Real-Time Online Banking Fraud Detection Model by Unsupervised Learning Fusion

Hanae Abbassi, Saida El Mendili, Youssef Gahi

Abstract


Digital trades and payments are becoming increasingly popular, as they typically entail monetary transactions. This not only makes electronic transactions more convenient for the end customer, but it also raises the likelihood of fraud. An adequate fraud detection system with a cutting-edge model is critical to minimizing fraud costs. Identifying fraud at the ideal time entails establishing and setting up ubiquitous systems to consume and analyze massive amounts of streaming data. Recent advances in data analytics methods and introducing open-source technology for big data storage and processing opened new options for detecting fraud. This study aims to tackle this critical issue by providing a newly real-time e-transaction fraud detection schema that consolidates the advantages of both unsupervised learners, including autoencoder and extended isolation forests, with cutting-edge big data gadgets such as Spark streaming and sparkling water. It addresses the shortage of non-fraudulent instances and handles the excessive dimension of the set of features. On two real-world transactional datasets, we assess our suggested technique. Compared with other current fraud identification systems, our methodology delivers an elevated accuracy yield of 99%. Furthermore, it outperforms state-of-the-art approaches in reliably identifying fraudulent samples.

 

Doi: 10.28991/HIJ-2024-05-01-014

Full Text: PDF


Keywords


Online Fraud Detection; Big Data Analytics; Autoencoder; Extended Isolation Forest; Real-Time Detection.

References


Jiang, S., Dong, R., Wang, J., & Xia, M. (2023). Credit Card Fraud Detection Based on Unsupervised Attentional Anomaly Detection Network. Systems, 11(6), 305. doi:10.3390/systems11060305.

Nayyer, N., Javaid, N., Akbar, M., Aldegheishem, A., Alrajeh, N., & Jamil, M. (2023). A New Framework for Fraud Detection in Bitcoin Transactions through Ensemble Stacking Model in Smart Cities. IEEE Access, 11, 90916–90938. doi:10.1109/ACCESS.2023.3308298.

Chang, V., Doan, L. M. T., Di Stefano, A., Sun, Z., & Fortino, G. (2022). Digital payment fraud detection methods in digital ages and Industry 4.0. Computers and Electrical Engineering, 100, 107734. doi:10.1016/j.compeleceng.2022.107734.

Roseline, J. F., Naidu, G. B. S. R., Pandi, V. S., alias Rajasree, S. A., & Mageswari, N. (2022). Autonomous credit card fraud detection using machine learning approach☆. Computers and Electrical Engineering, 102, 108132. doi:10.1016/j.compeleceng.2022.108132.

Habibpour, M., Gharoun, H., Mehdipour, M., Tajally, A., Asgharnezhad, H., Shamsi, A., ... & Nahavandi, S. (2023). Uncertainty-aware credit card fraud detection using deep learning. Engineering Applications of Artificial Intelligence, 123, 106248. doi:10.1016/j.engappai.2023.106248.

Khan, S., Alourani, A., Mishra, B., Ali, A., & Kamal, M. (2022). Developing a Credit Card Fraud Detection Model using Machine Learning Approaches. International Journal of Advanced Computer Science and Applications, 13(3), 411–418. doi:10.14569/IJACSA.2022.0130350.

Bin Sulaiman, R., Schetinin, V., & Sant, P. (2022). Review of Machine Learning Approach on Credit Card Fraud Detection. Human-Centric Intelligent Systems, 2(1–2), 55–68. doi:10.1007/s44230-022-00004-0.

Moreira, M. Â. L., De Souza Rocha Junior, C., Silva, D. F. D. L., De Castro Junior, M. A. P., De Araújo Costa, I. P., Gomes, C. F. S., & Dos Santos, M. (2022). Exploratory analysis and implementation of machine learning techniques for predictive assessment of fraud in banking systems. Procedia Computer Science, 214(C), 117–124. doi:10.1016/j.procs.2022.11.156.

Sánchez-Aguayo, M., Urquiza-Aguiar, L., & Estrada-Jiménez, J. (2021). Fraud detection using the fraud triangle theory and data mining techniques: A literature review. Computers, 10(10), 121. doi:10.3390/computers10100121.

Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences (Switzerland), 12(19), 9637. doi:10.3390/app12199637.

Kanika, Singla, J., Bashir, A. K., Nam, Y., Hasan, N. U. I., & Tariq, U. (2022). Handling class imbalance in online transaction fraud detection. Computers, Materials and Continua, 70(2), 2861-2877. doi:10.32604/cmc.2022.019990.

Adewumi, A. O., & Akinyelu, A. A. (2017). A survey of machine-learning and nature-inspired based credit card fraud detection techniques. International Journal of System Assurance Engineering and Management, 8(S2), 937–953. doi:10.1007/s13198-016-0551-y.

Sharma, P., Banerjee, S., Tiwari, D., & Patni, J. C. (2021). Machine learning model for credit card fraud detection-A comparative analysis. International Arab Journal of Information Technology, 18(6), 789–796. doi:10.34028/iajit/18/6/6.

Mytnyk, B., Tkachyk, O., Shakhovska, N., Fedushko, S., & Syerov, Y. (2023). Application of Artificial Intelligence for Fraudulent Banking Operations Recognition. Big Data and Cognitive Computing, 7(2), 93. doi:10.3390/bdcc7020093.

Mutemi, A., & Bacao, F. (2023). A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces. Scientific Reports, 13(1), 12499. doi:10.1038/s41598-023-38304-5.

Jacinta, O. I., Omolara, A. E., Alawida, M., Abiodun, O. I., & Alabdultif, A. (2023). Detection of Ponzi scheme on Ethereum using machine learning algorithms. Scientific Reports, 13(1), 18403. doi:10.1038/s41598-023-45275-0.

Kodate, S., Chiba, R., Kimura, S., & Masuda, N. (2020). Detecting problematic transactions in a consumer-to-consumer e-commerce network. Applied Network Science, 5(1), 90. doi:10.1007/s41109-020-00330-x.

Ashfaq, T., Khalid, R., Yahaya, A. S., Aslam, S., Azar, A. T., Alsafari, S., & Hameed, I. A. (2022). A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism. Sensors, 22(19), 7162. doi:10.3390/s22197162.

Ren, Y., Ren, Y., Tian, H., Song, W., & Yang, Y. (2023). Improving transaction safety via anti-fraud protection based on blockchain. Connection Science, 35(1), 2163983. doi:10.1080/09540091.2022.2163983.

Strelcenia, E., & Prakoonwit, S. (2023). Improving Classification Performance in Credit Card Fraud Detection by Using New Data Augmentation. AI (Switzerland), 4(1), 172–198. doi:10.3390/ai4010008.

Vorobyev, I., & Krivitskaya, A. (2022). Reducing false positives in bank anti-fraud systems based on rule induction in distributed tree-based models. Computers & Security, 120, 102786. doi:10.1016/j.cose.2022.102786.

Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A Neural Network Ensemble with Feature Engineering for Improved Credit Card Fraud Detection. IEEE Access, 10, 16400–16407. doi:10.1109/ACCESS.2022.3148298.

Ikeda, C., Ouazzane, K., Yu, Q., & Hubenova, S. (2021). New Feature Engineering Framework for Deep Learning in Financial Fraud Detection. International Journal of Advanced Computer Science and Applications, 12(12), 10–21. doi:10.14569/IJACSA.2021.0121202.

Zioviris, G., Kolomvatsos, K., & Stamoulis, G. (2021). On the Use of a Sequential Deep Learning Scheme for Financial Fraud Detection. Intelligent Computing - Proceedings of the 2021 Computing Conference, 507–523. doi:10.1007/978-3-030-80126-7_37.

Du, H., Lv, L., Guo, A., & Wang, H. (2023). AutoEncoder and LightGBM for Credit Card Fraud Detection Problems. Symmetry, 15(4), 870. doi:10.3390/sym15040870.

Karthikeyan, T., Govindarajan, M., & Vijayakumar, V. (2023). Intelligent Financial Fraud Detection Using Artificial Bee Colony Optimization Based Recurrent Neural Network. Intelligent Automation and Soft Computing, 37(2), 1483–1498. doi:10.32604/iasc.2023.037606.

Berhane, T., Melese, T., Walelign, A., & Mohammed, A. (2023). A Hybrid Convolutional Neural Network and Support Vector Machine-Based Credit Card Fraud Detection Model. Mathematical Problems in Engineering, 2023, 1–10. doi:10.1155/2023/8134627.

Al Smadi, B., & Min, M. (2020). A Critical review of Credit Card Fraud Detection Techniques. 2020 11th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2020, 0732–0736. doi:10.1109/UEMCON51285.2020.9298075.

Hanae, A., Abdellah, B., Saida, E., & Youssef, G. (2023). End-to-End Real-time Architecture for Fraud Detection in Online Digital Transactions. International Journal of Advanced Computer Science and Applications, 14(6), 749–757. doi:10.14569/IJACSA.2023.0140680.

Chen, S., & Guo, W. (2023). Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 11(8), 1777. doi:10.3390/math11081777.

Hariri, S., Kind, M. C., & Brunner, R. J. (2021). Extended Isolation Forest. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1479–1489. doi:10.1109/TKDE.2019.2947676.

Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An Autoencoder Based Model for Detecting Fraudulent Credit Card Transaction. Procedia Computer Science, 167, 254–262. doi:10.1016/j.procs.2020.03.219.

Cheon, M. J., Lee, D. H., Joo, H. S., & Lee, O. (2021). Deep learning based hybrid approach of detecting fraudulent transactions. Journal of Theoretical and Applied Information Technology, 99(16), 4044–4054.

Chen, Z., Yeo, C. K., Lee, B. S., & Lau, C. T. (2018). Autoencoder-based network anomaly detection. Wireless Telecommunications Symposium, 2018-April, 1–5. doi:10.1109/WTS.2018.8363930.

Chen, X., Xu, W., Wang, S., Li, Y., & Lin, Z. (2022). An Anomaly Detection Scheme with K-means aided Extended Isolation Forest in RSS-based Wireless Positioning System. IEEE Wireless Communications and Networking Conference, WCNC, 2022-April, 1910–1915. doi:10.1109/WCNC51071.2022.9771602.

de Santis, R. B., & Costa, M. A. (2020). Extended isolation forests for fault detection in small hydroelectric plants. Sustainability (Switzerland), 12(16), 6421. doi:10.3390/SU12166421.

Zheng, F., Bonnet, S., Villeneuve, E., Doron, M., Lepecq, A., & Forbes, F. (2020). Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 5892–5895. doi:10.1109/EMBC44109.2020.9176856.

Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6, 100163. doi:10.1016/j.dajour.2023.100163.

Alfaiz, N. S., & Fati, S. M. (2022). Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics (Switzerland), 11(4), 662. doi:10.3390/electronics11040662.

Kolli, C. S., & Tatavarthi, U. D. (2020). Fraud detection in bank transaction with wrapper model and Harris water optimization-based deep recurrent neural network. Kybernetes, 50(6), 1731–1750. doi:10.1108/K-04-2020-0239.

Sadgali, I., Sael, N., & Benabbou, F. (2021). Bidirectional gated recurrent unit for improving classification in credit card fraud detection. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1704–1712. doi:10.11591/ijeecs.v21.i3.pp1704-1712.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-01-014

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Hanae ABBASSI, Youssef GAHI, Saida EL MENDILI