Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks
Abstract
Doi: 10.28991/HIJ-2023-04-01-011
Full Text: PDF
Keywords
References
Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Systems with Applications, 184, 115561. doi:10.1016/j.eswa.2021.115561.
Kuklin, V., Alexandrov, I., Polezhaev, D., & Tatarkanov, A. (2023). Prospects for developing digital telecommunication complexes for storing and analyzing media data. Bulletin of Electrical Engineering and Informatics, 12(3), 1536–1549. doi:10.11591/eei.v12i3.4840.
Kuklin, V. Z., Alexandrov, I. A., Umyskov, A. A., & Lampezhev, A. K. (2022). Analysis of the Prospects for Developing Storage and Processing Complexes for Multiformat Media Data. Journal of Computer Science, 18(12), 1159–1169. doi:10.3844/jcssp.2022.1159.1169
Xu, Y., Wang, Z., Gao, H., Jiang, Z., Yin, Y., & Li, R. (2023). Towards machine-learning-driven effective mashup recommendations from big data in mobile networks and the Internet-of-Things. Digital Communications and Networks, 9(1), 138–145. doi:10.1016/j.dcan.2022.12.009.
Antonakoudis, A., Barbosa, R., Kotidis, P., & Kontoravdi, C. (2020). The era of big data: Genome-scale modelling meets machine learning. Computational and Structural Biotechnology Journal, 18, 3287–3300. doi:10.1016/j.csbj.2020.10.011.
Párizs, R. D., Török, D., Ageyeva, T., & Kovács, J. G. (2022). Machine Learning in Injection Molding: An Industry 4.0 Method of Quality Prediction. Sensors, 22(7), 2704. doi:10.3390/s22072704.
Bachute, M. R., & Subhedar, J. M. (2021). Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms. Machine Learning with Applications, 6, 100164. doi:10.1016/j.mlwa.2021.100164.
Yakimovich, A., Beaugnon, A., Huang, Y., & Ozkirimli, E. (2021). Labels in a haystack: Approaches beyond supervised learning in biomedical applications. Patterns, 2(12), 100383. doi:10.1016/j.patter.2021.100383.
Alexandrov, I. A., Kuklin, V. Z., Muranov, A. N., & Tatarkanov, A. A. (2022). Theoretical Foundations of an Algorithm of Visualization of a Set of Points of a Multidimensional Space for Use in Anthropotechnical Decision Support Systems. Proceedings of the Institute for System Programming of the RAS, 34(4), 201–210. doi:10.15514/ispras-2022-34(4)-14.
Ige, A. O., & Mohd Noor, M. H. (2022). A survey on unsupervised learning for wearable sensor-based activity recognition. Applied Soft Computing, 127, 109363. doi:10.1016/j.asoc.2022.109363.
Tatarkanov, A., Alexandrov, I., Muranov, A., & Lampezhev, A. (2022). Development of a Technique for the Spectral Description of Curves of Complex Shape for Problems of Object Classification. Emerging Science Journal, 6(6), 1455–1475. doi:10.28991/esj-2022-06-06-015.
Sawant, S. S., & Prabukumar, M. (2020). A review on graph-based semi-supervised learning methods for hyperspectral image classification. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 243–248. doi:10.1016/j.ejrs.2018.11.001.
Rožanec, J. M., Trajkova, E., Dam, P., Fortuna, B., & Mladenic, D. (2022). Streaming Machine Learning and Online Active Learning for Automated Visual Inspection. IFAC-PapersOnLine, 55(2), 277–282. doi:10.1016/j.ifacol.2022.04.206.
Zhao, T., Zheng, Y., & Wu, Z. (2022). Improving computational efficiency of machine learning modeling of nonlinear processes using sensitivity analysis and active learning. Digital Chemical Engineering, 3, 100027. doi:10.1016/j.dche.2022.100027.
Khayrutdinov, M. M., Golik, V. I., Aleksakhin, A. V., Trushina, E. V., Lazareva, N. V., & Aleksakhina, Y. V. (2022). Proposal of an algorithm for choice of a development system for operational and environmental safety in mining. Resources, 11(10), 88. doi:10.3390/resources11100088.
Zheng, X., Li, P., & Wu, X. (2022). Data stream classification based on extreme learning machine: a review. Big Data Research, 30, 100356. doi:10.1016/j.bdr.2022.100356.
Binkhonain, M., & Zhao, L. (2019). A review of machine learning algorithms for identification and classification of non-functional requirements. Expert Systems with Applications: X, 1, 100001. doi:10.1016/j.eswax.2019.100001.
Singh, M. P., & Saraswat, V. K. (2017). Multilayer feed forward neural networks for non-linear continuous bidirectional associative memory. Applied Soft Computing, 61, 700–713. doi:10.1016/j.asoc.2017.08.026.
Laddach, K., Łangowski, R., Rutkowski, T. A., & Puchalski, B. (2022). An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes. Applied Soft Computing, 116, 108375. doi:10.1016/j.asoc.2021.108375.
Stewart, R. H., Palmer, T. S., & DuPont, B. (2021). A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Progress in Nuclear Energy, 138, 103830. doi:10.1016/j.pnucene.2021.103830.
Maier, H. R., Razavi, S., Kapelan, Z., Matott, L. S., Kasprzyk, J., & Tolson, B. A. (2019). Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environmental Modelling & Software, 114, 195–213. doi:10.1016/j.envsoft.2018.11.018.
Grygar, D., & Fabricius, R. (2019). An efficient adjustment of genetic algorithm for Pareto front determination. Transportation Research Procedia, 40, 1335–1342. doi:10.1016/j.trpro.2019.07.185.
Lessmann, S., Stahlbock, R., & Crone, S. F. (2006). Genetic Algorithms for Support Vector Machine Model Selection. The 2006 IEEE International Joint Conference on Neural Network Proceedings. doi:10.1109/ijcnn.2006.1716515.
Gavrilescu, M., Floria, S. A., Leon, F., & Curteanu, S. (2022). A Hybrid Competitive Evolutionary Neural Network Optimization Algorithm for a Regression Problem in Chemical Engineering. Mathematics, 10(19), 3581. doi:10.3390/math10193581.
Akhmedova, S. A., & Semenkin, E. S. (2016). Collective bionic algorithm with biogeography based migration operator for binary optimization. Journal of Siberian Federal University - Mathematics & Physics, 9(1), 3–10. doi:10.17516/1997-1397-2016-9-1-3-10.
Tan, K. C., Chew, Y. H., Lee, T. H., & Yang, Y. J. (n.d.). A cooperative coevolutionary algorithm for multiobjective optimization. SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483). doi:10.1109/icsmc.2003.1243847.
Fan, Z., Zi-xuan, X., & Ming-hu, W. (2023). State of health estimation for Li-ion battery using characteristic voltage intervals and genetic algorithm optimized back propagation neural network. Journal of Energy Storage, 57, 106277. doi:10.1016/j.est.2022.106277.
Zangeneh, M., Aghajari, E., & Forouzanfar, M. (2020). A Review on Optimization of Fuzzy Controller Parameters in Robotic Applications. IETE Journal of Research, 68(6), 4150–4159. doi:10.1080/03772063.2020.1787878.
Sopov, E. (2015). A Self-configuring Metaheuristic for Control of Multi-Strategy Evolutionary Search. Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science, 9142. Springer, Cham, Switzerland. doi:10.1007/978-3-319-20469-7_4.
Semeraro, F., Griffiths, A., & Cangelosi, A. (2023). Human–robot collaboration and machine learning: A systematic review of recent research. Robotics and Computer-Integrated Manufacturing, 79, 102432. doi:10.1016/j.rcim.2022.102432.
Hamdi, Y., Boubaker, H., Rabhi, B., Qahtani, A. M., Alharithi, F. S., Almutiry, O., Dhahri, H., & Alimi, A. M. (2022). Deep learned BLSTM for online handwriting modeling simulating the Beta-Elliptic approach. Engineering Science and Technology, an International Journal, 35, 101215. doi:10.1016/j.jestch.2022.101215.
Xu, X., Li, D., Zhou, Y., & Wang, Z. (2022). Multi-type features separating fusion learning for Speech Emotion Recognition. Applied Soft Computing, 130, 109648. doi:10.1016/j.asoc.2022.109648.
Peer, D., Stabinger, S., & Rodriguez-Sanchez, A. (2021). Auto-tuning of Deep Neural Networks by Conflicting Layer Removal. Neural Networks. doi:10.48550/arXiv.2103.04331.
Alkatheiri, M. S. (2022). Artificial intelligence assisted improved human-computer interactions for computer systems. Computers and Electrical Engineering, 101, 107950. doi:10.1016/j.compeleceng.2022.107950.
Ualiyeva, R. (2023). Functional role of vitelline glands and mehlis gland in the process of resistant egg shell formation in trematodes. OnLine Journal of Biological Sciences, 23(2), 124–132. doi:10.3844/ojbsci.2023.124.132.
Fan, X., & Zhong, X. (2022). Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Computers and Electrical Engineering, 100, 107957. doi:10.1016/j.compeleceng.2022.107957.
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. E., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), 938. doi:10.1016/j.heliyon.2018.e00938.
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2022). Deep Convolution Neural Network sharing for the multi-label images classification. Machine Learning with Applications, 10, 100422. doi:10.1016/j.mlwa.2022.100422.
Costa-Carrapiço, I., Raslan, R., & González, J. N. (2020). A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency. Energy and Buildings, 210, 109690. doi:10.1016/j.enbuild.2019.109690.
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of an international conference on genetic algorithms and their applications, 24-26 July, 1985, Carnegie-Mellon University, Pittsburgh, United States.
Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221–248. doi:10.1162/evco.1994.2.3.221.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. doi:10.1109/4235.996017.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength 418 Pareto evolutionary algorithm. Tech. Rep., Eidgenössische Technische 419 Hochschule Zürich (ETH), Institut für Technische Informatik und Kom-420 munikationsnetze (TIK), 1-22. doi:10.3929/ethz-a-004284029.
Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001). PESA-II: Region-based selection in evolutionary multiobjective optimization. Proceedings of the 3rd annual conference on genetic and evolutionary computation, 7-11 July, 2001, San Francisco, United States.
Zitzler, E., & Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search. Parallel Problem Solving from Nature - PPSN VIII, PPSN 2004, Lecture Notes in Computer Science, 3242, Springer, Berlin, Germany. doi:10.1007/978-3-540-30217-9_84.
Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76. doi:10.1162/EVCO_a_00009.
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731. doi:10.1109/TEVC.2007.892759.
Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601. doi:10.1109/TEVC.2013.2281535.
Zheng, W., Liu, Y., & Doerr, B. (2022). A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In Proceedings of the AAAI Conference on Artificial Intelligence, 36(9), 10408-10416. doi:10.1609/aaai.v36i9.21283.
Roy, P. C., Islam, Md. M., & Deb, K. (2016). Best Order Sort. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. doi:10.1145/2908961.2931684.
Jensen, M. T. (2003). Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms. IEEE Transactions on Evolutionary Computation, 7(5), 503–515. doi:10.1109/TEVC.2003.817234.
Fortin, F.-A., Grenier, S., & Parizeau, M. (2013). Generalizing the improved run-time complexity algorithm for non-dominated sorting. Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. doi:10.1145/2463372.2463454.
Nebro, A. J., & Durillo, J. J. (2009). On the effect of applying a steady-state selection scheme in the multi-objective genetic algorithm NSGA-II. Studies in Computational Intelligence, 193, 435–456. doi:10.1007/978-3-642-00267-0_16.
Li, K., Deb, K., Zhang, Q., & Zhang, Q. (2017). Efficient Nondomination Level Update Method for Steady-State Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics, 47(9), 2838–2849. doi:10.1109/TCYB.2016.2621008.
Mishra, S., Mondal, S., & Saha, S. (2017). Improved solution to the non-domination level update problem. Applied Soft Computing, 60, 336–362. doi:10.1016/j.asoc.2017.06.038.
Canayaz, M. (2022). Classification of diabetic retinopathy with feature selection over deep features using nature-inspired wrapper methods. Applied Soft Computing, 128, 109462. doi:10.1016/j.asoc.2022.109462.
Greenberg, C. S., Mason, L. P., Sadjadi, S. O., & Reynolds, D. A. (2020). Two decades of speaker recognition evaluation at the national institute of standards and technology. Computer Speech & Language, 60, 101032. doi:10.1016/j.csl.2019.101032.
DOI: 10.28991/HIJ-2023-04-01-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Islam Alexandrovich Alexandrov, Andrey Victorovich Kirichek, Vladimir Zhanovich Kuklin, Leonid Mikhajlovich Chervyakov