The Effect of Gurney Flap and Trailing-edge Wedge on the Aerodynamic Behavior of an Axial Turbine Blade

Mohammad Mahdi Mahzoon, Masoud Kharati-Koopaee


In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift.


Doi: 10.28991/HIJ-2021-02-04-03

Full Text: PDF


Gurney Flap; Trailing-edge Wedge; Aerodynamic Performance; Axial Turbine.


Taylor, H. D. (1947). The elimination of diffuser separation by vortex generators. United Aircraft Corporation Report, R-4012-3(R4012-3).

Zhang, L., Li, X., Yang, K., & Xue, D. (2016). Effects of vortex generators on aerodynamic performance of thick wind turbine airfoils. Journal of Wind Engineering and Industrial Aerodynamics, 156, 84–92. doi:10.1016/j.jweia.2016.07.013.

Zhu, C., Chen, J., Wu, J., & Wang, T. (2019). Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators. Energy, 189, 116272. doi:10.1016/

Baldacchino, D., Ferreira, C., Tavernier, D. De, Timmer, W. A., & van Bussel, G. J. W. (2018). Experimental parameter study for passive vortex generators on a 30% thick airfoil. Wind Energy, 21(9), 745–765. doi:10.1002/we.2191.

Timmer, W. A., & van Rooij, R. P. J. O. M. (2003). Summary of the Delft University wind turbine dedicated airfoils. 41st Aerospace Sciences Meeting and Exhibit, 125(4), 488–496. doi:10.2514/6.2003-352.

Mueller-Vahl, H., Pechlivanoglou, G., Nayeri, C. N., & Paschereit, C. O. (2012). Vortex generators for wind turbine blades: A combined wind tunnel and wind turbine parametric study. Proceedings of the ASME Turbo Expo, 6, 899–914. doi:10.1115/GT2012-69197.

Velte, C. M., & Hansen, M. O. L. (2013). Investigation of flow behind vortex generators by stereo particle image velocimetry on a thick airfoil near stall. Wind Energy, 16(5), 775–785. doi:10.1002/we.1541.

Zhao, Z., Shen, W., Wang, R., Wang, T., Xu, B., Zheng, Y., & Qian, S. (2017). Modeling of wind turbine vortex generators in considering the inter-effects between arrays. Journal of Renewable and Sustainable Energy, 9(5), 53301. doi:10.1063/1.4997039.

Prince, S. A., Badalamenti, C., & Regas, C. (2017). The application of passive air jet vortex-generators to stall suppression on wind turbine blades. Wind Energy, 20(1), 109–123. doi:10.1002/we.1994.

Martinez Suarez, J., Flaszynski, P., & Doerffer, P. (2018). Application of rod vortex generators for flow separation reduction on wind turbine rotor. Wind Energy, 21(11), 1202–1215. doi:10.1002/we.2224.

Zhu, C., Chen, J., Wu, J., & Wang, T. (2019). Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators. Energy, 189, 116272. doi:10.1016/

Nikoueeyan, P., Strike, J. A., Magstadt, A. S., Hind, M. D., & Naughton, J. W. (2014). Characterization of the static aerodynamic coefficients of a wind turbine airfoil with gurney flap deployment for flow control applications. 32nd AIAA Applied Aerodynamics Conference, 16–20. doi:10.2514/6.2014-2146.

Alber, J., Pechlivanoglou, G., Paschereit, C. O., Twele, J., & Weinzierl, G. (2017). Parametric investigation of gurney flaps for the use on wind turbine blades. Proceedings of the ASME Turbo Expo, 9. doi:10.1115/GT2017-64475.

Zhang, Y., Ramdoss, V., Saleem, Z., Wang, X., Schepers, G., & Ferreira, C. (2019). Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine. Energy, 187, 115955. doi:10.1016/

Gao, L., Liu, Y., Han, S., & Yan, J. (2014). Aerodynamic performance of a blunt trailing-edge airfoil affected by vortex generators and a trailing-edge wedge. IET Conference Publications, 2014(CP651), 24–25. doi:10.1049/cp.2014.0917.

Yan, P., Han, S., Liu, Y., Gao, L., & Li, L. (2015). Effects of gurney flap and trailing-edge wedge on a blunt trailing-edge aerofoil. IET Conference Publications, 2015(CP679), 17–18,. doi:10.1049/cp.2015.0484.

Gao, L., Zhang, H., Liu, Y., & Han, S. (2015). Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines. Renewable Energy, 76, 303–311. doi:10.1016/j.renene.2014.11.043.

Agarwal, R., Dhamarla, A., Narayanan, S. R., Goswami, S. N., & Srinivasan, B. (2014). Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance. Volume 2A: Turbomachinery. doi:10.1115/gt2014-25329.

Godard, G., & Stanislas, M. (2006). Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators. Aerospace Science and Technology, 10(3), 181–191. doi:10.1016/j.ast.2005.11.007.

Snel, H. (2003). Review of aerodynamics for wind turbines. Wind Energy, 6(3), 203–211. doi:10.1002/we.97.

Bai, C. J., Hsiao, F. B., Li, M. H., Huang, G. Y., & Chen, Y. J. (2013). Design of 10 kW horizontal-axis wind turbine (HAWT) blade and aerodynamic investigation using numerical simulation. Procedia Engineering, 67, 279–287. doi:10.1016/j.proeng.2013.12.027.

Full Text: PDF

DOI: 10.28991/HIJ-2021-02-04-03


  • There are currently no refbacks.

Copyright (c) 2021 Masoud Kharati-Koopaee