Big Data Analysis using Elasticsearch and Kibana: A Rating Correlation to Sustainable Sales of Electronic Goods

Henderi Henderi, Ranty Irawatia, Indra Indra, Deshinta Arrova Dewi, Tri Basuki Kurniawan


Big data collection involves enormous amounts of raw data. To boost the sustainability of corporate value and support business intelligence and decision-making systems, in-depth data analysis is necessary. The data storage, analysis, and visualization methods, as well as the discovery of patterns and linkages, all depend on extensive data analysis. This study aims to process datasets to learn things like how ratings impact market sales transactions and how much of an impact factor connected to consumers and items have on ratings. Elasticsearch and Kibana were used for the dataset processing. This study evaluated traits related to the test parameters using a variety of test procedures. The product is scored as a representation of the product types involved in the sales transaction, and the name is assessed as a reflection of the customer. Kibana and Elasticsearch, a full-text search engine, were used in this work to do extensive data analysis on data sets. It is a visualization tool that is employed in a controlled environment to evaluate how ratings impact market exchanges for electronic goods, and it offers suggestions. The study found a substantial relationship between electronic product sales on the Amazon marketplace from 2012 to 2018. It suggested the importance of buyer constituents as users and how different product categories relate to ratings in business transactions.


Doi: 10.28991/HIJ-2023-04-03-09

Full Text: PDF


Big Data; Elasticsearch; Kibana; Rating; Decision-Making; Process Innovation; Consumers; Sustainability.


Liao, W., Luo, C., Salinas, S., & Li, P. (2019). Efficient secure outsourcing of large-scale convex separable programming for big data. IEEE Transactions on Big Data, 5(3), 368–378. doi:10.1109/TBDATA.2017.2787198.

Zhang, Y., Niyato, D., Wang, P., & Han, Z. (2020). Data Services Sales Design with Mixed Bundling Strategy: A Multidimensional Adverse Selection Approach. IEEE Internet of Things Journal, 7(9), 8826–8836. doi:10.1109/JIOT.2020.2999824.

Bhatnagar, D., SubaLakshmi, R.J., & Vanmathi, C. (2020). Twitter Sentiment Analysis Using Elasticsearch, Logstash and Kibana. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India. doi:10.1109/ic-ETITE47903.2020.351.

Pereira, T. A., de Carvalho, J. D. M. A., & Pedrosa, I. (2021). Business Intelligence in clinical decision support: applications in the context of intensive medicine. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Chaves, Portugal. doi:10.23919/cisti52073.2021.9476635.

Santos, M., Joao, E., Canelas, J., Bernardino, J., & Pedrosa, I. (2021). The Incorporation of Business Intelligence with Enterprise Resource Planning in SMEs. 16th Iberian Conference on Information Systems and Technologies (CISTI), Chaves, Portugal. doi:10.23919/cisti52073.2021.9476341.

Ferreira, D. F., Bernardino, J., Manjate, C. D., & Pedrosa, I. (2021). Business Intelligence and Business Analytics applied to the management of agricultural resources. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Chaves, Portugal. doi:10.23919/cisti52073.2021.9476266.

Deif, A., & Vivek, T. (2022). Understanding AI Application Dynamics in Oil and Gas Supply Chain Management and Development: A Location Perspective. HighTech and Innovation Journal, 3, 1-14. doi:10.28991/HIJ-SP2022-03-01.

Hengki, Rizan, O., Adiwinoto, B., Supardi, Saputro, S. H., & Perkasa, E. B. (2021). Business Intelligence to Support Visualization of Indonesian Capital Market Investment Gallery Performance. 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). doi:10.1109/icoris52787.2021.9649610.

Lattuada, M., Barbierato, E., Gianniti, E., & Ardagna, D. (2022). Optimal Resource Allocation of Cloud-Based Spark Applications. IEEE Transactions on Cloud Computing, 10(2), 1301–1316. doi:10.1109/TCC.2020.2985682.

Khan, S. A. (2019). Clustering Algorithm on Spatiotemporal Trajectories. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (ICoMET). doi:10.1109/icomet.2019.8673464.

Kumar, S., & Singh, M. (2019). A novel clustering technique for efficient clustering of big data in hadoop ecosystem. Big Data Mining and Analytics, 2(4), 240–247. doi:10.26599/BDMA.2018.9020037.

Salloum, S., Huang, J. Z., & He, Y. (2019). Random Sample Partition: A Distributed Data Model for Big Data Analysis. IEEE Transactions on Industrial Informatics, 15(11), 5846–5854. doi:10.1109/TII.2019.2912723.

Feng, M., Zheng, J., Ren, J., Hussain, A., Li, X., Xi, Y., & Liu, Q. (2019). Big Data Analytics and Mining for Effective Visualization and Trends Forecasting of Crime Data. IEEE Access, 7, 106111–106123. doi:10.1109/ACCESS.2019.2930410.

Bui, V. D., & Nguyen, H. P. (2021). A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management. International Journal on Advanced Science, Engineering and Information Technology, 11(3), 1067–1077. doi:10.18517/ijaseit.11.3.15350.

Hernandez, L., Guzman, H., Ospino, J., Freyle, J., & Pranolo, A. (2019). Design and implementation of a Marking Strategy to Increase the Contactability in the Call Centers, Based on Machine Learning. International Journal on Advanced Science, Engineering and Information Technology, 9(1), 1. doi:10.18517/ijaseit.9.1.7545.

Gonzalez-Vidal, A., Gomez-Bernal, P., Mendoza-Bernal, J., & Skarmeta, A. F. (2021). BIGcoldTRUCKS: a BIG data dashboard for the management of COLD chain logistics in refrigerated TRUCKS. 2021 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata52589.2021.9671633.

Yin, H., & Fengdong, D. (2019). Design and Implementation of Meteorological Big Data Platform Based on Hadoop and Elasticsearch. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). doi:10.1109/icccbda.2019.8725660.

Zamfir, V.-A., Carabas, M., Carabas, C., & Tapus, N. (2019). Systems Monitoring and Big Data Analysis Using the Elasticsearch System. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). doi:10.1109/cscs.2019.00039.

Lee, J., & Kwon, H.-Y. (2022). TPC-C Benchmarking for ElasticSearch. 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). doi:10.1109/bigcomp54360.2022.00041.

Latreche, O., & Boukraa, D. (2020). Self-Service, On-Demand Creation of OLAP Cubes over Big Data: a Metadata-Driven Approach. 2020 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata50022.2020.9378026.

Li, M., Xu, J., & Han, L. (2020). Multi-dimensional Analysis of Industrial Big Data Based JSON Document. 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). doi:10.1109/ispa-bdcloud-socialcom-sustaincom51426.2020.00160.

Wenhao, J., & Zheng, L. (2020). Vulnerability Analysis and Security Research of Docker Container. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). doi:10.1109/iciscae51034.2020.9236837.

Moorthi, K., Dhiman, G., Arulprakash, P., Suresh, C., & Srihari, K. (2021). A survey on impact of data analytics techniques in E-commerce. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.10.867.

Zhao, Z., Wang, J., Sun, H., Liu, Y., Fan, Z., & Xuan, F. (2020). What Factors Influence Online Product Sales? Online Reviews, Review System Curation, Online Promotional Marketing and Seller Guarantees Analysis. IEEE Access, 8, 3920–3931. doi:10.1109/ACCESS.2019.2963047.

Mu, Z., Liu, X., & Li, K. (2020). Optimizing Operating Parameters of a Dual E-Commerce-Retail Sales Channel in a Closed-Loop Supply Chain. IEEE Access, 8, 180352–180369. doi:10.1109/ACCESS.2020.3023652.

Yang, T., Yamashita, H., & Goto, M. (2019). A Study on Analysis Methods of Latent Customer Purchase Behavior Focused on Membership Stage Growth. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). doi:10.1109/bcd.2019.8885138.

Yingzhuo, X., & Xuewen, W. (2021). Research on Community Consumer Behavior Based on Association Rules Analysis. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). doi:10.1109/icsp51882.2021.9408917.

Yu, H. (2020). Research on Emergency Management Information System Model Based on Big Data. 2020 International Conference on Big Data and Social Sciences (ICBDSS). doi:10.1109/icbdss51270.2020.00048.

Sun, L., Zhao, Y., & Ling, B. (2020). The joint influence of online rating and product price on purchase decision: An EEG study. Psychology Research and Behavior Management, 13, 291–301. doi:10.2147/PRBM.S238063.

Henderi, S. D., Sugiarto, D., & Sunarya, A. (2020). A Proposed Model for Sales Data Warehouse Using Nine-step Design. International Journal of Advanced Science and Technology, 29(7), 12922–12931.

Buchanna, G., Premchand, P., & Govardhan, A. (2022). Classification of epileptic and non-epileptic electroencephalogram (EEG) signals using fractal analysis and support vector regression. Emerging Science Journal, 6(1), 138-150. doi:10.28991/ESJ-2022-06-01-011.

Pailwan, A., Abraham, J., & Saraf, M. (2020). Landscape of Monitoring and Visualization of Technologies in DevOps for Classification and Prediction. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). doi:10.1109/worlds450073.2020.9210398.

Provatas, N., Kassela, E., Chalvantzis, N., Bakogiannis, A., Giannakopoulos, I., Koziris, N., & Konstantinou, I. (2020). SELIS BDA: Big Data Analytics for the Logistics Domain. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, United States. doi:10.1109/bigdata50022.2020.9378421.

Lim, J. B., & Moon, C. H. (2021). Developing Big Data Analytics Course for Non-ICT Major University Students. International Journal on Advanced Science, Engineering and Information Technology, 11(6), 2503–2508. doi:10.18517/ijaseit.11.6.12539.

Orosco, C., Varol, C., & Shashidhar, N. (2020). Graphically Display Database Transactions to Enhance Database Forensics. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). doi:10.1109/isdfs49300.2020.9116412.

Kong, L., Li, C., Ge, J., Ng, V., & Luo, B. (2022). Predicting Product Review Helpfulness - A Hybrid Method. IEEE Transactions on Services Computing, 15(4), 2213–2225. doi:10.1109/TSC.2020.3041095.

Guan, M., Cha, M., Wang, Y., Li, Y., & Sun, J. (2022). From Anticipation to Action: Data Reveal Mobile Shopping Patterns during a Yearly Mega Sale Event in China. IEEE Transactions on Knowledge and Data Engineering, 34(4), 1775–1787. doi:10.1109/TKDE.2020.3001558.

Badhya, S. S., Prasad, A., Rohan, S., Yashwanth, Y. S., Deepamala, N., & Shobha, G. (2019). Natural Language to Structured Query Language using Elasticsearch for descriptive columns. 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS). doi:10.1109/csitss47250.2019.9031030.

Viteri, A. E., Cruzado, J. G., & Huaman, L. A. (2022). Methodology for Business Intelligence Solutions in Internet Banking Companies. International Journal on Advanced Science, Engineering and Information Technology, 12(3), 1173–1181. doi:10.18517/ijaseit.12.3.13670.

Petrova-Antonova, D., Baychev, S., Pavlova, I., & Pavlov, G. (2020). Air Quality Visual Analytics with Kibana. 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech). doi:10.23919/splitech49282.2020.9243708.

Raguvir, S., & Babu, S. (2020). Enhance employee productivity using Talent analytics and Visualization. 2020 International Conference on Data Analytics for Business and Industry: Way towards a Sustainable Economy (ICDABI), Sakheer, Bahrain. doi:10.1109/icdabi51230.2020.9325682.

Arief, N. N., & Gustomo, A. (2020). Analyzing the impact of big data and artificial intelligence on the communications profession: A case study on Public Relations (PR) Practitioners in Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 10(3), 1066–1071. doi:10.18517/ijaseit.10.3.11821.

Full Text: PDF

DOI: 10.28991/HIJ-2023-04-03-09


  • There are currently no refbacks.

Copyright (c) 2023 Ranty Irawatia, Indra Indra, Tri Basuki Kurniawan, Deshinta Arrova Dewi, Henderi Henderi