Real-Time Online Banking Fraud Detection Model by Unsupervised Learning Fusion
Abstract
Doi: 10.28991/HIJ-2024-05-01-014
Full Text: PDF
Keywords
References
Jiang, S., Dong, R., Wang, J., & Xia, M. (2023). Credit Card Fraud Detection Based on Unsupervised Attentional Anomaly Detection Network. Systems, 11(6), 305. doi:10.3390/systems11060305.
Nayyer, N., Javaid, N., Akbar, M., Aldegheishem, A., Alrajeh, N., & Jamil, M. (2023). A New Framework for Fraud Detection in Bitcoin Transactions through Ensemble Stacking Model in Smart Cities. IEEE Access, 11, 90916–90938. doi:10.1109/ACCESS.2023.3308298.
Chang, V., Doan, L. M. T., Di Stefano, A., Sun, Z., & Fortino, G. (2022). Digital payment fraud detection methods in digital ages and Industry 4.0. Computers and Electrical Engineering, 100, 107734. doi:10.1016/j.compeleceng.2022.107734.
Roseline, J. F., Naidu, G. B. S. R., Pandi, V. S., alias Rajasree, S. A., & Mageswari, N. (2022). Autonomous credit card fraud detection using machine learning approach☆. Computers and Electrical Engineering, 102, 108132. doi:10.1016/j.compeleceng.2022.108132.
Habibpour, M., Gharoun, H., Mehdipour, M., Tajally, A., Asgharnezhad, H., Shamsi, A., ... & Nahavandi, S. (2023). Uncertainty-aware credit card fraud detection using deep learning. Engineering Applications of Artificial Intelligence, 123, 106248. doi:10.1016/j.engappai.2023.106248.
Khan, S., Alourani, A., Mishra, B., Ali, A., & Kamal, M. (2022). Developing a Credit Card Fraud Detection Model using Machine Learning Approaches. International Journal of Advanced Computer Science and Applications, 13(3), 411–418. doi:10.14569/IJACSA.2022.0130350.
Bin Sulaiman, R., Schetinin, V., & Sant, P. (2022). Review of Machine Learning Approach on Credit Card Fraud Detection. Human-Centric Intelligent Systems, 2(1–2), 55–68. doi:10.1007/s44230-022-00004-0.
Moreira, M. Â. L., De Souza Rocha Junior, C., Silva, D. F. D. L., De Castro Junior, M. A. P., De Araújo Costa, I. P., Gomes, C. F. S., & Dos Santos, M. (2022). Exploratory analysis and implementation of machine learning techniques for predictive assessment of fraud in banking systems. Procedia Computer Science, 214(C), 117–124. doi:10.1016/j.procs.2022.11.156.
Sánchez-Aguayo, M., Urquiza-Aguiar, L., & Estrada-Jiménez, J. (2021). Fraud detection using the fraud triangle theory and data mining techniques: A literature review. Computers, 10(10), 121. doi:10.3390/computers10100121.
Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences (Switzerland), 12(19), 9637. doi:10.3390/app12199637.
Kanika, Singla, J., Bashir, A. K., Nam, Y., Hasan, N. U. I., & Tariq, U. (2022). Handling class imbalance in online transaction fraud detection. Computers, Materials and Continua, 70(2), 2861-2877. doi:10.32604/cmc.2022.019990.
Adewumi, A. O., & Akinyelu, A. A. (2017). A survey of machine-learning and nature-inspired based credit card fraud detection techniques. International Journal of System Assurance Engineering and Management, 8(S2), 937–953. doi:10.1007/s13198-016-0551-y.
Sharma, P., Banerjee, S., Tiwari, D., & Patni, J. C. (2021). Machine learning model for credit card fraud detection-A comparative analysis. International Arab Journal of Information Technology, 18(6), 789–796. doi:10.34028/iajit/18/6/6.
Mytnyk, B., Tkachyk, O., Shakhovska, N., Fedushko, S., & Syerov, Y. (2023). Application of Artificial Intelligence for Fraudulent Banking Operations Recognition. Big Data and Cognitive Computing, 7(2), 93. doi:10.3390/bdcc7020093.
Mutemi, A., & Bacao, F. (2023). A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces. Scientific Reports, 13(1), 12499. doi:10.1038/s41598-023-38304-5.
Jacinta, O. I., Omolara, A. E., Alawida, M., Abiodun, O. I., & Alabdultif, A. (2023). Detection of Ponzi scheme on Ethereum using machine learning algorithms. Scientific Reports, 13(1), 18403. doi:10.1038/s41598-023-45275-0.
Kodate, S., Chiba, R., Kimura, S., & Masuda, N. (2020). Detecting problematic transactions in a consumer-to-consumer e-commerce network. Applied Network Science, 5(1), 90. doi:10.1007/s41109-020-00330-x.
Ashfaq, T., Khalid, R., Yahaya, A. S., Aslam, S., Azar, A. T., Alsafari, S., & Hameed, I. A. (2022). A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism. Sensors, 22(19), 7162. doi:10.3390/s22197162.
Ren, Y., Ren, Y., Tian, H., Song, W., & Yang, Y. (2023). Improving transaction safety via anti-fraud protection based on blockchain. Connection Science, 35(1), 2163983. doi:10.1080/09540091.2022.2163983.
Strelcenia, E., & Prakoonwit, S. (2023). Improving Classification Performance in Credit Card Fraud Detection by Using New Data Augmentation. AI (Switzerland), 4(1), 172–198. doi:10.3390/ai4010008.
Vorobyev, I., & Krivitskaya, A. (2022). Reducing false positives in bank anti-fraud systems based on rule induction in distributed tree-based models. Computers & Security, 120, 102786. doi:10.1016/j.cose.2022.102786.
Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A Neural Network Ensemble with Feature Engineering for Improved Credit Card Fraud Detection. IEEE Access, 10, 16400–16407. doi:10.1109/ACCESS.2022.3148298.
Ikeda, C., Ouazzane, K., Yu, Q., & Hubenova, S. (2021). New Feature Engineering Framework for Deep Learning in Financial Fraud Detection. International Journal of Advanced Computer Science and Applications, 12(12), 10–21. doi:10.14569/IJACSA.2021.0121202.
Zioviris, G., Kolomvatsos, K., & Stamoulis, G. (2021). On the Use of a Sequential Deep Learning Scheme for Financial Fraud Detection. Intelligent Computing - Proceedings of the 2021 Computing Conference, 507–523. doi:10.1007/978-3-030-80126-7_37.
Du, H., Lv, L., Guo, A., & Wang, H. (2023). AutoEncoder and LightGBM for Credit Card Fraud Detection Problems. Symmetry, 15(4), 870. doi:10.3390/sym15040870.
Karthikeyan, T., Govindarajan, M., & Vijayakumar, V. (2023). Intelligent Financial Fraud Detection Using Artificial Bee Colony Optimization Based Recurrent Neural Network. Intelligent Automation and Soft Computing, 37(2), 1483–1498. doi:10.32604/iasc.2023.037606.
Berhane, T., Melese, T., Walelign, A., & Mohammed, A. (2023). A Hybrid Convolutional Neural Network and Support Vector Machine-Based Credit Card Fraud Detection Model. Mathematical Problems in Engineering, 2023, 1–10. doi:10.1155/2023/8134627.
Al Smadi, B., & Min, M. (2020). A Critical review of Credit Card Fraud Detection Techniques. 2020 11th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2020, 0732–0736. doi:10.1109/UEMCON51285.2020.9298075.
Hanae, A., Abdellah, B., Saida, E., & Youssef, G. (2023). End-to-End Real-time Architecture for Fraud Detection in Online Digital Transactions. International Journal of Advanced Computer Science and Applications, 14(6), 749–757. doi:10.14569/IJACSA.2023.0140680.
Chen, S., & Guo, W. (2023). Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 11(8), 1777. doi:10.3390/math11081777.
Hariri, S., Kind, M. C., & Brunner, R. J. (2021). Extended Isolation Forest. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1479–1489. doi:10.1109/TKDE.2019.2947676.
Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An Autoencoder Based Model for Detecting Fraudulent Credit Card Transaction. Procedia Computer Science, 167, 254–262. doi:10.1016/j.procs.2020.03.219.
Cheon, M. J., Lee, D. H., Joo, H. S., & Lee, O. (2021). Deep learning based hybrid approach of detecting fraudulent transactions. Journal of Theoretical and Applied Information Technology, 99(16), 4044–4054.
Chen, Z., Yeo, C. K., Lee, B. S., & Lau, C. T. (2018). Autoencoder-based network anomaly detection. Wireless Telecommunications Symposium, 2018-April, 1–5. doi:10.1109/WTS.2018.8363930.
Chen, X., Xu, W., Wang, S., Li, Y., & Lin, Z. (2022). An Anomaly Detection Scheme with K-means aided Extended Isolation Forest in RSS-based Wireless Positioning System. IEEE Wireless Communications and Networking Conference, WCNC, 2022-April, 1910–1915. doi:10.1109/WCNC51071.2022.9771602.
de Santis, R. B., & Costa, M. A. (2020). Extended isolation forests for fault detection in small hydroelectric plants. Sustainability (Switzerland), 12(16), 6421. doi:10.3390/SU12166421.
Zheng, F., Bonnet, S., Villeneuve, E., Doron, M., Lepecq, A., & Forbes, F. (2020). Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 5892–5895. doi:10.1109/EMBC44109.2020.9176856.
Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6, 100163. doi:10.1016/j.dajour.2023.100163.
Alfaiz, N. S., & Fati, S. M. (2022). Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics (Switzerland), 11(4), 662. doi:10.3390/electronics11040662.
Kolli, C. S., & Tatavarthi, U. D. (2020). Fraud detection in bank transaction with wrapper model and Harris water optimization-based deep recurrent neural network. Kybernetes, 50(6), 1731–1750. doi:10.1108/K-04-2020-0239.
Sadgali, I., Sael, N., & Benabbou, F. (2021). Bidirectional gated recurrent unit for improving classification in credit card fraud detection. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1704–1712. doi:10.11591/ijeecs.v21.i3.pp1704-1712.
DOI: 10.28991/HIJ-2024-05-01-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Hanae ABBASSI, Youssef GAHI, Saida EL MENDILI