Exploring Anti-Ballistic Technology Development through Bibliometric Analysis of Scopus Database Records

Fattah Maulana, . Ubaidillah, Bhre W. Lenggana, Dody Ariawan, Zainal Arifin

Abstract


Anti-ballistics technology's significance in safeguarding national defense and security has intensified amid rising threats and insurgencies. While prior studies have investigated advancements in anti-ballistic technologies, a noticeable gap persists in discussions involving anti-ballistics through bibliometric analysis and cutting-edge evaluations. This scarcity of research originates from the sensitivity surrounding weapon-related discourse. This article aims to bridge this gap by unveiling an exhaustive bibliometric analysis and contemporary assessment of anti-ballistics research spanning 47 years. The analysis's distinctiveness lies in its approach to addressing this research void within the anti-ballistics domain, achieved through meticulous scrutiny of existing research via bibliometric analysis techniques. The analysis was facilitated by employing Biblioshiny software integrated with RStudio and VOSviewer. Data processing encompassed keyword searches within the Scopus database, with outcomes presented in CSV format. Notably, the study's findings highlight the United States as the frontrunner in reference count and publication output within the anti-ballistics realm. The National Institute of Standards and Technology stands out with 89 articles. Furthermore, a systematic categorization of anti-ballistic materials based on their developmental applications was conducted. Temporal assessment revealed shifting research trends, transitioning from "ceramic materials" in 2016 to "nonmetallic matrix composites" in 2020, particularly for body armor applications. This endeavor involves recognizing notable contributors, categorizing diverse materials under study, and tracking research trend shifts over time. The analysis offers indispensable insights to guide diverse stakeholders' decision-making. It's noteworthy that this bibliometric analysis holds particular value for novices or those entering the field for the first time. Our study significantly enriches the anti-ballistics domain through contributions to library studies and research mapping. By presenting a comprehensive overview of anti-ballistics research trends, our analysis enhances comprehension and empowers informed decision-making for researchers, practitioners, and policymakers alike.

 

Doi: 10.28991/HIJ-2023-04-03-015

Full Text: PDF


Keywords


Bibliometric Analysis; Anti-Ballistic; Bulletproof Vest; Anti-Ballistic Development; Anti-Ballistic Materials.

References


Bass, C. R., Salzar, R. S., Lucas, S. R., Davis, M., Donnellan, L., Folk, B., Sanderson, E., & Waclawik, S. (2006). Injury Risk in Behind Armor Blunt Thoracic Trauma. International Journal of Occupational Safety and Ergonomics, 12(4), 429–442. doi:10.1080/10803548.2006.11076702.

NIJ Standard–0101.04. (2000). Ballistic Resistance of Personal Body Armor. National Institute of Justice, Office of Justice Programs, US Department of Justice, Washington, United States.

NIJ Standard-0101.06. (2014). Selection and Application Guide to Ballistic-Resistant Body Armor for Law Enforcement, Corrections and Public Safety: NIJ Selection and Application Guide-0101.06. National Institute of Justice, Office of Justice Programs, US Department of Justice, Washington, United States.

CAST 012/17. (2017). Body Armor Standard 2017. Centre for Applied Science and Technology, London, United Kingdom.

Breeze, J., Davis, J. I., Fryer, R. N., & Lewis, E. A. (2020). Sizing of ballistic arm protection for the VIRTUS body armour and load carriage system. BMJ Mil Health, 167, 163–167. doi:10.1136/jramc-2019-001254.

Tam, D. K. Y., Ruan, S., Gao, P., & Yu, T. (2012). High-performance ballistic protection using polymer nanocomposites. Advances in Military Textiles and Personal Equipment, Woodhead Publishing, Sawston, United Kingdom, 213–237. doi:10.1533/9780857095572.2.213.

Bhatnagar, A. (2016). Lightweight Ballistic Composites: Military and law-enforcement applications. Woodhead Publishing, Sawston, United Kingdom.

Abtew, M. A., Boussu, F., Bruniaux, P., & Liu, H. (2020). Fabrication and mechanical characterization of dry three-dimensional warp interlock para-aramid woven fabrics: Experimental methods toward applications in composite reinforcement and soft body armor. Materials, 13(19), 4233. doi:10.3390/MA13194233.

David, N. V., Gao, X. L., & Zheng, J. Q. (2009). Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms, 62(5), 050802. doi:10.1115/1.3124644.

Łotysz, S. (2014). Tailored to the Times: The Story of Casimir Zeglen’s Silk Bullet-Proof Vest. Arms and Armour, 11(2), 164–186. doi:10.1179/1741612414Z.00000000040.

Naik, S., Dandagwhal, R. D., & Loharkar, P. K. (2020). A review on various aspects of Kevlar composites used in ballistic applications. Materials Today: Proceedings, 21, 1366–1374. doi:10.1016/j.matpr.2020.01.176.

Koto, N., & Soegijono, B. (2019). Analysis of Damage Area of Fiberglass/Polyester Bi-Panel with Rice Husk Ash as a Filler Caused by the Impact of High-Speed Particles. IOP Conference Series: Materials Science and Engineering, 599(1), 012009. doi:10.1088/1757-899x/599/1/012009.

Pulungan, M. A., Sutikno, S., & Sani, M. S. M. (2019). Analysis of Bulletproof Vest Made from Fiber Carbon Composite and Hollow Glass Microsphere (HGM) in Absorbing Energy due to Projectile Impact. IOP Conference Series: Materials Science and Engineering, 506, 12001. doi:10.1088/1757-899X/506/1/012001.

Abtew, M. A., Boussu, F., Bruniaux, P., Loghin, C., Cristian, I., Chen, Y., & Wang, L. (2018). Influences of fabric density on mechanical and moulding behaviours of 3D warp interlock para-aramid fabrics for soft body armour application. Composite Structures, 204, 402-418.

Pirvu, C., Deleanu, L., & Lazaroaie, C. (2016). Ballistic tests on packs made of stratified aramid fabrics LFT SB1. IOP Conference Series: Materials Science and Engineering, 147, 012099. doi:10.1088/1757-899x/147/1/012099.

Termonia, Y. (2004). Impact Resistance of Woven Fabrics. Textile Research Journal, 74(8), 723–729. doi:10.1177/004051750407400811.

Chatys, R., Kleinhofs, M., Panich, A., & Kisiel, M. (2019). Modeling of mechanical properties of composite structures taking into account military needs. AIP Conference Proceedings, 2077, 20011. doi:10.1063/1.5091872.

Wu, K. K., Chen, Y. L., Yeh, J. N., Chen, W. L., & Lin, C. S. (2020). Ballistic Impact Performance of SiC Ceramic-Dyneema Fiber Composite Materials. Advances in Materials Science and Engineering, 2020, 9. doi:10.1155/2020/9457489.

Gali, A., & George, E. P. (2013). Tensile properties of high - and medium - entropy alloys. Intermetallics, 39, 74–78. doi:10.1016/j.intermet.2013.03.018.

Salishchev, G. A., Tikhonovsky, M. A., Shaysultanov, D. G., Stepanov, N. D., Kuznetsov, A. V., Kolodiy, I. V., Tortika, A. S., & Senkov, O. N. (2014). Effect of Mn and v on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 591, 11–21. doi:10.1016/j.jallcom.2013.12.210.

Wu, Z., Gao, Y., & Bei, H. (2016). Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Materialia, 120, 108–119. doi:10.1016/j.actamat.2016.08.047.

Morye, S. S., Hine, P. J., Duckett, R. A., Carr, D. J., & Ward, I. M. (2000). Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Science and Technology, 60(14), 2631–2642. doi:10.1016/S0266-3538(00)00139-1.

Cruz, R. B. da, Lima Junior, E. P., Monteiro, S. N., & Louro, L. H. L. (2015). Giant Bamboo Fiber Reinforced Epoxy Composite in Multilayered Ballistic Armor. Materials Research, 18(Suppl 2), 70–75. doi:10.1590/1516-1439.347514.

Scott, R. A. (2005). Military protection. Textiles for Protection. Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781845690977.3.597.

Roedel, C., & Chen, X. (2006). Innovation and Analysis of Police Riot Helmets with Continuous Textile Reinforcement for Improved Protection. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications”, Beijing, China. doi:10.1109/cesa.2006.4281648.

Zahid, B., & Chen, X. (2014). Impact performance of single-piece continuously textile reinforced riot helmet shells. Journal of Composite Materials, 48(6), 761–766. doi:10.1177/0021998313477173.

Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61(1–2), 161–173. doi:10.1016/S0263-8223(03)00029-1.

Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Aisyah, H. A., Rafiqah, S. A., Sabaruddin, F. A., Kamarudin, S. H., Norrrahim, M. N. F., Ilyas, R. A., & Sapuan, S. M. (2021). A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers, 13(4), 646. doi:10.3390/polym13040646.

Sorrentino, L., Bellini, C., Corrado, A., Polini, W., & Aricò, R. (2014). Ballistic performance evaluation of composite laminates in Kevlar 29. Procedia Engineering, 88, 255–262. doi:10.1016/j.proeng.2015.06.048.

Zhao, L., Qian, X., Sun, Y., Yuan, M., Tang, F., Zhao, Y., Zhang, Q., & Chen, Y. (2018). Ballistic behaviors of injection-molded honeycomb composite. Journal of Materials Science, 53(20), 14287–14298. doi:10.1007/s10853-018-2611-y.

Abtew, M. A., Boussu, F., Bruniaux, P., Loghin, C., & Cristian, I. (2019). Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Composite Structures, 223, 110966. doi:10.1016/j.compstruct.2019.110966.

Lin, C. C., Huang, C. C., Chen, Y. L., Lou, C. W., Lin, C. M., Hsu, C. H., & Lin, J. H. (2008). Ballistic-resistant stainless steel mesh compound nonwoven fabric. Fibers and Polymers, 9(6), 761–767. doi:10.1007/s12221-008-0119-9.

Carter, C. B., & Norton, M. G. (2007). Ceramic Materials: Science and Engineering. Springer, New York, United States.

Wiśniewski, A. (2007). Nanotechnology for body protection. Problems of Armament Technology, Military Institute of Armament Technology, 36(102), 7-17.

Shaktivesh, Nair, N. S., & Naik, N. K. (2015). Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation. International Journal of Damage Mechanics, 24(1), 116–150. doi:10.1177/1056789514524074.

Mohamadipoor, R., Zamani, E., & Pol, M. H. (2018). Analytical and Experimental Investigation of Ballistic Impact on Thin Laminated Composite Plate. International Journal of Applied Mechanics, 10(2), 1850020. doi:10.1142/S1758825118500205.

Guo, Z., & Chen, W. (2020). A merit parameter to determine the stacking order of heterogeneous diphasic soft armor systems. Composite Structures, 241, 112086. doi:10.1016/j.compstruct.2020.112086.

Sikarwar, R. S., Velmurugan, R., & Madhu, V. (2012). Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates. Central European Journal of Engineering, 2(4), 638–649. doi:10.2478/s13531-012-0029-x.

Chen, X., Zhou, Y., & Wells, G. (2014). Numerical and experimental investigations into ballistic performance of hybrid fabric panels. Composites Part B: Engineering, 58, 35–42. doi:10.1016/j.compositesb.2013.10.019.

Soydan, A. M., Tunaboylu, B., Elsabagh, A. G., Sari, A. K., & Akdeniz, R. (2018). Simulation and Experimental Tests of Ballistic Impact on Composite Laminate Armor. Advances in Materials Science and Engineering, 2018. doi:10.1155/2018/4696143.

Chandekar, G. S., & Kelkar, A. D. (2014). Experimental and numerical investigations of textile hybrid composites subjected to low velocity impact loadings. The Scientific World Journal, 2014, 114. doi:10.1155/2014/325783.

Hub, J., Komenda, J., & Novák, M. (2012). Ballistic limit evaluation for impact of pistol projectile 9 mm luger on aircraft skin metal plate. Advances in Military Technology, 7(1), 21-29.

Safta, I. (2011). Contributions to the theoretical and experimental study of individual means of ballistic protection. Academia Tehnică Militară, Bucharest, Romania. (In Romanian).

EC-Council. (2010). Penetration Testing: Procedures & Methodologies (1st Ed.). EC Council Press, Albuquerque, United States.

Pirvu, C. (2015). Contribution on Experimental and Numerical Study of Ballistic Protection Packages Made of Aramid Fabrics. Ph.D. Thesis, University, Galati, Romania.

Nunes, S. G., Scazzosi, R., Manes, A., Amico, S. C., de Amorim Júnior, W. F., & Giglio, M. (2019). Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study. International Journal of Impact Engineering, 132, 103307. doi:10.1016/j.ijimpeng.2019.05.021.

Bajya, M., Majumdar, A., Butola, B. S., Arora, S., & Bhattacharjee, D. (2021). Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels. Composite Structures, 255, 112941. doi:10.1016/j.compstruct.2020.112941.

Tang, Y., & Li, D. Y. (2022). Dynamic response of high-entropy alloys to ballistic impact. Science Advances, 8(32), 1-8. doi:10.1126/sciadv.abp9096.

Ionescu, T. F., Pirvu, C., Badea, S., Georgescu, C., & Deleanu, L. (2017). The Influence of Friction Characteristics in Simulating the Impact Bullet-Stratified Materials. 15th International Conference on Tribology, 17-19 May, Kragujevac, Serbia.

Kędzierski, P., Popławski, A., Gieleta, R., Morka, A., & Sławiński, G. (2015). Experimental and numerical investigation of fabric impact behavior. Composites Part B: Engineering, 69, 452–459. doi:10.1016/j.compositesb.2014.10.028.

Yang, Y., Zhang, X., Chen, X., & Min, S. (2021). Numerical study on the effect of Z-warps on the ballistic responses of para-aramid 3d angle-interlock fabrics. Materials, 14(3), 1–13. doi:10.3390/ma14030479.

Feito, N., Loya, J. A., Muñoz-Sánchez, A., & Das, R. (2019). Numerical modelling of ballistic impact response at low velocity in aramid fabrics. Materials, 12(13), 12. doi:10.3390/ma12132087.

Sockalingam, S., Gillespie, J. W., & Keefe, M. (2017). Role of inelastic transverse compressive behavior and multiaxial loading on the transverse impact of Kevlar KM2 single fiber. Fibers, 5(1), 9. doi:10.3390/fib5010009.

Chiper, L., Ojoc, G. G., Deleanu, L., & Pirvu, C. (2020). Simulation of Impact Behavior of a Glass Yarn. Mechanical Testing and Diagnosis, 10(1), 10–17. doi:10.35219/mtd.2020.1.02.

Miqdad, M., & Syahrial, A. Z. (2022). Effect of Nano Al2O3 Addition and T6 Heat Treatment on Characteristics of AA 7075 / Al2O3 Composite Fabricated by Squeeze Casting Method for Ballistic Application. Evergreen, 9(2), 531–537. doi:10.5109/4794184.

Nilakantan, G., & Gillespie, J. W. (2012). Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects. Composite Structures, 94(12), 3624–3634. doi:10.1016/j.compstruct.2012.05.030.

Anderson, C. A., Mullin Jr, S. A., & Kuhlman, C. J. (1995). Strain-rate effects in replica scale model penetration experiments, SwRI Report 3593/002. Contract DE-AC04-90A1, 58770.

García-Castillo, S. K., Sánchez-Sáez, S., & Barbero, E. (2012). Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts. Journal of Strain Analysis for Engineering Design, 47(7), 444–452. doi:10.1177/0309324712454996.

Homae, T., Shimizu, T., Fukasawa, K., & Masamura, O. (2006). Hypervelocity planar plate impact experiments of aramid fiber-reinforced plastics. Journal of Reinforced Plastics and Composites, 25(11), 1215–1221. doi:10.1177/0731684406066370.

Tasdemirci, A., & Hall, I. W. (2007). Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates. International Journal of Impact Engineering, 34(2), 189–204. doi:10.1016/j.ijimpeng.2005.08.010.

Claus, J., Santos, R. A. M., Gorbatikh, L., & Swolfs, Y. (2020). Effect of matrix and fibre type on the impact resistance of woven composites. Composites Part B: Engineering, 183, 107736. doi:10.1016/j.compositesb.2019.107736.

Abtew, M. A., Boussu, F., Bruniaux, P., Loghin, C., & Cristian, I. (2020). Effect of Structural Parameters on the Deformational Behaviors of Multiply 3D Layer-by-Layer Angle-Interlock Para-Aramid Fabric for Fiber-Reinforcement Composite. Journal of Composites Science, 4(4), 145. doi:10.3390/jcs4040145.

Larsson, F., & Svensson, L. (2002). Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour. Composites Part A: Applied Science and Manufacturing, 33(2), 221-231. doi:10.1016/S1359-835X(01)00095-1.

Vivas, J. C., Zerbino, R., Torrijos, M. C., & Giaccio, G. (2020). Effect of the fibre type on concrete impact resistance. Construction and Building Materials, 264, 120200. doi:10.1016/j.conbuildmat.2020.120200.

Shakil, U. A., Hassan, S. B. A., Yahya, M. Y., & Nurhadiyanto, D. (2021). A review of properties and fabrication techniques of fiber reinforced polymer nanocomposites subjected to simulated accidental ballistic impact. Thin-Walled Structures, 158, 107150. doi:10.1016/j.tws.2020.107150.

Wang, Z., Zhang, H., Dong, Y., Zhou, H., & Huang, G. (2023). Ballistic performance and protection mechanism of aramid fabric modified with polyethylene and graphene. International Journal of Mechanical Sciences, 237, 107772. doi:10.1016/j.ijmecsci.2022.107772.

Mawkhlieng, U., & Majumdar, A. (2020). Designing of hybrid soft body armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid. Composite Structures, 253, 112776. doi:10.1016/j.compstruct.2020.112776.

Ralph, C., Baker, L., Archer, E., & McIlhagger, A. (2023). Optimization of soft armor: the response of homogenous and hybrid multi-ply para-aramid and ultra-high molecular weight polyethylene fabrics under ballistic impact. Textile Research Journal, 93(23-24), 5168-5186. doi:10.1177/00405175231194365.

Karahan, M., Jabbar, A., & Karahan, N. (2015). Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites. Journal of Reinforced Plastics and Composites, 34(1), 37-48. doi:10.1177/0731684414562223.

Liu, H., Falzon, B. G., & Tan, W. (2018). Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Composites Part B: Engineering, 136, 101-118. doi:10.1016/j.compositesb.2017.10.016.

Bandaru, A. K., Chavan, V. V., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2016). Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. International Journal of Impact Engineering, 89, 1-13. doi:10.1016/j.ijimpeng.2015.10.014.

Gürgen, S. (2020). Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-Walled Structures, 148, 106573. doi:10.1016/j.tws.2019.106573.

He, Y., Min, S., Chen, S., Wang, J., Wang, Z., & Zhou, Y. (2023). Effect of Z-binding depths on the ballistic performance of 3D woven through-the-thickness angle-interlock fabrics in a multiply system. Journal of Industrial Textiles, 53, 15280837231188528. doi:10.1177/15280837231188528.

Li, Y., Fan, H., & Gao, X.-L. (2022). Ballistic helmets: Recent advances in materials, protection mechanisms, performance, and head injury mitigation. Composites Part B: Engineering, 238, 109890. doi:10.1016/j.compositesb.2022.109890.

Liang, Y., Chen, X., & Soutis, C. (2021). Review on Manufacture of Military Composite Helmet. Applied Composite Materials, 29(1), 305–323. doi:10.1007/s10443-021-09944-5.

Grujicic, M., Glomski, P. S., He, T., Arakere, G., Bell, W. C., & Cheeseman, B. A. (2009). Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. Journal of Materials Engineering and Performance, 18(9), 1169–1182. doi:10.1007/s11665-009-9370-5.

Meliande, N. M., Silveira, P. H. P. M. da, Monteiro, S. N., & Nascimento, L. F. C. (2022). Tensile Properties of Curaua–Aramid Hybrid Laminated Composites for Ballistic Helmet. Polymers, 14(13), 2588. doi:10.3390/polym14132588.

Daungkumsawat, J., Okhawilai, M., Charoensuk, K., Prastowo, R. B., Jubsilp, C., Karagiannidis, P., & Rimdusit, S. (2020). Development of lightweight and high-performance ballistic helmet based on poly(Benzoxazine-co-urethane) matrix reinforced with aramid fabric and multi-walled carbon nanotubes. Polymers, 12(12), 1–16. doi:10.3390/polym12122897.

Abdulrahim, M. Y., Yawas, D. S., Mohammed, R. A., & Afolayan, M. O. (2021). Hybridization of Polyester/Banana stem Fiber and Cow horn particulate composite for possible production of a military helmet. International Journal of Sustainable Engineering, 14(5), 1170–1180. doi:10.1080/19397038.2021.1892233.

Asyraf, M. Z., Suriani, M. J., Ruzaidi, C. M., Khalina, A., Ilyas, R. A., Asyraf, M. R. M., Syamsir, A., Azmi, A., & Mohamed, A. (2022). Development of Natural Fibre-Reinforced Polymer Composites Ballistic Helmet Using Concurrent Engineering Approach: A Brief Review. Sustainability (Switzerland), 14(12), 7092. doi:10.3390/su14127092.

Fejdyś, M., Łandwijt, M., Habaj, W., & Struszczyk, M. H. (2015). Ballistic helmet development using UHMWPE fibrous materials. Fibres & Textiles in Eastern Europe, 23(1), 89-97.

Walsh, S. M., Scott, B. R., & Spagnuolo, D. M. (2005). The development of a hybrid thermoplastic ballistic material with application to helmets. Report number ARL-TR-3700, US Army Research Laboratory, Adelphi, United States.

Sekar, K., Allesu, K., & Joseph, M. A. (2014). Effect of T6 heat treatment in the microstructure and mechanical properties of A356 reinforced with nano Al2O3 particles by combination effect of stir and squeeze casting. Procedia Materials Science, 5, 444-453. doi:10.1016/j.mspro.2014.07.287.

Khan, W., Tufail, M., & Chandio, A. D. (2022). Characterization of Microstructure, Phase Composition, and Mechanical Behavior of Ballistic Steels. Materials, 15(6), 2204. doi:10.3390/ma15062204.

Madhu, V., & Bhat, T. B. (2011). Armour protection and affordable protection for futuristic combat vehicles. Defence Science Journal, 61(4), 394–402. doi:10.14429/dsj.61.365.

Romano, D., Ronca, S., & Rastogi, S. (2015). Activation of a Bis-(Phenoxyimine) Titanium (IV) Catalyst Using Different Aluminoxane Co-Catalysts. Macromolecular Symposia, 356(1), 61–69. doi:10.1002/masy.201500047.

French M. A., Wright A. J., Stapleton M. A. (2013). Armour qualification for composite military vehicles. Proceedings 27th International Symposium on Ballistics, Ballistics 2013, 22-26 April, Freiburg, Germany.

Zhu, X., Chen, W., Liu, L., Xu, K., Luo, G., & Zhao, Z. (2023). Experimental investigation on high-velocity impact damage and compression after impact behavior of 2D and 3D textile composites. Composite Structures, 303, 116256. doi:10.1016/j.compstruct.2022.116256.

Bessa, W., Trache, D., Derradji, M., & Tarchoun, A. F. (2022). Kevlar fabric reinforced polybenzoxazine composites filled with silane treated microcrystalline cellulose in the interlayers: The next generation of multi-layered armor panels. Defence Technology, 18(11), 2000–2007. doi:10.1016/j.dt.2021.10.005.

Mudzi, P., Wu, R., Firouzi, D., Ching, C. Y., Farncombe, T. H., & Ravi Selvaganapathy, P. (2022). Use of patterned thermoplastic hot film to create flexible ballistic composite laminates from UHMWPE fabric. Materials and Design, 214. doi:10.1016/j.matdes.2022.110403.

Nazarudin, N., & Soegijono, B. (2019). Analysis of damage area of fiberglass/polyester multi-panel composite through a ballistic test. AIP Conference Proceedings, 2168. doi:10.1063/1.5132436.

Peinado, J., Jiao-Wang, L., Olmedo, Á., & Santiuste, C. (2022). Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels. Composite Structures, 286, 115365. doi:10.1016/j.compstruct.2022.115365.

Zee, R. H., & Hsieh, C. Y. (1993). Energy loss partitioning during ballistic impact of polymer composites. Polymer Composites, 14(3), 265–271. doi:10.1002/pc.750140312.

Cihan, M., Sobey, A. J., & Blake, J. I. R. (2019). Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Composites Science and Technology, 172, 36–42. doi:10.1016/j.compscitech.2018.12.030.

Markovsky, P. E., Savvakin, D. G., Stasiuk, O. O., Sedov, S. H., Golub, V. A., Kovalchuk, D. V., & Prikhodko, S. V. (2021). Ballistic Resistance of Layered Titanium Armour Made Using Powder Metallurgy and Additive 3D Printing. Metal Physics and Latest Technologies, 43(12), 1573–1588. doi:10.15407/mfint.43.12.1573.

Goda, I., & Girardot, J. (2021). A computational framework for energy absorption and damage assessment of laminated composites under ballistic impact and new insights into target parameters. Aerospace Science and Technology, 115, 106835. doi:10.1016/j.ast.2021.106835.

Rahimijonoush, A., & Bayat, M. (2020). Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios. Thin-Walled Structures, 157, 107079. doi:10.1016/j.tws.2020.107079.

Chatterjee, V. A., Saraswat, R., Verma, S. K., Bhattacharjee, D., Biswas, I., & Neogi, S. (2020). Embodiment of dilatant fluids in fused-double-3D-mat sandwich composite panels and its effect on energy-absorption when subjected to high-velocity ballistic impact. Composite Structures, 249, 112588. doi:10.1016/j.compstruct.2020.112588.

Yu, S., Yu, X., Ao, Y., Mei, J., Jiang, W., Liu, J., Li, C., & Huang, W. (2021). The impact resistance of composite Y-shaped cores sandwich structure. Thin-Walled Structures, 169, 108389. doi:10.1016/j.tws.2021.108389.

Khaire, N., Tiwari, G., Rathod, S., Iqbal, M. A., & Topa, A. (2022). Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact. Thin-Walled Structures, 171, 108724. doi:10.1016/j.tws.2021.108724.

Wu, S., Xu, Z., Hu, C., Zou, X., & He, X. (2022). Numerical simulation study of ballistic performance of Al2O3/aramid-carbon hybrid FRP laminate composite structures subject to impact loading. Ceramics International, 48(5), 6423–6435. doi:10.1016/j.ceramint.2021.11.186.

Yang, W., Huang, R., Liu, J., Liu, J., & Huang, W. (2022). Ballistic impact responses and failure mechanism of composite double-arrow auxetic structure. Thin-Walled Structures, 174, 109087. doi:10.1016/j.tws.2022.109087.

Vescovini, A., Balen, L., Scazzosi, R., da Silva, A. A. X., Amico, S. C., Giglio, M., & Manes, A. (2021). Numerical investigation on the hybridization effect in inter-ply S2-glass and aramid woven composites subjected to ballistic impacts. Composite Structures, 276, 114506. doi:10.1016/j.compstruct.2021.114506.

Mohammad, Z., Gupta, P. K., & Baqi, A. (2020). Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact. International Journal of Impact Engineering, 146, 103717. doi:10.1016/j.ijimpeng.2020.103717.

Han, J., Shi, Y., Ma, Q., Vershinin, V. V., Chen, X., Xiao, X., & Jia, B. (2022). Experimental and numerical investigation on the ballistic resistance of 2024-T351 aluminum alloy plates with various thicknesses struck by blunt projectiles. International Journal of Impact Engineering, 163, 104182. doi:10.1016/j.ijimpeng.2022.104182.

Savage, G. (1990). Metals and Materials (Institute of Materials), 6(8), 487-492.

Tam, T., & Bhatnagar, A. (2016). High-performance ballistic fibers and tapes. Lightweight Ballistic Composites, 1–39, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-100406-7.00001-5.

Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers and Polymers, 17(2), 275–281. doi:10.1007/s12221-016-5678-6.

Lee, Y. S., Wetzel, E. D., & Wagner, N. J. (2003). The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science, 38(13), 2825–2833. doi:10.1023/A:1024424200221.

Donnet, J. B., & Qin, R. Y. (1993). Study of carbon fiber surfaces by scanning tunneling microscopy, part II—PAN-based high strength carbon fibers. Carbon, 31(1), 7-12. doi:10.1016/0008-6223(93)90149-5.

Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2014). Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Materials and Design, 63, 775–782. doi:10.1016/j.matdes.2014.07.010.

Sabet, A. R., Beheshty, M. H., & Rahimi, H. (2008). High velocity impact behavior of GRP panels containing coarse-sized sand filler. Polymer Composites, 29(8), 932–938. doi:10.1002/pc.20519.

Cantwell, W. J., & Morton, J. (1991). The impact resistance of composite materials - a review. Composites, 22(5), 347–362. doi:10.1016/0010-4361(91)90549-V.

Yang, H. H. (1993). Kevlar aramid fiber. John Wiley & Sons, Hoboken, United States. doi:10.1002/pi.1994.210330421.

Pach, J., Pyka, D., Jamroziak, K., & Mayer, P. (2017). The experimental and numerical analysis of the ballistic resistance of polymer composites. Composites Part B: Engineering, 113, 24-30. doi:10.1016/j.compositesb.2017.01.006.

Jang, B. Z., Chen, L. C., Hwang, L. R., Hawkes, J. E., & Zee, R. H. (1990). The response of fibrous composites to impact loading. Polymer Composites, 11(3), 144–157. doi:10.1002/pc.750110303.

Jacobs, M. J. N., & Van Dingenen, J. L. J. (2001). Ballistic protection mechanisms in personal armour. Journal of Materials Science, 36(13), 3137–3142. doi:10.1023/A:1017922000090.

Zee, R. H., Wang, C. J., Mount, A., Jang, B. Z., & Hsieh, C. Y. (1991). Ballistic response of polymer composites. Polymer Composites, 12(3), 196–202. doi:10.1002/pc.750120310.

Ishida, H., & Chaisuwan, T. (2003). Mechanical Property Improvement of Carbon Fiber Reinforced Polybenzoxazine by Rubber Interlayer. Polymer Composites, 24(5), 597–607. doi:10.1002/pc.10056.

Shen, S. B., & Ishida, H. (1996). Development and characterization of high-performance Polybenzoxazine composites. Polymer Composites, 17(5), 710–719. doi:10.1002/pc.10663.

Chabba, S., Van Es, M., Van Klinken, E. J., Jongedijk, M. J., Vanek, D., Gijsman, P., & Van Der Waals, A. C. L. M. (2007). Accelerated aging study of ultra-high molecular weight polyethylene yarn and unidirectional composites for ballistic applications. Journal of Materials Science, 42(8), 2891–2893. doi:10.1007/s10853-007-1617-7.

Berman, A. T., & Salter, F. (1985). Low-velocity gunshot wounds in police officers. Clinical Orthopaedics and Related Research®, 192, 113-119.

Howell, T. J., Cobbett, W., & Jardine, D. (1816). A Complete Collection of State Trials and Proceedings for High Treason and Other Crimes and Misdemeanors: From the Earliest Period to the Year 1783, with Notes and Other Illustrations (Vol. 12). Royal Collection Trust, London, United Kingdom.


Full Text: PDF

DOI: 10.28991/HIJ-2023-04-03-015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Fattah Maulana, . Ubaidillah, Bhre W. Lenggana, Dody Ariawan, Zainal Arifin