An Improved Fire Detection Algorithm Based on YOLOv8 Integrated with DGIConv, FourBranchAttention and GSIoU
Abstract
Doi: 10.28991/HIJ-2024-05-03-09
Full Text: PDF
Keywords
References
Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2015 International Conference on Computer Vision, ICCV 2015, 1440–1448. doi:10.1109/ICCV.2015.169.
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2021). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. doi:10.1016/j.procs.2022.01.135.
Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools and Applications, 82(6), 9243–9275. doi:10.1007/s11042-022-13644-y.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9905 LNCS, 21–37. doi:10.1007/978-3-319-46448-0_2.
Han, Y., Duan, B., Guan, R., Yang, G., & Zhen, Z. (2024). LUFFD-YOLO: A Lightweight Model for UAV Remote Sensing Forest Fire Detection Based on Attention Mechanism and Multi-Level Feature Fusion. Remote Sensing, 16(12), 2177. doi:10.3390/rs16122177.
Cao, L., Shen, Z., & Xu, S. (2024). Efficient forest fire detection based on an improved YOLO model. Visual Intelligence, 2(1), 20. doi:10.1007/s44267-024-00053-y.
Huang, J., Zhou, J., Yang, H., Liu, Y., & Liu, H. (2023). A Small-Target Forest Fire Smoke Detection Model Based on Deformable Transformer for End-to-End Object Detection. Forests, 14(1), 162. doi:10.3390/f14010162.
Wang, D., Qian, Y., Lu, J., Wang, P., Yang, D., & Yan, T. (2024). EA-YOLO: Efficient Extraction and Aggregation Mechanism of YOLO for Fire Detection, 22. doi:10.21203/rs.3.rs-3930713/v1.
Wei, Z. (2023). Fire Detection of yolov8 Model based on Integrated SE Attention Mechanism. Frontiers in Computing and Intelligent Systems, 4(3), 28–30. doi:10.54097/fcis.v4i3.10765.
Saydirasulovich, S. N., Mukhiddinov, M., Djuraev, O., Abdusalomov, A., & Cho, Y. I. (2023). An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images. Sensors (Basel, Switzerland), 23(20), 8374. doi:10.3390/s23208374.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. doi:10.1109/CVPR.2016.91.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv, Preprint arXiv:1811.03378.
Jiang, C., Ren, H., Ye, X., Zhu, J., Zeng, H., Nan, Y., Sun, M., Ren, X., & Huo, H. (2022). Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 112, 102912. doi:10.1016/j.jag.2022.102912.
Tian, Z., Shen, C., Chen, H., & He, T. (2022). FCOS: A Simple and Strong Anchor-Free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1922–1933. doi:10.1109/TPAMI.2020.3032166.
Zhang, S., Chi, C., Yao, Y., Lei, Z., & Li, S. Z. (2020). Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9756–9765. doi:10.1109/CVPR42600.2020.00978.
Zhou, Y., Zhu, W., He, Y., & Li, Y. (2023). YOLOv8-based Spatial Target Part Recognition. Proceedings of 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2023, 3, 1684–1687. doi:10.1109/ICIBA56860.2023.10165260.
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. (2020). Distance-IoU loss: Faster and better learning for bounding box regression. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 34(07), 12993–13000. doi:10.1609/aaai.v34i07.6999.
Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.
Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., & Huang, T. S. (2018). Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-Supervised Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7268–7277. doi:10.1109/CVPR.2018.00759.
Chen, T., Duan, B., Sun, Q., Zhang, M., Li, G., Geng, H., Zhang, Q., & Yu, B. (2022). An Efficient Sharing Grouped Convolution via Bayesian Learning. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 7367–7379. doi:10.1109/TNNLS.2021.3084900.
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 31(1), 4278–4284. doi:10.1609/aaai.v31i1.11231.
Nandini, B. (2021). Detection of Skin Cancer using Inception V3 And Inception V4 Convolutional Neural Network (CNN) For Accuracy Improvement. Revista Gestão Inovação e Tecnologias, 11(4), 1138–1148. doi:10.47059/revistageintec.v11i4.2174.
Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48–62. doi:10.1016/j.neucom.2021.03.091.
Misra, D., Nalamada, T., Arasanipalai, A. U., & Hou, Q. (2021). Rotate to attend: Convolutional triplet attention module. Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 3138–3147. doi:10.1109/WACV48630.2021.00318.
Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 11211 LNCS, 3–19. doi:10.1007/978-3-030-01234-2_1.
Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 13708–13717. doi:10.1109/CVPR46437.2021.01350.
Zhang, Q. L., & Yang, Y. Bin. (2021). SA-Net: Shuffle attention for deep convolutional neural networks. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June, 2235–2239. doi:10.1109/ICASSP39728.2021.9414568.
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., & Hu, Q. (2020). ECA-Net: Efficient channel attention for deep convolutional neural networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11531–11539. doi:10.1109/CVPR42600.2020.01155.
Luo, M., Xu, L., Yang, Y., Cao, M., & Yang, J. (2022). Laboratory Flame Smoke Detection Based on an Improved YOLOX Algorithm. Applied Sciences (Switzerland), 12(24), 12876. doi:10.3390/app122412876.
Geng, X., Su, Y., Cao, X., Li, H., & Liu, L. (2024). YOLOFM: an improved fire and smoke object detection algorithm based on YOLOv5n. Scientific Reports, 14(1), 4543. doi:10.1038/s41598-024-55232-0.
Yun, B., Zheng, Y., Lin, Z., & Li, T. (2024). FFYOLO: A Lightweight Forest Fire Detection Model Based on YOLOv8. Fire, 7(3), 93. doi:10.3390/fire7030093.
DOI: 10.28991/HIJ-2024-05-03-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muxiang Zhang