A Comparative Study of Sentiment Analysis Methods for Detecting Fake Reviews in E-Commerce
Abstract
Doi: 10.28991/HIJ-2023-04-02-08
Full Text: PDF
Keywords
References
Santos, K. E. S. (2020). Online Marketing: Benefits and Difficulties to online Business Sellers. International Journal of Advanced Engineering Research and Science, 7(3), 159–163. doi:10.22161/ijaers.73.27.
Zhu, L., Li, H., Wang, F. K., He, W., & Tian, Z. (2020). How online reviews affect purchase intention: a new model based on the stimulus-organism-response (S-O-R) framework. Aslib Journal of Information Management, 72(4), 463–488. doi:10.1108/AJIM-11-2019-0308.
Mehmeti-Bajrami, S., Qerimi, F., & Qerimi, A. (2022). The Impact of Digital Marketing vs. Traditional Marketing on Consumer Buying Behavior. HighTech and Innovation Journal, 3(3), 326-340. doi:10.28991/HIJ-2022-03-03-08.
Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer Science Review, 41, 100413. doi:10.1016/j.cosrev.2021.100413.
Hu, S., Kumar, A., Al-Turjman, F., Gupta, S., Seth, S., & Shubham. (2020). Reviewer Credibility and Sentiment Analysis Based User Profile Modelling for Online Product Recommendation. IEEE Access, 8, 26172–26189. doi:10.1109/ACCESS.2020.2971087.
Van Vu, D., Tran, G. N., & Van Nguyen, C. (2022). Digital Transformation, Student Satisfaction, Word of Mouth and Online Learning Intention in Vietnam. Emerging Science Journal, 6, 40-54. doi:10.28991/ESJ-2022-SIED-04.
Mohawesh, R., Xu, S., Tran, S. N., Ollington, R., Springer, M., Jararweh, Y., & Maqsood, S. (2021). Fake Reviews Detection: A Survey. IEEE Access, 9, 65771–65802. doi:10.1109/ACCESS.2021.3075573.
Alghamdi, J., Lin, Y., & Luo, S. (2022). A Comparative Study of Machine Learning and Deep Learning Techniques for Fake News Detection. Information (Switzerland), 13(12), 576. doi:10.3390/info13120576.
Haque, I., Alim, M., Alam, M., Nawshin, S., Noori, S. R. H., & Habib, M. T. (2022). Analysis of recognition performance of plant leaf diseases based on machine vision techniques. Journal of Human, Earth, and Future, 3(1), 129-137. doi:10.28991/HEF-2022-03-01-09.
Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81. doi:10.1007/s13278-021-00776-6.
Dadhich, A., & Thankachan, B. (2021). Sentiment Analysis of Amazon Product Reviews Using Hybrid Rule-based Approach. International Journal of Engineering and Manufacturing, 11(2), 40–52. doi:10.5815/ijem.2021.02.04.
Lajkó, M., Csuvik, V., & Vidács, L. (2022). Towards JavaScript program repair with generative pre-trained transformer (GPT-2). Proceedings of the Third International Workshop on Automated Program Repair. doi:10.1145/3524459.3527350.
Golpour, P., Ghayour-Mobarhan, M., Saki, A., Esmaily, H., Taghipour, A., Tajfard, M., Ghazizadeh, H., Moohebati, M., & Ferns, G. A. (2020). Comparison of support vector machine, naïve bayes and logistic regression for assessing the necessity for coronary angiography. International Journal of Environmental Research and Public Health, 17(18), 1–9. doi:10.3390/ijerph17186449.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692. doi:10.48550/arXiv.1907.11692.
Ghosh, L., Saha, S., & Konar, A. (2020). Bi-directional Long Short-Term Memory model to analyze psychological effects on gamers. Applied Soft Computing Journal, 95, 106573. doi:10.1016/j.asoc.2020.106573.
Mahyoob, M., Algaraady, J., & Alrahaili, M. (2020). Linguistic-Based Detection of Fake News in Social Media. International Journal of English Linguistics, 11(1), 99. doi:10.5539/ijel.v11n1p99.
Koli, R., & Redekar, S. (2023). A Review on Sentiment Analysis Methodologies, Practices and Applications with Machine Learning. International Journal of Computer Science and Mobile Computing, 12(6), 64–70. doi:10.47760/ijcsmc.2023.v12i06.007.
Kotelnikova, A. V. (2020). Comparison of Deep Learning and Rule-based Method for the Sentiment Analysis Task. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia. doi:10.1109/fareastcon50210.2020.9271333.
Asghar, M. Z., Khan, A., Ahmad, S., Qasim, M., & Khan, I. A. (2017). Lexicon-enhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE, 12(2), 171649. doi:10.1371/journal.pone.0171649.
Qader, W. A., Ameen, M. M., & Ahmed, B. I. (2019). An Overview of Bag of Words; Importance, Implementation, Applications, and Challenges. 2019 International Engineering Conference (IEC). doi:10.1109/iec47844.2019.8950616.
Cahyani, D. E., & Patasik, I. (2021). Performance comparison of TF-IDF and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788. doi:10.11591/eei.v10i5.3157.
Hamayel, M. J., & Owda, A. Y. (2021). A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI (Switzerland), 2(4), 477–496. doi:10.3390/ai2040030.
Alammar, J. (2018). The Illustrated GPT-2 (Visualizing Transformer Language Models). Available online: http://jalammar.github.io/illustrated-gpt2/ (accessed on April 2023).
Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021). Transformer models for text-based emotion detection: a review of BERT-based approaches. Artificial Intelligence Review, 54(8), 5789–5829. doi:10.1007/s10462-021-09958-2.
Vidanagama, D. U., Silva, A. T. P., & Karunananda, A. S. (2022). Ontology based sentiment analysis for fake review detection. Expert Systems with Applications, 206, 117869. doi:10.1016/j.eswa.2022.117869.
Qayyum, H., Ali, F., Nawaz, M., & Nazir, T. (2023). FRD-LSTM: a novel technique for fake reviews detection using DCWR with the Bi-LSTM method. Multimedia Tools and Applications, 82(20), 31505–31519. doi:10.1007/s11042-023-15098-2.
Salminen, J., Kandpal, C., Kamel, A. M., Jung, S., & Jansen, B. J. (2022). Creating and detecting fake reviews of online products. Journal of Retailing and Consumer Services, 64, 102771. doi:10.1016/j.jretconser.2021.102771.
Yao, J., Zheng, Y., & Jiang, H. (2021). An Ensemble Model for Fake Online Review Detection Based on Data Resampling, Feature Pruning, and Parameter Optimization. IEEE Access, 9, 16914–16927. doi:10.1109/ACCESS.2021.3051174.
Rathore, P., Soni, J., Prabakar, N., Palaniswami, M., & Santi, P. (2021). Identifying Groups of Fake Reviewers Using a Semisupervised Approach. IEEE Transactions on Computational Social Systems, 8(6), 1369–1378. doi:10.1109/TCSS.2021.3085406.
Tufail, H., Ashraf, M. U., Alsubhi, K., & Aljahdali, H. M. (2022). The Effect of Fake Reviews on e-Commerce during and after Covid-19 Pandemic: SKL-Based Fake Reviews Detection. IEEE Access, 10, 25555–25564. doi:10.1109/ACCESS.2022.3152806.
Mir, A. Q., Khan, F. Y., & Chishti, M. A. (2023). Online Fake Review Detection Using Supervised Machine Learning And Bert Model. arXiv preprint arXiv:2301.03225. doi:10.48550/arXiv.2301.03225.
S, M. (2023). Detection of Fake Product Review using Machine Learning Techniques. International Journal for Research in Applied Science and Engineering Technology, 11(5), 1332–1338. doi:10.22214/ijraset.2023.51761.
Alsubari, S. N., Deshmukh, S. N., Al-Adhaileh, M. H., Alsaade, F. W., & Aldhyani, T. H. H. (2021). Development of Integrated Neural Network Model for Identification of Fake Reviews in E-Commerce Using Multidomain Datasets. Applied Bionics and Biomechanics, 2021, 1–11. doi:10.1155/2021/5522574.
Shetgaonkar, P., Rodrigues, J. T., Aswale, S., Gonsalves, V. L. K., Rodrigues, J. C., & Naik, A. (2021). Fake Review Detection Using Sentiment Analysis and Deep Learning. 2021 International Conference on Technological Advancements and Innovations (ICTAI), Tashkent, Uzbekistan. doi:10.1109/ictai53825.2021.9673375.
Elmogy, A. M., Tariq, U., Mohammed, A., & Ibrahim, A. (2021). Fake Reviews Detection using Supervised Machine Learning. International Journal of Advanced Computer Science and Applications, 12(1), 601-606. doi:10.14569/ijacsa.2021.0120169.
Nagi Alsubari, S., N. Deshmukh, S., Abdullah Alqarni, A., Alsharif, N., H. H. Aldhyani, T., Waselallah Alsaade, F., & I. Khalaf, O. (2022). Data Analytics for the Identification of Fake Reviews Using Supervised Learning. Computers, Materials & Continua, 70(2), 3189–3204. doi:10.32604/cmc.2022.019625.
Ni, J., Li, & McAuley. (2018). Empirical Methods in Natural Language Processing (EMNLP). Amazon Review Data. Available online: https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2 (accessed on March 2023).
DOI: 10.28991/HIJ-2023-04-02-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Maneerat Puttarattanamanee, Laor Boongasame, Karanrat Thammarak