Prediction of Dust Emissions in Highway Subgrade-Filling Construction Based on Deep Neural Network

Zhibin Wang, Lei Feng, Yanwei Li, Qunle Du, Lin Zhao, Xingju Wang

Abstract


Dust pollution can harm the urban environment and the health of citizens. Each stage in highway construction generates unorganized dust emissions to varying degrees, which complicates their quantification. To precisely forecast dust emissions during the construction of highway subgrades and reduce the associated pollution risks, this study introduces a predictive model based on a deep neural network (DNN) for dust emissions during highway subgrade-filling operations. Dust concentration is treated as a nonlinear multivariate problem, with predictive indicators encompassing particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), ground surface temperature, wind speed, air temperature, surface pressure, and relative humidity. Using a DNN model, this study forecasts the concentrations of PM2.5 and PM10 at highway construction sites. Based on a highway project in Hebei Province, this study predicts dust-emission concentrations via field monitoring conducted using self-developed equipment. The model’s predictions exhibit a small mean-absolute-percentage error and root-mean-square error compared with the actual values, and the model’s accuracy significantly surpasses that of conventional regression models. Accurate forecasting can facilitate the timely control of dust concentrations at construction sites, thus facilitating more environmentally friendly and efficient construction.

 

Doi: 10.28991/HIJ-2024-05-02-03

Full Text: PDF


Keywords


Highway Engineering; Subgrade Filling; Dust Prediction; DNN.

References


Lin, Y., & Huang, J. (2021). Can highway networks promote productivity? Evidence from China. Journal of Advanced Transportation, 2021(1), 6860979. doi:10.1155/2021/6860979.

Meng, J., Liu, J., Fan, S., Kang, C., Yi, K., Cheng, Y., Shen, X., & Tao, S. (2016). Potential health benefits of controlling dust emissions in Beijing. Environmental Pollution, 213, 850–859. doi:10.1016/j.envpol.2016.03.021.

Ngoc, L. T. N., Park, D., Lee, Y., & Lee, Y. C. (2017). Systematic review and meta-analysis of human skin diseases due to particulate matter. International Journal of Environmental Research and Public Health, 14(12), 1458. doi:10.3390/ijerph14121458.

Kim, H. B., Shim, J. Y., Park, B., & Lee, Y. J. (2018). Long-term exposure to air pollutants and cancer mortality: A meta-analysis of cohort studies. International Journal of Environmental Research and Public Health, 15(11), 2608. doi:10.3390/ijerph15112608.

Kowalska, M., Skrzypek, M., Kowalski, M., Cyrys, J., Ewa, N., & Czech, E. (2019). The relationship between daily concentration of fine particulate matter in ambient air and exacerbation of respiratory diseases in Silesian agglomeration, Poland. International Journal of Environmental Research and Public Health, 16(7), 1131. doi:10.3390/ijerph16071131.

Sanyal, S., Rochereau, T., Maesano, C. N., Com-Ruelle, L., & Annesi-Maesano, I. (2018). Long-term effect of outdoor air pollution on mortality and morbidity: A 12-year follow-up study for metropolitan France. International Journal of Environmental Research and Public Health, 15(11), 2487. doi:10.3390/ijerph15112487.

Wen, J. Research and analysis on manual monitoring and online monitoring of dust in construction site. Environment and Development, 32(6), 2. doi:10.16647/j.cnki.cn15-1369/X.2020.06.080.

Xiao, H., Yang, X., Wu, Q., Bai, Q., Cheng, H., Chen, X., Xue, R., Du, M., Huang, L., Wang, R., & Wang, H. (2019). Estimate emissions of construction fugitive dust in Xi’an. Acta Scientiae Circumstantiae, 39(1), 222–228. doi:10.13671/j.hjkxxb.2018.0377.

Limsawasd, C., & Athigakunagorn, N. (2022). Quantification of Particulate Emission from Construction Activities Using Discrete-Event Simulation. Civil Engineering and Architecture, 10(2), 703–714. doi:10.13189/cea.2022.100225.

Stevulova, N., Estokova, A., Holub, M., Singovszka, E., & Csach, K. (2020). Characterization of demolition construction waste containing asbestos, and the release of fibrous dust particles. Applied Sciences (Switzerland), 10(11), 4048. doi:10.3390/app10114048.

Hou, Y., Xing, M., Pan, Y., & Li, S. Analysis of dust emission characteristics and key influencing factors of construction sites in Beijing earthwork stage. Environmental Pollution and Control, 02, 171–177 181. doi:10.15985/j.cnki.1001-3865.2021.02.007.

Huang, Y. H., Tian, G., Qin, J. P., Li, G., & Yan, B. L. (2007). Characteristics of fugitive dust pollution in different construction phases. Huanjing Kexue/Environmental Science, 28(12), 2885–2888. doi:10.3321/j.issn:0250-3301.2007.12.038.

Zhang, L. K., Li, L. J., Jiang, L., Zhao, W. H., Lu, H. F., Wang, X. H., & Qiu, Y. (2019). Spatial and Temporal Distribution Characteristics and Fugitive Dust Emission of Building Sites in Beijing. Huanjing Kexue/Environmental Science, 40(1), 135–142. doi:10.13227/j.hjkx.201804236.

Liang, S., Fu, Q., Liu, Q., Xu, J., Yin, Y., Chen, X., & Cheng, J. Dust pollution characteristics of typical construction sites in autumn in Shanghai during construction stage. Environmental Pollution and Control, 12, 1394–1399. doi:10.15985/j.cnki.1001-3865.2018.12.014.

Van Deurssen, E., Pronk, A., Spaan, S., Goede, H., Tielemans, E., Heederik, D., & Meijster, T. (2014). Quartz and respirable dust in the Dutch construction industry: A baseline exposure assessment as part of a multidimensional intervention approach. Annals of Occupational Hygiene, 58(6), 724–738. doi:10.1093/annhyg/meu021.

Li, X., Su, S., & Huang, T. Quantitative evaluation of construction dust health damage. Journal of Tsinghua University, 01, 50–55. doi:10.16511/j.cnki.qhdxxb.2015.01.009.

Guo, P., Tian, W., & Li, H. (2022). Dynamic health risk assessment model for construction dust hazards in the reuse of industrial buildings. Building and Environment, 210. doi:10.1016/j.buildenv.2021.108736.

Tjoe Nij, E., Hilhorst, S., Spee, T., Spierings, J., Steffens, F., Lumens, M., & Heederik, D. (2003). Dust control measures in the construction industry. Annals of Occupational Hygiene, 47(3), 211–218. doi:10.1093/annhyg/meg023.

Gao, Y., Huo, J., Jia, X., & Wu, G. Research into dust monitoring and measures of construction sites based on big data. Building Structure, S1, 1003–1007. doi:10.19701/j.jzjg.2019.S1.215.

Ma, G., Han, Y., Lu, J., Yao, J., & S, Y. Design and implementation of automatic monitoring system for constructional fugitive dust pollution sources based on UAV. Environmental Monitoring in China, 01, 151–156. doi:10.19316/j.issn.1002-6002.2018.01.21.

Liu, C., Henderson, B. H., Wang, D., Yang, X., & Peng, Z. R. (2016). A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Science of the Total Environment, 565, 607–615. doi:10.1016/j.scitotenv.2016.03.189.

Eeftens, M., Tsai, M. Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Eriksen, K., Galassi, C., Gražulevičiene, R., Grivas, G., Heinrich, J., … Hoek, G. (2012). Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmospheric Environment, 62, 303–317. doi:10.1016/j.atmosenv.2012.08.038.

Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. doi:10.1016/j.atmosenv.2010.06.060.

Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM 10, PM 2.5, PM 2.5-10). Science of the Total Environment, 419, 124–135. doi:10.1016/j.scitotenv.2011.12.064.

Zhang, Z., Zhang, X., Gong, D., Quan, W., Zhao, X., Ma, Z., & Kim, S. J. (2015). Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmospheric Environment, 108, 67–75. doi:10.1016/j.atmosenv.2015.02.071.

Zhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Physica A: Statistical Mechanics and Its Applications, 438, 114–123. doi:10.1016/j.physa.2015.06.039.

Li, B., Zhang, W., & Lu, M. (2018). Multiple linear regression haze-removal model based on dark channel prior. 2018 International Conference on Computational Science and Computational Intelligence (CSCI), 307-312. doi:10.1109/CSCI46756.2018.00066.

Liu, S., Luo, Q., Feng, M., Zhou, L., Qiu, Y., Li, C., ... & Yang, F. (2023). Enhanced nitrate contribution to light extinction during haze pollution in Chengdu: Insights based on an improved multiple linear regression model. Environmental Pollution, 323, 121309. doi:10.1016/j.envpol.2023.121309.

Nichiforov, C., Stamatescu, I., Fagarasan, I., & Stamatescu, G. (2017). Energy consumption forecasting using ARIMA and neural network models. Proceedings - 2017 5th International Symposium on Electrical and Electronics Engineering, ISEEE 2017, 2017-December, 1–4. doi:10.1109/ISEEE.2017.8170657.

Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling and Software, 119, 285–304. doi:10.1016/j.envsoft.2019.06.014.

Fauzi, F., Wasono, R., & Kharisudin, I. (2023). Evaluating Recurrent Neural Networks and Long Short-Term Memory for Air Pollution Forecasting: Mitigating the Impact of Volatile Environmental Factors. Communications in Mathematical Biology and Neuroscience, 2023, 129. doi:10.28919/cmbn/8265.

Chen, Q., Ding, R., Mo, X., Li, H., Xie, L., & Yang, J. (2024). An adaptive adjacency matrix-based graph convolutional recurrent network for air quality prediction. Scientific Reports, 14(1), 4408. doi:10.1038/s41598-024-55060-2.

Elshaboury, N., Mohammed Abdelkader, E., & Al-Sakkaf, A. (2023). Convolutional neural network-based deep learning model for air quality prediction in October city of Egypt. Construction Innovation. doi:10.1108/CI-11-2022-0292.

Bedi, S., Katiyar, A., Krishnan, N. M. A., & Kota, S. H. (2024). Utilizing LSTM models to predict PM2.5 levels during critical episodes in Delhi, the world’s most polluted capital city. Urban Climate, 53, 101835. doi:10.1016/j.uclim.2024.101835.

Wen, D., Zheng, S., Chen, J., Zheng, Z., Ding, C., & Zhang, L. (2023). Hyperparameter-Optimization-Inspired Long Short-Term Memory Network for Air Quality Grade Prediction. Information (Switzerland), 14(4), 243. doi:10.3390/info14040243.

Wang, Z., Feng, J., Fu, Q., Gao, S., Chen, X., & Cheng, J. (2019). Quality control of online monitoring data of air pollutants using artificial neural networks. Air Quality, Atmosphere and Health, 12(10), 1189–1196. doi:10.1007/s11869-019-00734-4.

Araujo, L. N., Belotti, J. T., Alves, T. A., Tadano, Y. de S., & Siqueira, H. (2020). Ensemble method based on Artificial Neural Networks to estimate air pollution health risks. Environmental Modelling and Software, 123, 104567. doi:10.1016/j.envsoft.2019.104567.

Karacan, C. Ö. (2009). Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines. International Journal of Coal Geology, 79(4), 131–144. doi:10.1016/j.coal.2009.07.005.

Karacan, C. Ö. (2008). Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks. International Journal of Coal Geology, 73(3–4), 371–387. doi:10.1016/j.coal.2007.09.003.

Mathatho, S., Owolawi, P. A., & Tu, C. (2019). Prediction of methane levels in underground coal mines using artificial neural networks. IcABCD 2019 - 2nd International Conference on Advances in Big Data, Computing and Data Communication Systems, 1–4. doi:10.1109/ICABCD.2019.8851041.

Park, S., Kim, M., Kim, M., Namgung, H. G., Kim, K. T., Cho, K. H., & Kwon, S. B. (2018). Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). Journal of Hazardous Materials, 341, 75–82. doi:10.1016/j.jhazmat.2017.07.050.

Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental Pollution, 231, 997–1004. doi:10.1016/j.envpol.2017.08.114.

Wu, Q., & Lin, H. (2019). A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors. Science of the Total Environment, 683, 808–821. doi:10.1016/j.scitotenv.2019.05.288.

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2017). LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access, 6, 1662–1669. doi:10.1109/ACCESS.2017.2779939.

Yousif, J. H., Kazem, H. A., & Bwalya, K. J. (2024). Dust impact on photovoltaic technologies: a comparative analysis using deep recurrent neural networks. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 46(1), 3023–3040. doi:10.1080/15567036.2024.2310740.

Huang, C. J., & Kuo, P. H. (2018). A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors (Switzerland), 18(7), 2220. doi:10.3390/s18072220.

Wu, C., Li, Q., Hou, J., Karimian, H., & Chen, G. (2018). PM2.5 concentration prediction using convolutional neural networks. MAgnetic Protostars and Planets (MAPP), 43, 68–75. doi:10.16251/j.cnki.1009-2307.2018.08.011.

Gu, Y., Li, B., & Meng, Q. (2023). Multi-task Deep Neural Network for Air Pollution Prediction and Spatial Effect Analysis. 2023 8th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2023, 220–227. doi:10.1109/ICCCBDA56900.2023.10154688.

Kek, H. Y., Bazgir, A., Tan, H., Lee, C. T., Hong, T., Othman, M. H. D., Fan, Y. Van, Mat, M. N. H., Zhang, Y., & Wong, K. Y. (2024). Particle dispersion for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction. Energy and Buildings, 306, 113938. doi:10.1016/j.enbuild.2024.113938.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-02-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Xingju Wang