Preventing Impaired Driving Using IoT on Steering Wheels Approach

Siti Fatimah Abdul Razak, Sumendra Yogarayan, Arif Ullah


To drive safely, one must be attentive, coordinated, have good judgment, and be able to respond quickly to changing conditions. In certain countries, improving safety may depend largely on reducing the number of impaired drivers on the road. Therefore, solutions are required to reduce the risk that is posed on the road by drivers who have been consuming alcohol while driving. Previous research has proposed the use of sensors for detecting driver impairment caused by alcohol intoxication. However, relying on a gas sensor alone may not be appropriate for detection. To reduce drunk driving, this study proposes an Internet of Things (IoT)-based tool that measures heart rate and analyzes the breath of a driver for traces of alcohol. The tool represents a vehicle that is made up of a DC motor. In the circumstance that the tool detects a higher than resting heart rate in the driver as well as an amount of alcohol in the driver’s breath sample, the tool will immediately power down the DC motor and send an SMS to the registered emergency contact with the driver’s precise position using the GPS module. The initial prototype demonstrates the tool as a potential aftermarket accessory for vehicles. The implication of this paper is that the designed tool might be of practical use to researchers in their attempts to determine and obtain information on alcohol intoxication.


Doi: 10.28991/HIJ-2024-05-02-012

Full Text: PDF


Impaired Driver; Alcohol Intoxication; Internet of Things; Sensors.


W.H.O. (2019). SAFER: A World Free from Alcohol Related Harms. World Health Organisation, New York, United States. Available online: (accessed on March 2024).

Liu, L., Chui, W. H., & Deng, Y. (2021). Driving after alcohol consumption: A qualitative analysis among Chinese male drunk drivers. International Journal of Drug Policy, 90. doi:10.1016/j.drugpo.2020.103058.

Pires, C., Torfs, K., Areal, A., Goldenbeld, C., Vanlaar, W., Granié, M. A., Stürmer, Y. A., Usami, D. S., Kaiser, S., Jankowska-Karpa, D., Nikolaou, D., Holte, H., Kakinuma, T., Trigoso, J., Van den Berghe, W., & Meesmann, U. (2020). Car drivers’ road safety performance: A benchmark across 32 countries. IATSS Research, 44(3), 166–179. doi:10.1016/j.iatssr.2020.08.002.

Kumar Yadav, A., & Velaga, N. R. (2021). A comprehensive systematic review of the laboratory-based research investigating the influence of alcohol on driving behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 81, 557–585. doi:10.1016/j.trf.2021.07.010.

Love, S., Rowland, B., & Davey, J. (2023). Exactly how dangerous is drink driving? An examination of vehicle crash data to identify the comparative risks of alcohol-related crashes. Crime Prevention and Community Safety, 25(2), 131–147. doi:10.1057/s41300-023-00172-6.

Fang, C., Zhang, Y., Zhang, M., & Fang, Q. (2020). P300 measures and drive-related risks: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 17(15), 1–14. doi:10.3390/ijerph17155266.

Kloft, L., Monds, L. A., Blokland, A., Ramaekers, J. G., & Otgaar, H. (2021). Hazy memories in the courtroom: A review of alcohol and other drug effects on false memory and suggestibility. Neuroscience and Biobehavioral Reviews, 124, 291–307. doi:10.1016/j.neubiorev.2021.02.012.

van Dijken, J. H., Veldstra, J. L., van de Loo, A. J. A. E., Verster, J. C., van der Sluiszen, N. N. J. J. M., Vermeeren, A., Ramaekers, J. G., Brookhuis, K. A., & de Waard, D. (2020). The influence of alcohol (0.5‰) on the control and manoeuvring level of driving behaviour, finding measures to assess driving impairment: A simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 73, 119–127. doi:10.1016/j.trf.2020.06.017.

Zainal, E. S. (2020). Drunk Driving in Malaysia_ Heavier Punishments vs Stricter Laws. Malaysian Litigator. Kuala Lumpur, Malaysia. Available online: (accessed on March 2024).

Yousif, E., Alali, D., Aldakhl, S., & Zohdy, M. (2021). Use of vehicle breathalyzers in the reduction of DUI deaths. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021 – Proceedings, Toronto, ON, Canada. doi:10.1109/IEMTRONICS52119.2021.9422629.

Rosenberg, E. (2015). A Study of the Accuracy and Precision of Selected Breath Alcohol Measurement Devices (Breathalyzers). Report TUW CTA 2015/27EN, 1–45.

Smith, R. C., Robinson, Z., Bazdar, A., & Geller, E. S. (2016). Intervening to decrease the probability of alcohol-impaired driving: Impact of novel field sobriety tests. Journal of Prevention and Intervention in the Community, 44(3), 199–212. doi:10.1080/10852352.2016.1166817.

MADD. (2022). 10 Things to Know About the Impaired Driving Prevention Technology Provision in the Infrastructure Law. Mothers Against Drunk Driving, Texas, United States. Available online: (accessed on March 2024).

NHTSA. (2023). Advanced Impaired Driving Prevention Technology. National Highway Traffic Safety Administration, Department of Transportation, Washington, D.C., United States.

Kingsley, K., da Silva, F. P., & Strassburger, R. (2023). In-vehicle technology to prevent drunk driving: Public acceptance required for successful deployment. Transportation Research Procedia, 72, 2433–2440. doi:10.1016/j.trpro.2023.11.741.

Pravinth Raja, S., Blessed Prince, P., & Jeno Lovesum, S. P. (2023). Smart Steering Wheel for Improving Driver’s Safety Using Internet of Things. SN Computer Science, 4(3), 277. doi:10.1007/s42979-022-01636-6.

Lukas, S. E., Zaouk, A., Ryan, E., McNeil, J., Justin Shepherd, M., Willis, M., Neeraj Dalal, B., & Kelly Schwartz, B. (2017). Driver Alcohol Detection System for Safety (DADSS)-Preliminary Human Testing Results. 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 1–11.

Nortajuddin, A. (2020). Drunk driving on the rise in Malaysia. The ASEAN Post, Kuala Lumpur, Malaysia. Available online: (accessed on March 2024).

Ryan, J. M., & Howes, L. G. (2002). Relations between alcohol consumption, heart rate, and heart rate variability in men. Heart, 88(6), 641–642. doi:10.1136/heart.88.6.641.

Dubowski, K. M., & Essary, N. A. (1999). Measurement of low breath-alcohol concentrations: Laboratory studies and field experience. Journal of Analytical Toxicology, 23(6), 386–395. doi:10.1093/jat/23.6.386.

Ferguson, S. A., & Draisin, N. A. (2021). Strategies for accelerating the implementation of non-intrusive alcohol detection systems in the vehicle fleet. Traffic Injury Prevention, 22(1), 13–19. doi:10.1080/15389588.2020.1836367.

Uzairue, S., Ighalo, J., Matthews, V. O., Nwukor, F., & Popoola, S. I. (2018). IoT-enabled alcohol detection system for road transportation safety in smart city. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Springer Verlag, Vol. 10963 LNCS. doi:10.1007/978-3-319-95171-3_55.

Wang, F., Bai, D., Liu, Z., Yao, Z., Weng, X., Xu, C., Fan, K., Zhao, Z., & Chang, Z. (2023). A Two-Step E-Nose System for Vehicle Drunk Driving Rapid Detection. Applied Sciences (Switzerland), 13(6), 3478. doi:10.3390/app13063478.

Sanguansri, P., Apiwong-Ngam, N., Ngamjarurojana, A., & Choopun, S. (2022). Development of non-invasive alcohol analyzer using Photoplethysmographytle. Journal of Physics: Conference Series, 2145, 12059. doi:10.1088/1742-6596/2145/1/012059.

European Society of Cardiology. (2018). Drinking alcohol makes your heart race. ScienceDaily, Maryland, United States. Available online: (accessed on March 2023).

Ye, Y., Ma, L., Liu, J., Zhang, Z., Gu, C., & Mao, J. F. (2022). A Novel Non-Contact Drunkenness Monitoring Technique Based on A 24-GHz Interferometric Radar System. 2022 IEEE MTT-S International Microwave Biomedical Conference, IMBioC 2022, 296–298. doi:10.1109/IMBioC52515.2022.9790121.

Kumar, A., Kumar, A., Singh, M., Kumar, P., & Bijalwan, A. (2022). An optimized approach using transfer learning to detect drunk driving. Scientific Programming, 2022(1), 8775607. doi:10.1155/2022/8775607.

Farooq, H., Altaf, A., Iqbal, F., Galán, J. C., Aray, D. G., & Ashraf, I. (2023). DrunkChain: Blockchain-Based IoT System for Preventing Drunk Driving-Related Traffic Accidents. Sensors, 23(12), 5388. doi:10.3390/s23125388.

Soner, S., Litoriya, R., & Pandey, P. (2022). Integrating Blockchain Technology with IoT and ML to Avoid Road Accidents Caused by Drunk Driving. Wireless Personal Communications, 125(4), 3001–3018. doi:10.1007/s11277-022-09695-x.

Chen, H., Yuan, X., Ye, H., Chen, L., & Zhang, G. (2019). The effect of alcohol on the physiological performance of the driver. International Journal of Crashworthiness, 24(6), 656–663. doi:10.1080/13588265.2018.1511226.

Tasnim, S., Tang, C., Musini, V. M., & Wright, J. M. (2020). Effect of alcohol on blood pressure. The Cochrane database of systematic reviews, 7(7), CD012787. doi:10.1002/14651858.CD012787.

Christoforou, Z., Karlaftis, M. G., & Yannis, G. (2013). Reaction times of young alcohol-impaired drivers. Accident Analysis and Prevention, 61, 54–62. doi:10.1016/j.aap.2012.12.030.

Li, Y. C., Sze, N. N., Wong, S. C., Yan, W., Tsui, K. L., & So, F. L. (2016). A simulation study of the effects of alcohol on driving performance in a Chinese population. Accident Analysis and Prevention, 95, 334–342. doi:10.1016/j.aap.2016.01.010.

Carranza, H., Carranza, A., & Tito, E. (2023). IoT and Cloud Computing Integration to Minimze Drunk Driving Accidents. International Conference of Control, Dynamic Systems, and Robotics. doi:10.11159/cdsr23.213.

Vignesh, R. S., Sankar, R., Balaji, A., Kumar, K. S., Sharmila Bhargavi, V., & Anusuya, R. (2023). IoT Assisted Drunk and Drive People Identification to Avoid Accidents and Ensure Road Safety Measures. Proceedings of the 2nd IEEE International Conference on Advances in Computing, Communication and Applied Informatics, ACCAI 2023, Chennai, India. doi:10.1109/ACCAI58221.2023.10200809.

Razak, S. F. A., Tong, Y. J., Yogarayan, S., Ismail, S. N. M. S., & Sui, O. C. (2024). Driver-centered pervasive application for heart rate measurement. International Journal of Electrical and Computer Engineering, 14(1), 1176–1184. doi:10.11591/ijece.v14i1.pp1176-1184.

Full Text: PDF

DOI: 10.28991/HIJ-2024-05-02-012


  • There are currently no refbacks.

Copyright (c) 2024 Siti Fatimah Abdul Razak, Sumendra Yogarayan, Mohd Fikri Azli Abdullah, Afizan Azman