Multi-Criteria Decision-Making Model to Achieve Sustainable Developmental Goals in Industry 4.0 for Smart City Infrastructure

D. Akila, Souvik Pal, Bikramjit Sarkar, S. Jayalaksshmi, Saravanan Muthaiyah, Kalaiarasi Sonai Muthu Anbananthen

Abstract


Due to a shortage of funding and other market challenges, Small and Medium-sized Enterprises (SMEs) face difficulties in adopting new technologies. Numerous technological obstacles negatively impact the long-term commercial achievement of SMEs. The deployment of Industry 4.0hopes to resolve these technological challenges. A sustainable city is a complex structure where economic, societal, and ecological components interact and compete. There is a scarcity of l methodologies for measuring interactions in this complex structure. Industry 4.0 aims to obtain higher performance effectiveness, profitability, and automation. The main goal is to develop a reliable method of evaluating small and medium-sized enterprises (SMEs) adopting Industry 4.0 technologies, particularly concerning smart city applications. This paper aims to determine the influence of Industry 4.0 in fostering economic efficiency and sustainability amongst these SMEs. The study introduces a multi-criteria decision-making (SC-MCDM) system designed to test an SME’s achievement of their targeted sustainable developmental goals. A technique for computing the interaction between various standards, i.e., (static interactions and dynamical pattern resemblance), as well as the weightage of variables of every indicator generated by the connection, is included within SC-MCDM. Furthermore, applying the suggested technique is validated by assessing the sustainable development goals of twelve Chinese cities within the Triple Bottom Line (TBL) paradigm. From a geographic-temporal viewpoint, spatial variations in city sustainability reveal regional sustainable inequalities. Indicator scores suggest that the most significant factors for most communities are the lack of research spending, falling financing in stationary assets, shortage of financial development, and inadequate shared transit. Furthermore, the growth of tertiary industries, improvement of energy performance, expansion of green areas, and reduction of pollution emissions are key driving forces for enhancing sustainability. Compared to other methodologies, Multi-Criteria Decision Making (MCDM) considers the interplay between conditions. This is why it is an excellent approach to assess the sustainability of any city. Our experimental findings highlight the impact of MCDM and sustainability towards achieving a city’s sustainable development goals. Compared to other methods, the SC-MCDM system is more successful rate of 89.7%, a more sustainable rate of 92.1%, a more precise ratio 93%), more accurate (95%), and a less mean absolute error, and mean squared error rate of 8.3% while trying to achieve sustainable city development goals.

 

Doi: 10.28991/HIJ-2024-05-04-018

Full Text: PDF


Keywords


Sustainable Developmental Goal; Sustainable City; Industry 4.0; Multi-Criteria Decision Making.

References


McGowan, P. J. K., Stewart, G. B., Long, G., & Grainger, M. J. (2019). An imperfect vision of indivisibility in the Sustainable Development Goals. Nature Sustainability, 2(1), 43–45. doi:10.1038/s41893-018-0190-1.

Williams, K. (2010). Sustainable cities: Research and practice challenges. International Journal of Urban Sustainable Development, 1(1–2), 128–132. doi:10.1080/19463131003654863.

Bouzguenda, I., Alalouch, C., & Fava, N. (2019). Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustainable Cities and Society, 50, 101627. doi:10.1016/j.scs.2019.101627.

Arun, M., Barik, D., & Chandran, S. S. R. (2024). Exploration of material recovery framework from waste – A revolutionary move towards clean environment. Chemical Engineering Journal Advances, 18, 100589. doi:10.1016/j.ceja.2024.100589.

Sony, M., & Naik, S. (2020). Key ingredients for evaluating Industry 4.0 readiness for organizations: a literature review. Benchmarking, 27(7), 2213–2232. doi:10.1108/BIJ-09-2018-0284.

Pech, M., & Vrchota, J. (2020). Classification of small- and medium-sized enterprises based on the level of industry 4.0 implementation. Applied Sciences (Switzerland), 10(15), 5150. doi:10.3390/app10155150.

Uslu, B., Eren, T., Gür, Ş., & Özcan, E. (2019). Evaluation of the Difficulties in the Internet of Things (IoT) with Multi-Criteria Decision-Making. Processes, 7(3), 164. doi:10.3390/pr7030164.

Mastrocinque, E., Ramírez, F. J., Honrubia-Escribano, A., & Pham, D. T. (2020). An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Systems with Applications, 150, 113321. doi:10.1016/j.eswa.2020.113321.

Mahajan, A., Binaz, V., Singh, I., & Arora, N. (2022). Selection of Natural Fiber for Sustainable Composites Using Hybrid Multi Criteria Decision Making Techniques. Composites Part C: Open Access, 7, 100224. doi:10.1016/j.jcomc.2021.100224.

Wu, Y., Liao, M., Hu, M., Lin, J., Zhou, J., Zhang, B., & Xu, C. (2020). A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China. Energy, 213, 119014. doi:10.1016/j.energy.2020.119014.

Memari, A., Dargi, A., Akbari Jokar, M. R., Ahmad, R., & Abdul Rahim, A. R. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of Manufacturing Systems, 50, 9–24. doi:10.1016/j.jmsy.2018.11.002.

Maghsood, F. F., Moradi, H., Berndtsson, R., Panahi, M., Daneshi, A., Hashemi, H., & Bavani, A. R. M. (2019). Social acceptability of flood management strategies under climate change using contingent valuation method (CVM). Sustainability (Switzerland), 11(18), 5053. doi:10.3390/su11185053.

Mishra, A. R., Rani, P., & Prajapati, R. S. (2021). Multi-criteria weighted aggregated sum product assessment method for sustainable biomass crop selection problem using single-valued neutrosophic sets. Applied Soft Computing, 113, 108038. doi:10.1016/j.asoc.2021.108038.

Chen, Y., & Zhang, D. (2020). Evaluation of city sustainability using multi-criteria decision-making considering interaction among criteria in Liaoning province China. Sustainable Cities and Society, 59, 102211. doi:10.1016/j.scs.2020.102211.

Liesefeld, H. R., & Müller, H. J. (2019). Distractor handling via dimension weighting. Current Opinion in Psychology, 29, 160–167. doi:10.1016/j.copsyc.2019.03.003.

Zeng, S., Zhou, J., Zhang, C., & Merigó, J. M. (2022). Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China. Technological Forecasting and Social Change, 176, 121435. doi:10.1016/j.techfore.2021.121435.

Sodiq, A., Baloch, A. A. B., Khan, S. A., Sezer, N., Mahmoud, S., Jama, M., & Abdelaal, A. (2019). Towards modern sustainable cities: Review of sustainability principles and trends. Journal of Cleaner Production, 227, 972–1001. doi:10.1016/j.jclepro.2019.04.106.

Akande, A., Cabral, P., Gomes, P., & Casteleyn, S. (2019). The Lisbon ranking for smart sustainable cities in Europe. Sustainable Cities and Society, 44, 475–487. doi:10.1016/j.scs.2018.10.009.

Ameen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44, 356–366. doi:10.1016/j.scs.2018.10.020.

Turner-Skoff, J. B., & Cavender, N. (2019). The benefits of trees for livable and sustainable communities. Plants People Planet, 1(4), 323–335. doi:10.1002/ppp3.39.

Mahmoud, S., Zayed, T., & Fahmy, M. (2019). Development of sustainability assessment tool for existing buildings. Sustainable Cities and Society, 44, 99–119. doi:10.1016/j.scs.2018.09.024.

Sodhro, A. H., Pirbhulal, S., Luo, Z., & de Albuquerque, V. H. C. (2019). Towards an optimal resource management for IoT based Green and sustainable smart cities. Journal of Cleaner Production, 220, 1167–1179. doi:10.1016/j.jclepro.2019.01.188.

Olakitan Atanda, J. (2019). Developing a social sustainability assessment framework. Sustainable Cities and Society, 44, 237–252. doi:10.1016/j.scs.2018.09.023.

Jararweh, Y., Otoum, S., & Ridhawi, I. Al. (2020). Trustworthy and sustainable smart city services at the edge. Sustainable Cities and Society, 62, 102394. doi:10.1016/j.scs.2020.102394.

Yang, J., Kwon, Y., & Kim, D. (2021). Regional Smart City Development Focus: The South Korean National Strategic Smart City Program. IEEE Access, 9, 7193–7210. doi:10.1109/ACCESS.2020.3047139.

Kuru, K., & Ansell, D. (2020). TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities. IEEE Access, 8, 18615–18644. doi:10.1109/ACCESS.2020.2967777.

Hosseini Dehshiri, S. J., & Amiri, M. (2024). Evaluation of blockchain implementation solutions in the sustainable supply chain: A novel hybrid decision approach based on Z-numbers. Expert Systems with Applications, 235, 121123. doi:10.1016/j.eswa.2023.121123.

Hosseini Dehshiri, S. J., Emamat, M. S. M. M., & Amiri, M. (2022). A novel group BWM approach to evaluate the implementation criteria of blockchain technology in the automotive industry supply chain. Expert Systems with Applications, 198, 116826. doi:10.1016/j.eswa.2022.116826.

Sousa, M., Almeida, M. F., & Calili, R. (2021). Multiple criteria decision making for the achievement of the UN sustainable development goals: A systematic literature review and a research agenda. Sustainability (Switzerland), 13(8), 4129. doi:10.3390/su13084129.

Mabkhot, M. M., Ferreira, P., Maffei, A., Podržaj, P., Mądziel, M., Antonelli, D., Lanzetta, M., Barata, J., Boffa, E., Finžgar, M., Paśko, Ł., Minetola, P., Chelli, R., Nikghadam-Hojjati, S., Wang, X. V., Priarone, P. C., Litwin, P., Stadnicka, D., Lohse, N., & Lupi, F. (2021). Mapping industry 4.0 enabling technologies into United Nations sustainability development goals. Sustainability (Switzerland), 13(5), 1–35. doi:10.3390/su13052560.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-018

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Akila D., Souvik Pal, Bikramjit Sarkar, Jayalaksshmi S., Saravanan Muthaiyah, Kalaiarasi Sonai Muthu Anbananthen