performance and microbial mechanism. Biochemical Engineering Journal, 201, 109132. doi:10.1016/j.bej.2023.109132.

Zhang, G., Liu, J., Pan, X., Abed, A. M., Le, B. N., Ali, H. E., & Ge, Y. (2023). Latest avenues and approaches for biohydrogen generation from algal towards sustainable energy optimization: Recent innovations, artificial intelligence, challenges, and future perspectives. International Journal of Hydrogen Energy, 48(55), 20988–21003. doi:10.1016/j.ijhydene.2022.10.224.

Zhao, Q., Han, F., You, Z., Huang, Y., & She, X. (2023). Evaluation of the relationship of wastewater treatment and biodiesel production by microalgae cultivated in the photobioreactor. Fuel, 350, 128750. doi:10.1016/j.fuel.2023.128750.

Amedei, A., Meli, E., Rindi, A., & Pucci, E. (2021). A methodology to characterize modal damping in vibrating systems: Application to the case of gas turbine combustion chambers. Journal of Engineering for Gas Turbines and Power, 143(1), 51010. doi:10.1115/1.4049229.

Zaseck, L. W., Bonifas, A. C., Miller, C. S., Orton, N. R., Reed, M. P., Demetropoulos, C. K., ... & Rupp, J. D. (2020). Kinematic and biomechanical response of post-mortem human subjects under various pre-impact postures to high-rate vertical loading conditions (No. 2019-22-0010). SAE Technical Paper, United States.

Juříček, L. (2017). Wound Ballistics: Technical, Forensic and Criminalistic Aspects. KEY Publishing, Ostrava, Czech Republic.

Juříček, L., Bočková, K., Ficek, M., Lajčin, D., Moravanský, N., & Zapletal, L. (2020). The Projectiles Wounding Potential and Safety Management. STS Science Centre Ltd, Great Britain.

Juříček, L., & Moravanský, N. (2015). Ballistic simulation on direct effects of small arms projectiles on human bone tissue. Polish Journal of Health and Fitness, 1(1), 72-82.

Ficek, M., Juříček, L., & Michala, M. (2018). Expansion weapons and their wounding potential. Annals of DAAAM and Proceedings of the International DAAAM Symposium, 29(1), 786–790. doi:10.2507/29th.daaam.proceedings.114.

Juříček, L., Bočková, K., Zapletal, L., & Ficek, M. (2022). Methods of Indirect Identification in the Hand of a Crisis Manager in the Context of Sociological Aspects. SAR Journal - Science and Research, 5(4), 183–193. doi:10.18421/sar54-03.

Klein, M. (2005). Ranivá balistika: Historie a současné přístupy. Academia, Praha, Czech Republic.

Billich, R. (2019). Simulation and experimental evaluation of the effects of small-caliber ammunition occurring under ballistic protective equipment. Diplomová práce, Univerzita Karlova, Prague, Czech Republic.

Lavrov, A. S., Khomyakov, A. P., & Mordanov, S. V. (2020). Simulation of the solid phase distribution and non-stationary heating of the reactive mass in the conversion apparatus. AIP Conference Proceedings, 2313(2), 234–245. doi:10.1063/5.0032840.

Zecheru, T., Său, C., Lăzăroaie, C., Zaharia, C., Rotariu, T., & Stănescu, P. O. (2016). Novel formulations of ballistic gelatin. 1. Rheological properties. Forensic science international, 263, 204-210. doi:10.1016/j.forsciint.2016.04.023.

Qiao, Y., Wang, J., Lei, D., Nie, S., Wei, Z., Gong, L., ... & Liu, Z. (2025). Ballistic Penetration Behavior of a Novel Tissue Analogs Paraffin Target: Experiment, Simulation, and Theory. Journal of Applied Polymer Science, e56685. doi:10.1002/app.56685.

Ninnemann, E., Koroglu, B., Pryor, O., Barak, S., Nash, L., Loparo, Z., ... & Vasu, S. (2018). New insights into the shock tube ignition of H2/O2 at low to moderate temperatures using high-speed end-wall imaging. Combustion and Flame, 187, 11-21. doi:10.1016/j.combustflame.2017.08.021.

Ficek, J. (2022). The effect of shooting distance on the kinetic energy of a bullet in air guns. Forenzní balistika, 12(3), 45–56.

Kaur, G., Mukherjee, D., & Moza, B. (2023). A Comprehensive Review of Wound Ballistics: Mechanisms, Effects, and Advancements. International Journal of Medical Toxicology & Legal Medicine, 26(3-4), 189-196. doi:10.5958/0974-4614.2023.00071.2.

Yunfei, D., Wei, Z., Yonggang, Y., & Gang, W. (2014). The ballistic performance of metal plates subjected to impact by projectiles of different strength. Materials & Design, 58, 305-315. doi:10.1016/j.matdes.2013.12.073.

Bourke, J. (2017). Theorizing ballistics: ethics, emotions, and weapons scientists. History and theory, 56(4), 135-151. doi:10.1111/hith.12042.

Maiden, N. (2009). Historical overview of wound ballistics research. Forensic Science, Medicine, And Pathology, 5, 85-89. doi:10.1007/s12024-009-9090-z

Karger, B. (2008). Forensic ballistics. Forensic Pathology Reviews, 139-172. doi:10.1007/978-1-59745-110-9_9.

Anderson Jr, C. E., & Bodner, S. R. (1988). Ballistic impact: the status of analytical and numerical modeling. International Journal of Impact Engineering, 7(1), 9-35. doi:10.1016/0734-743X(88)90010-3.

Crouch, I. G., & Eu, B. (2017). Ballistic testing methodologies. The science of armour materials, 639-673. doi:10.1016/B978-0-08-100704-4.00011-6.

Kneubuehl, B. P., Coupland, R. M., Rothschild, M. A., & Thali, M. J. (2008). Wundballistik. Grundlagen und Anwendungen. 3., vollständig überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin, Germany. doi:10.1007/978-3-540-85755-3.

Fackler, M. L. (1988). Wound ballistics: a review of common misconceptions. JAMA, 259(18), 2730-2736. doi:10.1001/jama.1988.03720180056033

Moravanský, N., Juříček, L., Rekeň, V., Dohnal, P., Kováč, P., Zummerová, A. (2015). Experimental wound ballistics of ricochet projectiles: Report of continuing studies. 23rd Congress of the International Academy of Legal Medicine, Dubai International Convention & Exhibition Centre, Dubai, United Arab Emirates.

Moravanský, N., Laciaková, L., Kováč, P., Čentéš, J., Rekeň, V. (2021). The forensic power of medical evidence and the most common expert errors. Justičná Revue, 73(2), 232–241.

Moravanský, N., Laciaková, L., Rekeň, V., Juříček, L., Kováč, P., Vrtík, L., & Čentéš, J. (2022). Expert witnesses professional and methodological mistakes in medical malpractice cases. Studia Prawnoustrojowe, 58(58), 334–348. doi:10.31648/sp.8191.

Tang, W., Tang, Z., Qian, H., Huang, C., & He, Y. C. (2023). Implementing dilute acid pretreatment coupled with solid acid catalysis and enzymatic hydrolysis to improve bioconversion of bamboo shoot shells. Bioresource Technology, 381, 129167. doi:10.1016/j.biortech.2023.129167.

Babich, O., Ivanova, S., Michaud, P., Budenkova, E., Kashirskikh, E., Anokhova, V., & Sukhikh, S. (2024). Fermentation of micro- and macroalgae as a way to produce value-added products. Biotechnology Reports, 41, 827. doi:10.1016/j.btre.2023.e00827.

Chu, Y., Li, S., Xie, P., Chen, X., Li, X., & Ho, S. H. (2023). New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana. Bioresource Technology, 385, 129409. doi:10.1016/j.biortech.2023.129409.

Du, W., Wang, J., Feng, Y., Duan, W., Wang, Z., Chen, Y., Zhang, P., & Pan, B. (2023). Biomass as residential energy in China: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 186, 113657. doi:10.1016/j.rser.2023.113657.

Valeika, G., Matijošius, J., Orynycz, O., Rimkus, A., Kilikevičius, A., & Tucki, K. (2024). Compression Ignition Internal Combustion Engine’s Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends. Energies, 17(1), 262. doi:10.3390/en17010262.

Igansi, A. V., da Silva, P. P., Engelmann, J. I., Moraes, P. S., da Silveira, N., Corrêa, R. G. de F., de Souza, J. S., de Almeida Pinto, L. A., Paes, R. L., & Sant’Anna Cadaval, T. R. (2024). Biodiesel and fishmeal from Nile tilapia waste: process, techno-economic, and Monte Carlo analyses. Biofuels, Bioproducts and Biorefining, 18(1), 70–86. doi:10.1002/bbb.2549.

Sekar, M., & T R, P. (2024). Critical review on the formations and exposure of polycyclic aromatic hydrocarbons (PAHs) in the conventional hydrocarbon-based fuels: Prevention and control strategies. Chemosphere, 350, 141005. doi:10.1016/j.chemosphere.2023.141005.


Full Text: PDF

DOI: 10.28991/HIJ-2025-06-01-010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ludvík Juříček