Effect of Artificial Intelligence (AI) on Financial Decision-Making: Mediating Role of Financial Technologies (Fin-Tech)

Adel M. Qatawneh, Abdalwali Lutfi, Thamir Al Barrak

Abstract


The main objective of the current study is to shed light on the mediating effect of financial technology (Fin-Tech) on the relationship between artificial intelligence (encompassing natural language processing (NLP), machine learning algorithms, computer vision, predictive analytics, robotic process automation (RPA), blockchain technology, and deep learning) and financial decision-making from the perspective of financial managers within Jordan's commercial banking sector. Realizing this objective required the use of quantitative methodology. A questionnaire was self-administered by 86 financial managers in the Jordanian banking sector. Primary data was analyzed using AMOS. Results of analysis confirmed that FinTech plays a significant mediating role between AI applications and financial decision-making. Machine learning was identified as the most impactful AI technique, facilitating more informed decisions through advanced data analysis and pattern recognition beyond the scope of traditional analysis methods. The novelty of current research is in the fact that it offers valuable insights into the intersection of AI and Fin-Tech within the Jordanian financial sector. It contributes to the understanding of how advanced AI techniques can enhance financial decision-making, emphasizing the importance of multidisciplinary expertise in the development of AI-driven financial systems. The findings have significant implications for both theoretical understanding and practical application in the finance industry.

 

Doi: 10.28991/HIJ-2024-05-03-015

Full Text: PDF


Keywords


Artificial Intelligence; Natural Language Processing (NLP); Machine Learning Algorithms; Computer Vision; Predictive Analytics; Robotic Process Automation (RPA); Blockchain Technology; Deep Learning; Fin-Tech.

References


Mogaji, E., Soetan, T. O., & Kieu, T. A. (2021). The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers. Australasian Marketing Journal, 29(3), 235–242. doi:10.1016/j.ausmj.2020.05.003.

Malali, A. B., & Gopalakrishnan, S. (2020). Application of Artificial Intelligence and Its Powered Technologies in the Indian Banking and Financial Industry: An Overview. IOSR Journal of Humanities and Social Science (IOSR-JHSS), 25(6), 55–60.

Kruse, L., Wunderlich, N., & Beck, R. (2019). Artificial intelligence for the financial services industry: What challenges organizations to succeed. In Proceedings of the Annual Hawaii International Conference on System Sciences (Vols. 2019-January, 6408–6417). doi:10.24251/hicss.2019.770.

Hentzen, J. K., Hoffmann, A., Dolan, R., & Pala, E. (2022). Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research. International Journal of Bank Marketing, 40(6), 1299–1336. doi:10.1108/IJBM-09-2021-0417.

Mogaji, E., & Nguyen, N. P. (2022). Managers’ understanding of artificial intelligence in relation to marketing financial services: insights from a cross-country study. International Journal of Bank Marketing, 40(6), 1272–1298. doi:10.1108/IJBM-09-2021-0440.

Lee, J. (2020). Access to Finance for Artificial Intelligence Regulation in the Financial Services Industry. European Business Organization Law Review, 21(4), 731–757. doi:10.1007/s40804-020-00200-0.

Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J., & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. Bottom Line, 33(2), 183–200. doi:10.1108/BL-03-2020-0022.

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International journal of information management, 48, 63-71. doi:10.1016/j.ijinfomgt.2019.01.021.

Johnson, K., Pasquale, F., & Chapman, J. (2019). Artificial Intelligence, Machine Learning, and Bias in Finance: Toward Responsible Innovation Symposium: Rise of the Machines: Artificial Intelligence, Robotics, and the Reprogramming of Law. Fordham Law Review, 88(2), 499–530.

Maurya, S., Verma, R., Khilnani, L., Bhakuni, A. S., Kumar, M., & Rakesh, N. (2024). Effect of AI on the Financial Sector: Risk Control, Investment Decision-making, and Business Outcome. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2024, 1–7. doi:10.1109/ICRITO61523.2024.10522410.

Owolabi, O. S., Uche, P. C., Adeniken, N. T., Ihejirika, C., Islam, R. Bin, & Chhetri, B. J. T. (2024). Ethical Implication of Artificial Intelligence (AI) Adoption in Financial Decision Making. Computer and Information Science, 17(1), 49. doi:10.5539/cis.v17n1p49.

Castelnovo, A. (2024). Towards Responsible AI in Banking: Addressing Bias for Fair Decision-Making. arXiv preprint arXiv:2401.08691.

Carvalho, M. P. P. D. (2024). The impact of artificial intelligence on the banking and financial sector’s strategic decision-making. Universidade Católica Portuguesa (UCP), Porto, Portugal.

Karthiga, R., Ananthi, S., Kaur, R., Das, D. K., Natarajan, S., & Dhinakaran, D. P. (2023). Impact of Artificial Intelligence in Banking Sector. REST Journal on Banking, Accounting and Business, 2(3), 51–55. doi:10.46632/jbab/2/3/7.

Mhlanga, D. (2020). Industry 4.0 in finance: the impact of artificial intelligence (ai) on digital financial inclusion. International Journal of Financial Studies, 8(3), 1–14. doi:10.3390/ijfs8030045.

Arslanian, H., & Fischer, F. (2019). The Future of Finance: The Impact of FinTech, AI, and Robo-Advisors on Financial Services. Springer, XXIII, 312. doi:10.1007/978-3-030-14533-0.

Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthusamy, V., Rizk, Y., & Unuvar, M. (2020). From Robotic Process Automation to Intelligent Process Automation: Emerging Trends – Lecture Notes in Business Information Processing: Vol. 393 LNBIP, 215–228. doi:10.1007/978-3-030-58779-6_15.

Tyagi, A. K., Fernandez, T. F., Mishra, S., & Kumari, S. (2021). Intelligent Automation Systems at the Core of Industry 4.0. Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020) Held December 12-15, 2020, 1–18. doi:10.1007/978-3-030-71187-0_1.

Met, İ., Kabukçu, D., Uzunoğulları, G., Soyalp, Ü., & Dakdevir, T. (2020). Transformation of Business Model in Finance Sector with Artificial Intelligence and Robotic Process Automation. Contributions to Management Science, 3–29, 3–29. doi:10.1007/978-3-030-29739-8_1.

Moiseeva, A. (2020). Statistical natural language processing methods for intelligent process automation. Dissertation, LMU München: Faculty for Languages and Literatures, Munich, Germany.

Zhang, C. (2019). Intelligent process automation in audit. Journal of Emerging Technologies in Accounting, 16(2), 69–88. doi:10.2308/jeta-52653.

Yue, P., Gizem Korkmaz, A., & Zhou, H. (2020). Household Financial Decision Making Amidst the COVID-19 Pandemic. Emerging Markets Finance and Trade, 56(10), 2363–2377. doi:10.1080/1540496X.2020.1784717.

Valaskova, K., Bartosova, V., & Kubala, P. (2019). Behavioural Aspects of Financial Decision-Making. Organizacija, 52(1), 22–31. doi:10.2478/orga-2019-0003.

Zaleskiewicz, T., & Traczyk, J. (2020). Emotions and Financial Decision Making. Psychological Perspectives on Financial Decision Making, 107–133. doi:10.1007/978-3-030-45500-2_6.

Grežo, M. (2020). Overconfidence and financial decision-making: a meta-analysis. Review of Behavioral Finance, 13(3), 276–296. doi:10.1108/RBF-01-2020-0020.

Heo, W., Rabbani, A., & Grable, J. E. (2021). An Evaluation of the Effect of the COVID-19 Pandemic on the Risk Tolerance of Financial Decision Makers. Finance Research Letters, 41, 101842. doi:10.1016/j.frl.2020.101842.

Ali, D. J., & Hamad, H. A. (2021). The role of the cash flow statement to provide accounting information for the financial decision-making process:(Case study International Islamic Bank of Kurdistan in the year 2018). Qalaai Zanist Journal, 6(2), 870–887.

Qatawneh, A. M., & Kasasbeh, H. (2022). Role of Accounting Information Systems (AIS) Applications on Increasing SMES Corporate Social Responsibility (CSR) During COVID 19. Studies in Computational Intelligence, 1010, 547–555. doi:10.1007/978-3-031-05258-3_43.

Park, I., & Cho, S. (2019). The influence of number line estimation precision and numeracy on risky financial decision making. International Journal of Psychology, 54(4), 530–538. doi:10.1002/ijop.12475.

Mosteanu, N. R., Faccia, A., Torrebruno, G., & Torrebruno, F. (2019). The newest intelligent financial decisions tool: fractals. A smart approach to assess the risk. The Business and Management Review, 10(2), 89–97.

Qatawneh, A. (2022). The Influence of Data Mining on Accounting Information System Performance: a Mediating Role of Information Technology Infrastructure. Journal of Governance and Regulation, 11(1), 141–151. doi:10.22495/jgrv11i1art13.

Berg, T., Fuster, A., & Puri, M. (2022). FinTech Lending. Annual Review of Financial Economics, 14, 187–207. doi:10.1146/annurev-financial-101521-112042.

Qatawneh, A. M., & Bader, A. (2020). Quality of Accounting Information Systems and Their Impact on Improving the Non-Financial Performance of Jordanian Islamic Banks. Academy of Accounting and Financial Studies Journal, 24(6), 1–19.

Bollaert, H., Lopez-de-Silanes, F., & Schwienbacher, A. (2021). Fintech and access to finance. Journal of Corporate Finance, 68, 101941. doi:10.1016/j.jcorpfin.2021.101941.

Qatawneh, A. M. (2021). Risks of adopting automated AIS applications on the quality of internal auditing. WSEAS Transactions on Business and Economics, 18, 763–779. doi:10.37394/23207.2021.18.73.

Qatawneh, A., & Bader, A. (2021). The mediating role of accounting disclosure in the influence of ais on decision-making: A structural equation model. Journal of Governance and Regulation, 10(2 Special Issue), 204–215. doi:10.22495/JGRV10I2SIART2.

Goldstein, I., Jiang, W., & Karolyi, G. A. (2019). To FinTech and beyond. Review of Financial Studies, 32(5), 1647–1661. doi:10.1093/rfs/hhz025.

Barbu, C. M., Florea, D. L., Dabija, D. C., & Barbu, M. C. R. (2021). Customer experience in fintech. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1415–1433. doi:10.3390/jtaer16050080.

Qatawneh, A. M. (2023). The role of organizational culture in supporting better accounting information systems outcomes. Cogent Economics and Finance, 11(1), 2164669. doi:10.1080/23322039.2022.2164669.

Gu, J., Zheng, Y., Tian, X., & Xu, Z. (2021). A decision-making framework based on prospect theory with probabilistic linguistic term sets. Journal of the Operational Research Society, 72(4), 879–888. doi:10.1080/01605682.2019.1701957.

Shevlin, M., & Miles, J. N. V. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1), 85–90. doi:10.1016/S0191-8869(98)00055-5.

Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics. Northridge. Cal.: Harper Collins, 1(2), 249-265.

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. doi:10.1037/1082-989X.1.2.130.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. doi:10.1080/10705519909540118.

Arora, S., Pandey, A., & Batta, K. (2024). Prediction of Stock Market Using Artificial Intelligence Application. Deep Learning Tools for Predicting Stock Market Movements, 185-202. doi:10.1002/9781394214334.ch8.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-03-015

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Adel M. Qatawneh, Abdalwali Lutfi, Thamir Al Barrak