A Framework to Estimate the Key Point Within an Object Based on a Deep Learning Object Detection
Abstract
Doi: 10.28991/HIJ-2023-04-01-08
Full Text: PDF
Keywords
References
Kurdthongmee, W. (2020). A comparative study of the effectiveness of using popular DNN object detection algorithms for pith detection in cross-sectional images of parawood. Heliyon, 6(2), e03480. doi:10.1016/j.heliyon.2020.e03480.
Zheng, Y., Fu, H., Li, R., Lo, W. L., Chi, Z., Feng, D. D., Song, Z., & Wen, D. (2019). Intelligent evaluation of strabismus in videos based on an automated cover test. Applied Sciences (Switzerland), 9(4), 731. doi:10.3390/app9040731.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 128(2), 261–318. doi:10.1007/s11263-019-01247-4.
Luo, H. L., & Chen, H. K. (2020). Survey of Object Detection Based on Deep Learning. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 48(6), 1230–1239. doi:10.3969/j.issn.0372-2112.2020.06.026.
Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. Advances in neural information processing systems, 5-10 December, 2013, Tahoe City, United States.
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–3232. doi:10.1109/TNNLS.2018.2876865.
Kurdthongmee, W., Kurdthongmee, P., Suwannarat, K., & Kiplagat, J. K. (2022). A YOLO Detector Providing Fast and Accurate Pupil Center Estimation using Regions Surrounding a Pupil. Emerging Science Journal, 6(5), 985–997. doi:10.28991/ESJ-2022-06-05-05.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, 9905. Springer, Cham, Switzerland. doi:10.1007/978-3-319-46448-0_2.
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint, arXiv:1804.02767. doi:10.48550/arCiv.1804.02767.
Bagherzadeh, S. Z., & Toosizadeh, S. (2022). Eye tracking algorithm based on multi model Kalman filter. HighTech and Innovation Journal, 3(1), 15-27. doi:10.28991/HIJ-2022-03-01-02.
Zhu, X., Vondrick, C., Fowlkes, C. C., & Ramanan, D. (2016). Do We Need More Training Data? International Journal of Computer Vision, 119(1), 76–92. doi:10.1007/s11263-015-0812-2.
Zhu, X., Vondrick, C., Ramanan, D., & Fowlkes, C. (2012). Do We Need More Training Data or Better Models for Object Detection? Procedings of the British Machine Vision Conference 2012. doi:10.5244/c.26.80.
Real, E., Shlens, J., Mazzocchi, S., Pan, X., & Vanhoucke, V. (2017). YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, United States. doi:10.1109/cvpr.2017.789.
Haque, I., Alim, M., Alam, M., Nawshin, S., Noori, S. R. H., & Habib, M. T. (2022). Analysis of recognition performance of plant leaf diseases based on machine vision techniques. Journal of Human, Earth, and Future, 3(1), 129-137. doi:10.28991/HEF-2022-03-01-09.
Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., & Zhang, L. (2018). DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.00418.
Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, J., & Sun, J. (2019). Objects365: A Large-Scale, High-Quality Dataset for Object Detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea. doi:10.1109/iccv.2019.00852.
Prusa, J., Khoshgoftaar, T. M., & Seliya, N. (2015). The Effect of Dataset Size on Training Tweet Sentiment Classifiers. 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). doi:10.1109/icmla.2015.22.
Pang, Y., Cao, J., Li, Y., Xie, J., Sun, H., & Gong, J. (2020). TJU-DHD: A diverse high-resolution dataset for object detection. IEEE Transactions on Image Processing, 30, 207-219. doi:10.1109/TIP.2020.3034487.
Tu, Z., Ma, Y., Li, Z., Li, C., Xu, J., & Liu, Y. (2022). RGBT Salient Object Detection: A Large-scale Dataset and Benchmark. IEEE Transactions on Multimedia. doi:10.1109/TMM.2022.3171688.
Zhou, Y., & Tuzel, O. (2018). VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.00472.
Du, Z., Yin, J., & Yang, J. (2019). Expanding Receptive Field YOLO for Small Object Detection. Journal of Physics: Conference Series, 1314(1), 012202. doi:10.1088/1742-6596/1314/1/012202.
Qu, H., Zhang, L., Wu, X., He, X., Hu, X., & Wen, X. (2019). Multiscale object detection in infrared streetscape images based on deep learning and instance level data augmentation. Applied Sciences (Switzerland), 9(3), 565. doi:10.3390/app9030565.
Takahashi, M., Ji, Y., Umeda, K., & Moro, A. (2020). Expandable YOLO: 3D Object Detection from RGB-D Images. 2020 21st International Conference on Research and Education in Mechatronics (REM). doi:10.1109/rem49740.2020.9313886.
Huang, H., Tang, X., Wen, F., & Jin, X. (2022). Small object detection method with shallow feature fusion network for chip surface defect detection. Scientific Reports, 12(1), 1–9. doi:10.1038/s41598-022-07654-x.
Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? 2009 IEEE 12th International Conference on Computer Vision. doi:10.1109/iccv.2009.5459469.
Thammarak, K., Sirisathitkul, Y., Kongkla, P., & Intakosum, S. (2022). Automated Data Digitization System for Vehicle Registration Certificates Using Google Cloud Vision API. Civil Engineering Journal, 8(7), 1447-1458. doi:10.28991/CEJ-2022-08-07-09.
Shrivastava, A., Gupta, A., & Girshick, R. (2016). Training Region-Based Object Detectors with Online Hard Example Mining. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.89.
RoyChowdhury, A., Chakrabarty, P., Singh, A., Jin, S., Jiang, H., Cao, L., & Learned-Miller, E. (2019). Automatic Adaptation of Object Detectors to New Domains Using Self-Training. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2019.00087.
Kumar B., C., Punitha, R., & Mohana. (2020). YOLOv3 and YOLOv4: Multiple Object Detection for Surveillance Applications. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India. doi:10.1109/icssit48917.2020.9214094.
Tran, D. P., Nguyen, G. N., & Hoang, V. D. (2020). Hyperparameter Optimization for Improving Recognition Efficiency of an Adaptive Learning System. IEEE Access, 8(160569), 160569–160580. doi:10.1109/ACCESS.2020.3020930.
Yoon, H., Lee, S. H., & Park, M. (2020). TensorFlow with user friendly Graphical Framework for object detection API. arXiv preprint, arXiv:2006.06385. doi:10.48550/arXiv.2006.06385.
Wang, J., Song, L., Li, Z., Sun, H., Sun, J., & Zheng, N. (2021). End-to-End Object Detection with Fully Convolutional Network. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr46437.2021.01559.
Barbedo, J. G. A. (2018). Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Computers and Electronics in Agriculture, 153, 46–53. doi:10.1016/j.compag.2018.08.013.
Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the Performance of Machine Learning-Based IDSs on an Imbalanced and Up-to-Date Dataset. IEEE Access, 8, 32150–32162. doi:10.1109/ACCESS.2020.2973219.
Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A. Bin, Alzakari, N., Abou Elwafa, A., & Kurdi, H. (2021). Impact of dataset size on classification performance: An empirical evaluation in the medical domain. Applied Sciences (Switzerland), 11(2), 1–18. doi:10.3390/app11020796.
Ozer, I., Cetin, O., Gorur, K., & Temurtas, F. (2021). Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset. Neural Computing and Applications, 33(21), 14975–14989. doi:10.1007/s00521-021-06133-0.
Bailly, A., Blanc, C., Francis, É., Guillotin, T., Jamal, F., Wakim, B., & Roy, P. (2022). Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine, 213(106504). doi:10.1016/j.cmpb.2021.106504.
Bongiorno, V., Gibbon, S., Michailidou, E., & Curioni, M. (2022). Exploring the use of machine learning for interpreting electrochemical impedance spectroscopy data: evaluation of the training dataset size. Corrosion Science, 198, 110119. doi:10.1016/j.corsci.2022.110119.
Decelle, R., Ngo, P., Debled-Rennesson, I., Mothe, F., & Longuetaud, F. (2021). Pith Estimation on Tree Log End Images. Reproducible Research in Pattern Recognition. RRPR 2021. Lecture Notes in Computer Science, 12636. Springer, Cham, Switzerland. doi:10.1007/978-3-030-76423-4_7.
Larumbe-Bergera, A., Garde, G., Porta, S., Cabeza, R., & Villanueva, A. (2021). Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks. Sensors, 21(20). doi:10.3390/s21206847.
Larumbe, A., Cabeza, R., & Villanueva, A. (2018). Supervised descent method (SDM) applied to accurate pupil detection in off-the-shelf eye tracking systems. Proceedings of the 2018 ACM Symposium on Eye Tracking Research Applications, 1-8. doi:10.1145/3204493.3204551.
Larumbe-Bergera, A., Porta, S., Cabeza, R., & Villanueva, A. (2019). SeTA. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. doi:10.1145/3314111.3319830.
King, D. E. (2009). Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research, 10, 1755-1758.
Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-22 June, 2023, Vancouver, Canada.
Kim, S., Jeong, M., & Ko, B. C. (2020). Energy efficient pupil tracking based on rule distillation of cascade regression forest. Sensors (Switzerland), 20(18), 1–17. doi:10.3390/s20185141.
Lee, K.I., Jeon, J.H., & Song, B.C. (2020). Deep Learning-Based Pupil Center Detection for Fast and Accurate Eye Tracking System. Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, 12364, Springer, Cham, Switzerland. doi:10.1007/978-3-030-58529-7_3.
Cai, H., Liu, B., Ju, Z., Thill, S., Belpaeme, T., Vanderborght, B., & Liu, H. (2019). Accurate eye center localization via hierarchical adaptive convolution. British Machine Vision Conference 2018, BMVC 2018, 3-6 September, 2018, London, United Kingdom.
Levinshtein, A., Phung, E., & Aarabi, P. (2018). Hybrid eye center localization using cascaded regression and hand-crafted model fitting. Image and Vision Computing, 71, 17–24. doi:10.1016/j.imavis.2018.01.003.
Choi, J. H., Il Lee, K., Kim, Y. C., & Cheol Song, B. (2019). Accurate Eye Pupil Localization Using Heterogeneous CNN Models. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan. doi:10.1109/icip.2019.8803121.
Kitazumi, K., & Nakazawa, A. (2018). Robust Pupil Segmentation and Center Detection from Visible Light Images Using Convolutional Neural Network. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan. doi:10.1109/smc.2018.00154.
DOI: 10.28991/HIJ-2023-04-01-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 W. Kurdthongmee, K. Suwannarat, C. Wattanapanich