Elbow-Hand Robotic Exoskeletons for Active and Passive Rehabilitation on Post-Stroke Patients: A Bioengineering Review

Mariela Vargas, Y. Vasquez, Daira de la Barra, Sandra Charapaqui, P. Tapia-Yanayaco, R. R. Maldonado-Gómez, L. M. Mendoza-Arias, Almendra Altatorre, Cristina Ccellccaro, M. Bedoya-Castillo, Renzo Charapaqui, A. Nacarino, Milton V. Rivera, Ricardo Palomares, M. Ramirez-Chipana, Jorge Cornejo, José Cornejo, Jhony A. de la Cruz-Vargas

Abstract


The clinical applications and benefits of the use of a Robotic Exoskeleton for Rehabilitation (RER) in the elbow and hand are described because a RER is a high-quality alternative capable of restoring compromised functions and neurorehabilitation at the same time in post-stroke patients. Passive rehabilitation (PR) is usually applied in the early stages of post-stroke recovery. The responsibility of assisting Physical Medicine and Rehabilitation (PM&R) doctors and the patient with passive exercises is a robotic system (RS); while active rehabilitation (AR) is applied regularly in late stages, it is like PR and its implications but requires the strength and support of the person to perform the exercises voluntarily. The objective of the present study is to collect, synthesize, and report relevant scientific studies related to the implementation of exoskeleton systems for elbow-hand rehabilitation. Various scientific literature on the topic was reviewed in the main biomedical databases using the population, intervention, comparison, results, and context (PICOC) criteria. This study presents the potential and describes a comprehensive and updated vision of the consequences and improvements obtained with the use of the RER and its advances. In conclusion, the usefulness and importance of a RER in various applied clinical practices have found numerous advantages, such as a better evaluation of spasticity, neuromotor recuperation, promoting neuroplasticity, and much more, which is of global relevance since this study gives us a greater understanding of the potential of these new perspectives to improve the rehabilitation of compromised functions in post-stroke cases with the use of RER.

 

Doi: 10.28991/HIJ-2024-05-04-020

Full Text: PDF


Keywords


Robotic Exoskeleton; Rehabilitation; Stroke; Hand; Elbow; Upper Extremities.

References


Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and treatment of stroke: present status and future perspectives. International Journal of Molecular Sciences, 21(20), 7609. doi:10.3390/ijms21207609.

Phillips Morales, Ó. (2019). Update on Guillain-Barré Syndrome. Sinergia Medical Journal, 4(11), e290. doi:10.31434/rms.v4i11.290.

Mendis, S. (2013). Stroke disability and rehabilitation of stroke: World Health Organization perspective. International Journal of Stroke, 8(1), 3–4. doi:10.1111/j.1747-4949.2012.00969.x.

Bacalangco, J. E. I., Bawagan, K. G. F., Bernardo, C. C., Medina, R. L. S., Reyes, J. M. L., & Tolentino, R. E. (2021). Design and Control of Robotic Elbow Using Shape Memory Alloy as Actuators. 6th International Conference on Communication and Electronics Systems (ICCES), 13-20. doi:10.1109/ICCES51350.2021.9489192.

Bardi, E., Gandolla, M., Braghin, F., Resta, F., Pedrocchi, A. L. G., & Ambrosini, E. (2022). Upper limb soft robotic wearable devices: a systematic review. Journal of NeuroEngineering and Rehabilitation, 19(1), 87. doi:10.1186/s12984-022-01065-9.

Aguirre, J., Perez, M. B., Palomares, R., & Cornejo, J. (2022). Ergonomic Bio-Design and Motion Simulation of a Mechatronic Orthosis System for Knee Rehabilitation. Proceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022. doi:10.1109/INTERCON55795.2022.9870040.

Rodriguez, V., Sanchez, L., Palomares, R., & Cornejo, J. (2022). Ergonomic Bio-Design and Motion Simulation of a Mechatronic Orthosis System for Elbow Rehabilitation. Proceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022. doi:10.1109/INTERCON55795.2022.9870083.

Vargas, M., Cornejo, J., & Correa-López, L. E. (2016). Biomedical Engineering: The Technological Revolution for the Future of the Peruvian Health System. Revista de La Facultad de Medicina Humana, 16(3), 95-96. doi:10.25176/rfmh.v16.n3.659.

Cornejo, J., Cornejo-Aguilar, J. A., Gonzalez, C., & Sebastian, R. (2021). Mechanical and Kinematic Design of Surgical Mini Robotic Manipulator used into SP-LAP Multi-DOF Platform for Training and Simulation. Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing. doi:10.1109/INTERCON52678.2021.9532965.

Cornejo, J., Cornejo-Aguilar, J. A., & Palomares, R. (2019). Biomedik Surgeon: Surgical Robotic System for Training and Simulation by Medical Students in Peru. Proceedings of the 2019 International Conference on Control of Dynamical and Aerospace Systems, XPOTRON 2019. doi:10.1109/XPOTRON.2019.8705717.

Cornejo, J., Cornejo-Aguilar, J. A., Sebastian, R., Perales, P., Gonzalez, C., Vargas, M., & Elli, E. F. (2021). Mechanical Design of a Novel Surgical Laparoscopic Simulator for Telemedicine Assistance and Physician Training during Aerospace Applications. 3rd IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2021, 53–56. doi:10.1109/ECBIOS51820.2021.9510753.

Cornejo, J., Cornejo-Aguilar, J. A., Vargas, M., Helguero, C. G., Milanezi De Andrade, R., Torres-Montoya, S., Asensio-Salazar, J., Rivero Calle, A., Martínez Santos, J., Damon, A., Quiñones-Hinojosa, A., Quintero-Consuegra, M. D., Umaña, J. P., Gallo-Bernal, S., Briceño, M., Tripodi, P., Sebastian, R., Perales-Villarroel, P., De La Cruz-Ku, G., … Russomano, T. (2022). Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BioMed Research International, 6797745. doi:10.1155/2022/6797745.

Cornejo, J., Perales-Villarroel, J. P., Sebastian, R., & Cornejo-Aguilar, J. A. (2020). Conceptual design of space biosurgeon for robotic surgery and aerospace medicine. IEEE Andescon, Quito, Ecuador. doi:10.1109/ANDESCON50619.2020.9272122.

Cornejo, J., Cornejo, J., Vargas, M., Carvajal, M., Perales, P., Rodríguez, G., Macias, C., Canizares, S., Silva, P., Cubas, R. F., Jimenez, M. C., Lincango, E. P., Serrano, L., Palomares, R., Aspilcueta, S., Castillo-Larios, R., Evans, L. A., De La Cruz-Vargas, J. A., Risk, M., … Elli, E. F. (2024). SY-MIS Project: Biomedical Design of Endo-Robotic and Laparoscopic Training System for Surgery on the Earth and Space. Emerging Science Journal, 8(2), 372–393. doi:10.28991/ESJ-2024-08-02-01.

Quezada, J. P., Cabrera, K. S., Cornejo, J., Palomares, R., Cornejo-Aguilar, J. A., & Vargas, M. (2023). Mechatronic Conceptual Design and Kinematic Analysis of Serial-Type Robotic Exoskeleton for Assisted Rehabilitation Therapy on Upper Limbs. 2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023. doi:10.1109/ICAECT57570.2023.10118243.

Xiong, F., Liao, X., Xiao, J., Bai, X., Huang, J., Zhang, B., Li, F., & Li, P. (2022). Emerging Limb Rehabilitation Therapy after Post-stroke Motor Recovery. Frontiers in Aging Neuroscience, 14, 863379. doi:10.3389/fnagi.2022.863379.

Herrnstadt, G., Alavi, N., Randhawa, B. K., Boyd, L. A., & Menon, C. (2015). Bimanual elbow robotic orthoses: Preliminary investigations on an impairment force-feedback rehabilitation method. Frontiers in Human Neuroscience, 9(March), 169. doi:10.3389/fnhum.2015.00169.

Frolov, A. A., Kozlovskaya, I. B., Biryukova, E. V., & Bobrov, P. D. (2018). Use of Robotic Devices in Post-Stroke Rehabilitation. Neuroscience and Behavioral Physiology, 48(9), 1053–1066. doi:10.1007/s11055-018-0668-3.

Nizamis, K., Stienen, A. H. A., Kamper, D. G., Keller, T., Plettenburg, D. H., Rouse, E. J., Farina, D., Koopman, B. F. J. M., & Sartori, M. (2019). Transferrable Expertise from Bionic Arms to Robotic Exoskeletons: Perspectives for Stroke and Duchenne Muscular Dystrophy. IEEE Transactions on Medical Robotics and Bionics, 1(2), 88–96. doi:10.1109/tmrb.2019.2912453.

Pan, J., Astarita, D., Baldoni, A., Dell’agnello, F., Crea, S., Vitiello, N., & Trigili, E. (2023). A Self-Aligning Upper-Limb Exoskeleton Preserving Natural Shoulder Movements: Kinematic Compatibility Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 4954–4964. doi:10.1109/TNSRE.2023.3341219.

Daunoraviciene, K., Adomaviciene, A., Grigonyte, A., Griškevicius, J., & Juocevicius, A. (2018). Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Technology and Health Care, 26(S2), S533–S542. doi:10.3233/THC-182500.

Chang, S. R., Hofland, N., Chen, Z., Tatsuoka, C., Richards, L. G., Bruestle, M., Kovelman, H., & Naft, J. (2023). Myoelectric Arm Orthosis Assists Functional Activities: A 3-Month Home Use Outcome Report. Archives of Rehabilitation Research and Clinical Translation, 5(3), 100279. doi:10.1016/j.arrct.2023.100279.

Pignolo, L., Lucca, L. F., Basta, G., Sena, S., Pugliese, M. E., Sannita, W. G., & Dolce, G. (2016). A new treatment in the rehabilitation of the paretic upper limb after stroke: The ARAMIS prototype and treatment protocol. Annali Dell’Istituto Superiore Di Sanita, 52(2), 301–308. doi:10.4415/ANN_16_02_25.

Falkowski, P., & Jeznach, K. (2024). Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor. Journal of NeuroEngineering and Rehabilitation, 21(1), 22. doi:10.1186/s12984-024-01316-x.

Baur, K., Rohrbach, N., Hermsdörfer, J., Riener, R., & Klamroth-Marganska, V. (2019). The “beam-Me-In Strategy” - Remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Journal of NeuroEngineering and Rehabilitation, 16(1), 1–15. doi:10.1186/s12984-019-0547-3.

Copaci, D., Martin, F., Moreno, L., & Blanco, D. (2019). SMA Based Elbow Exoskeleton for Rehabilitation Therapy and Patient Evaluation. IEEE Access, 7, 31473–31484. doi:10.1109/ACCESS.2019.2902939.

Cornejo, J., Cornejo Aguilar, J. A., & Perales Villarroel, J. P. (2019). International Innovations in Medical Robotics to Improve Patient Management in Peru. Journal of the Faculty of Human Medicine, 19(4), 105–113. doi:10.25176/rfmh.v19i4.2349.

Gopura, R. A. R. C., Bandara, D. S. V., Kiguchi, K., & Mann, G. K. I. (2016). Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robotics and Autonomous Systems, 75, 203–220. doi:10.1016/j.robot.2015.10.001.

Chen, Z. H., Yang, Y. L., Lin, K. W., Sun, P. C., & Chen, C. S. (2022). Functional Assessment of 3D-Printed Multifunction Assistive Hand Device for Chronic Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1261–1266. doi:10.1109/TNSRE.2022.3173034.

Cornejo, J., Vargas, M., & Cornejo, J. (2020). Innovative Applications of Robotics and Biomedicine in Public Health during the Covid-19 Pandemic. Journal of the Faculty of Human Medicine, 20(4), 756–757.

Zavala Molina, D. A., Silva Cabrejos, R. J., Murillo Manrique, M. F., Rodríguez Bustinza, R. R., Cornejo Aguilar, J. L., & Palomares Orihuela, R. J. (2023). Geometric Modeling and Kinematic Simulation of Hand Prostheses for Adult Patients with Transradial Amputation. Engineering Profiles, 20(20), 179–200. doi:10.31381/perfilesingenieria.v20i20.6020.

Vergaray, R. A., Del Aguila, R. F., Avellaneda, G. A., Palomares, R., Cornejo, J., & Cornejo-Aguilar, J. A. (2021). Mechatronic System Design and Development of iROD: EMG Controlled Bionic Prosthesis for Middle-Third Forearm Amputee. ETCM 2021 - 5th Ecuador Technical Chapters Meeting, Cuenca, Ecuador. doi:10.1109/ETCM53643.2021.9590715.

Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022). How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX, 9, 101895. doi:10.1016/j.mex.2022.101895.

Sainz-Pelayo, M. P., Albu, S., Murillo, N., & Benito-Penalva, J. (2020). Spasticity in neurological pathologies. An update on the pathophysiological mechanisms, advances in diagnosis and treatment. Revista de Neurologia, 70(12), 453–460. doi:10.33588/RN.7012.2019474.

Jover-Martínez, E., Ríos-Díaz, J., & Poveda-Pagán, E. J. (2015). Relationship between spasticity scales and independence and functional status scales in patients with cerebral palsy. Physiotherapy, 37(4), 175–184. doi:10.1016/j.ft.2014.10.001.

Centen, A., Lowrey, C. R., Scott, S. H., Yeh, T. T., & Mochizuki, G. (2017). KAPS (kinematic assessment of passive stretch): A tool to assess elbow flexor and extensor spasticity after stroke using a robotic exoskeleton. Journal of NeuroEngineering and Rehabilitation, 14(1), 1–13. doi:10.1186/s12984-017-0272-8.

Mochizuki, G., Centen, A., Resnick, M., Lowrey, C., Dukelow, S. P., & Scott, S. H. (2019). Movement kinematics and proprioception in post-stroke spasticity: Assessment using the Kinarm robotic exoskeleton. Journal of NeuroEngineering and Rehabilitation, 16(1), 1–13. doi:10.1186/s12984-019-0618-5.

Posteraro, F., Crea, S., Mazzoleni, S., Bert Eanu, M., Ciobanu, I., Vitiello, N., Cempini, M., Gervasio, S., & Mrachacz-Kersting, N. (2018). Technologically-advanced assessment of upper-limb spasticity: A pilot study. European Journal of Physical and Rehabilitation Medicine, 54(4), 536–544. doi:10.23736/S1973-9087.17.04815-8.

Dehem, S., Gilliaux, M., Lejeune, T., Detrembleur, C., Galinski, D., Sapin, J., Vanderwegen, M., & Stoquart, G. (2017). Assessment of upper limb spasticity in stroke patients using the robotic device reaplan. Journal of Rehabilitation Medicine, 49(7), 565–571. doi:10.2340/16501977-2248.

Crea, S., Cempini, M., Mazzoleni, S., Carrozza, M. C., Posteraro, F., & Vitiello, N. (2017). Phase-II clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Frontiers in Neuroscience, 11(May), 261. doi:10.3389/fnins.2017.00261.

Koh, T. H., Cheng, N., Yap, H. K., & Yeow, C. H. (2017). Design of a soft robotic elbow sleeve with passive and intent-controlled actuation. Frontiers in Neuroscience, 11(OCT), 597. doi:10.3389/fnins.2017.00597.

McGibbon, C. A., Sexton, A., Jones, M., & O’Connell, C. (2013). Elbow spasticity during passive stretch-reflex: Clinical evaluation using a wearable sensor system. Journal of NeuroEngineering and Rehabilitation, 10(1), 61. doi:10.1186/1743-0003-10-61.

Sin, M., Kim, W. S., Cho, K., & Paik, N. J. (2019). Isokinetic robotic device to improve test-retest and inter-rater reliability for stretch reflex measurements in stroke patients with spasticity. Journal of Visualized Experiments, 2019(148). doi:10.3791/59814.

Pilla, A., Trigili, E., McKinney, Z., Fanciullacci, C., Malasoma, C., Posteraro, F., Crea, S., & Vitiello, N. (2020). Robotic Rehabilitation and Multimodal Instrumented Assessment of Post-stroke Elbow Motor Functions—A Randomized Controlled Trial Protocol. Frontiers in Neurology, 11, 587293. doi:10.3389/fneur.2020.587293.

Adar, S., Demircan, A., Akçin, A. İ., Dündar, Ü., Toktaş, H., Yeşil, H., Eroğlu, S., Eyvaz, N., Beştaş, E., & Toksoy, C. K. (2023). Evaluation of finger strength and spasticity in hemiplegic patients using hand-finger robotic device a validity and reliability study. Medicine (United States), 102(49), E36479. doi:10.1097/MD.0000000000036479.

Chiyohara, S., Furukawa, J. ichiro, Noda, T., Morimoto, J., & Imamizu, H. (2020). Passive training with upper extremity exoskeleton robot affects proprioceptive acuity and performance of motor learning. Scientific Reports, 10(1), 11820. doi:10.1038/s41598-020-68711-x.

Washabaugh, E. P., Treadway, E., Brent Gillespiec, R., David Remy, C., & Krishnan, C. (2018). Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: A proof of concept study. Restorative Neurology and Neuroscience, 36(6), 693–708. doi:10.3233/RNN-180830.

Grimm, F., Naros, G., & Gharabaghi, A. (2016). Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation. Frontiers in Neuroscience, 10(NOV), 518. doi:10.3389/fnins.2016.00518.

Bos, R. A., Nizamis, K., Koopman, B. F. J. M., Herder, J. L., Sartori, M., & Plettenburg, D. H. (2020). A Case Study with Symbihand: An sEMG-Controlled Electrohydraulic Hand Orthosis for Individuals with Duchenne Muscular Dystrophy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 258–266. doi:10.1109/TNSRE.2019.2952470.

Brihmat, N., Loubinoux, I., Castel-Lacanal, E., Marque, P., & Gasq, D. (2020). Kinematic parameters obtained with the ArmeoSpring for upper-limb assessment after stroke: A reliability and learning effect study for guiding parameter use. Journal of NeuroEngineering and Rehabilitation, 17(1), 130. doi:10.1186/s12984-020-00759-2.

Borboni, A., Villafañe, J. H., Mullè, C., Valdes, K., Faglia, R., Taveggia, G., & Negrini, S. (2017). Robot-Assisted Rehabilitation of Hand Paralysis After Stroke Reduces Wrist Edema and Pain: A Prospective Clinical Trial. Journal of Manipulative and Physiological Therapeutics, 40(1), 21–30. doi:10.1016/j.jmpt.2016.10.003.

Dudley, D. R., Knarr, B. A., Siu, K. C., Peck, J., Ricks, B., & Zuniga, J. M. (2021). Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study. Disability and Rehabilitation: Assistive Technology, 16(2), 209–213. doi:10.1080/17483107.2019.1646823.

Luke, C., Dodd, K. J., & Brock, K. (2004). Outcomes of the Bobath concept on upper limb recovery following stroke. Clinical Rehabilitation, 18(8), 888–898. doi:10.1191/0269215504cr793oa.

Díaz-Arribas, M. J., Martín-Casas, P., Cano-de-la-Cuerda, R., & Plaza-Manzano, G. (2020). Effectiveness of the Bobath concept in the treatment of stroke: a systematic review. Disability and Rehabilitation, 42(12), 1636–1649. doi:10.1080/09638288.2019.1590865.

Pundik, S., McCabe, J., Skelly, M., Salameh, A., Naft, J., Chen, Z., Tatsuoka, C., & Fatone, S. (2022). Myoelectric Arm Orthosis in Motor Learning-Based Therapy for Chronic Deficits after Stroke and Traumatic Brain Injury. Frontiers in Neurology, 13, 791144. doi:10.3389/fneur.2022.791144.

Hsu, C. Y., Wu, C. M., Huang, C. C., Shie, H. H., & Tsai, Y. S. (2022). Feasibility and Potential Effects of Robot-Assisted Passive Range of Motion Training in Combination with Conventional Rehabilitation on Hand Function in Patients with Chronic Stroke. Journal of Rehabilitation Medicine, 54, 323. doi:10.2340/jrm.v54.1407.

Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P., & Mehndiratta, A. (2021). Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 18(1), 76. doi:10.1186/s12984-021-00867-7.

Hu, X. L., Tong, R. K. Y., Ho, N. S. K., Xue, J. J., Rong, W., & Li, L. S. W. (2015). Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot after Stroke. Neurorehabilitation and Neural Repair, 29(8), 767–776. doi:10.1177/1545968314565510.

Wu, Q., Wang, Z., & Chen, Y. (2023). SEMG-Based Adaptive Cooperative Multi-Mode Control of a Soft Elbow Exoskeleton Using Neural Network Compensation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3384–3396. doi:10.1109/TNSRE.2023.3306201.

Ambrosini, E., Russold, M., Gfoehler, M., Puchinger, M., Weber, M., Becker, S., Krakow, K., Immick, N., Augsten, A., Rossini, M., Proserpio, D., Zajc, J., Gasperini, G., Molteni, F., Pedrocchi, A., Ferrante, S., Ferrigno, G., Gasperina, S. D., Bulgheroni, M., … Wiesener, C. (2019). A Hybrid robotic system for arm training of stroke survivors: Concept and first evaluation. IEEE Transactions on Biomedical Engineering, 66(12), 3290–3300. doi:10.1109/TBME.2019.2900525.

Huang, Y., Nam, C., Li, W., Rong, W., Xie, Y., Liu, Y., Qian, Q., & Hu, X. (2020). A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial. Biomedical Signal Processing and Control, 56, 101723. doi:10.1016/j.bspc.2019.101723.

Hsu, H. Y., Koh, C. L., Yang, K. C., Lin, Y. C., Hsu, C. H., Su, F. C., & Kuo, L. C. (2024). Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke. Journal of NeuroEngineering and Rehabilitation, 21(1), 5. doi:10.1186/s12984-023-01298-2.

Alhamad, R., Seth, N., & Abdullah, H. A. (2023). Initial Testing of Robotic Exoskeleton Hand Device for Stroke Rehabilitation. Sensors, 23(14), 6339. doi:10.3390/s23146339.

Noronha, B., Ng, C. Y., Little, K., Xiloyannis, M., Kuah, C. W. K., Wee, S. K., Kulkarni, S. R., Masia, L., Chua, K. S. G., & Accoto, D. (2022). Soft, Lightweight Wearable Robots to Support the Upper Limb in Activities of Daily Living: A Feasibility Study on Chronic Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1401–1411. doi:10.1109/TNSRE.2022.3175224.

das Neves, M. F., Aleixo, D. C., Mendes, I. S., Lima, F. P. S., Nicolau, R. A., Arisawa, E. A. L., Lopes-Martins, R. A. B., & Lima, M. O. (2020). Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): a double-blinded placebo-controlled clinical trial. Lasers in Medical Science, 35(7), 1459–1467. doi:10.1007/s10103-019-02920-3.

Kopke, J. V., Ellis, M. D., & Hargrove, L. J. (2020). Determining User Intent of Partly Dynamic Shoulder Tasks in Individuals with Chronic Stroke Using Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 350–358. doi:10.1109/TNSRE.2019.2955029.

Liu, Q., Liu, Y., Li, Y., Zhu, C., Meng, W., Ai, Q., & Xie, S. Q. (2021). Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation. Frontiers in Neurorobotics, 15, 745531. doi:10.3389/fnbot.2021.745531.

Ren, H., Liu, T., & Wang, J. (2023). Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control. Sensors (Switzerland), 23(21), 8801. doi:10.3390/s23218801.

Cantillo-Negrete, J., Carino-Escobar, R. I., Carrillo-Mora, P., Rodriguez-Barragan, M. A., Hernandez-Arenas, C., Quinzaños-Fresnedo, J., Hernandez-Sanchez, I. R., Galicia-Alvarado, M. A., Miguel-Puga, A., & Arias-Carrion, O. (2021). Brain-Computer Interface Coupled to a Robotic Hand Orthosis for Stroke Patients’ Neurorehabilitation: A Crossover Feasibility Study. Frontiers in Human Neuroscience, 15, 656975. doi:10.3389/fnhum.2021.656975.

Franck, J. A., Smeets, R. J. E. M., & Seelen, H. A. M. (2019). Evaluation of a functional hand orthosis combined with electrical stimulation adjunct to arm-hand rehabilitation in subacute stroke patients with a severely to moderately affected hand function. Disability and Rehabilitation, 41(10), 1160–1168. doi:10.1080/09638288.2017.1423400.

Xia, K., Chen, X., Chang, X., Liu, C., Guo, L., Xu, X., Lv, F., Wang, Y., Sun, H., & Zhou, J. (2022). Hand Exoskeleton Design and Human–Machine Interaction Strategies for Rehabilitation. Bioengineering, 9(11), 682. doi:10.3390/bioengineering9110682.

Yurkewich, A., Hebert, D., Wang, R. H., & Mihailidis, A. (2019). Hand extension robot orthosis (hero) glove: Development and testing with stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 916–926. doi:10.1109/TNSRE.2019.2910011.

Yurkewich, A., Kozak, I. J., Hebert, D., Wang, R. H., & Mihailidis, A. (2020). Hand Extension Robot Orthosis (HERO) Grip Glove: Enabling independence amongst persons with severe hand impairments after stroke. Journal of NeuroEngineering and Rehabilitation, 17(1), 33. doi:10.1186/s12984-020-00659-5.

He, C., Xiong, C. H., Chen, Z. J., Fan, W., Huang, X. L., & Fu, C. (2021). Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1795–1805. doi:10.1109/TNSRE.2021.3107376.

Chen, Z. J., He, C., Xu, J., Zheng, C. J., Wu, J., Xia, N., Hua, Q., Xia, W. G., Xiong, C. H., & Huang, X. L. (2023). Exoskeleton-Assisted Anthropomorphic Movement Training for the Upper Limb after Stroke: The EAMT Randomized Trial. Stroke, 54(6), 1464–1473. doi:10.1161/STROKEAHA.122.041480.

Hohl, K., Giffhorn, M., Jackson, S., & Jayaraman, A. (2022). A framework for clinical utilization of robotic exoskeletons in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 19(1), 115. doi:10.1186/s12984-022-01083-7.

Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P., Kumaran, S. S., & Mehndiratta, A. (2021). A Case Report: Effect of Robotic Exoskeleton Based Therapy on Neurological and Functional Recovery of a Patient with Chronic Stroke. Frontiers in Neurology, 12, 680733. doi:10.3389/fneur.2021.680733.

Hossain, D., Scott, S. H., Cluff, T., & Dukelow, S. P. (2023). The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke. Journal of NeuroEngineering and Rehabilitation, 20(1), 15. doi:10.1186/s12984-023-01140-9.

Rauch, A., Negrini, S., & Cieza, A. (2019). Toward Strengthening Rehabilitation in Health Systems: Methods Used to Develop a WHO Package of Rehabilitation Interventions. Archives of Physical Medicine and Rehabilitation, 100(11), 2205–2211. doi:10.1016/j.apmr.2019.06.002.

Qian, Q., Hu, X., Lai, Q., Ng, S. C., Zheng, Y., & Poon, W. (2017). Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Frontiers in Neurology, 8(SEP), 447. doi:10.3389/fneur.2017.00447.

Keeling, A. B., Piitz, M., Semrau, J. A., Hill, M. D., Scott, S. H., & Dukelow, S. P. (2021). Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Journal of NeuroEngineering and Rehabilitation, 18(1), 10. doi:10.1186/s12984-021-00804-8.

Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V. P., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., & Frisoli, A. (2015). An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Transactions on Haptics, 8(2), 140–151. doi:10.1109/TOH.2015.2417570.

De-la-Torre, R., Oña, E. D., Balaguer, C., & Jardón, A. (2020). Robot-aided systems for improving the assessment of upper limb spasticity: A systematic review. Sensors, 20(18), 5251. doi:10.3390/s20185251.

Lee, Y. Y., Lin, K. C., Cheng, H. J., Wu, C. Y., Hsieh, Y. W., & Chen, C. K. (2015). Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: A double-blinded randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 12(1), 96. doi:10.1186/s12984-015-0088-3.

Shin, S., Lee, H. J., Chang, W. H., Ko, S. H., Shin, Y. Il, & Kim, Y. H. (2022). A Smart Glove Digital System Promotes Restoration of Upper Limb Motor Function and Enhances Cortical Hemodynamic Changes in Subacute Stroke Patients with Mild to Moderate Weakness: A Randomized Controlled Trial. Journal of Clinical Medicine, 11(24). doi:10.3390/jcm11247343.

Pournajaf, S., Morone, G., Straudi, S., Goffredo, M., Leo, M. R., Calabrò, R. S., Felzani, G., Paolucci, S., Filoni, S., Santamato, A., Franceschini, M., Zanetti, C., Calligola, D., Spina, S., Facciorusso, S., Fregna, G., Baroni, A., Cimino, V., Cinnera, A. M., … Pompilio, M. P. (2023). Neurophysiological and Clinical Effects of Upper Limb Robot-Assisted Rehabilitation on Motor Recovery in Patients with Subacute Stroke: A Multicenter Randomized Controlled Trial Study Protocol. Brain Sciences, 13(4), 700. doi:10.3390/brainsci13040700.

Guo, N., Wang, X., Duanmu, D., Huang, X., Li, X., Fan, Y., Li, H., Liu, Y., Yeung, E. H. K., To, M. K. T., Gu, J., Wan, F., & Hu, Y. (2022). SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1737–1744. doi:10.1109/TNSRE.2022.3185262.

Chowdhury, A., Meena, Y. K., Raza, H., Bhushan, B., Uttam, A. K., Pandey, N., Hashmi, A. A., Bajpai, A., Dutta, A., & Prasad, G. (2018). Active Physical Practice Followed by Mental Practice Using BCI-Driven Hand Exoskeleton: A Pilot Trial for Clinical Effectiveness and Usability. IEEE Journal of Biomedical and Health Informatics, 22(6), 1786–1795. doi:10.1109/JBHI.2018.2863212.

Nieto-Chaupis, H. (2023). The Internet of Brain Things: Theoretical Basis for the Usage of Neuralink Chip. IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin, 3–5. doi:10.1109/ICCE-Berlin58801.2023.10375671.

Sharma, A., Khan, K., & Katarya, R. (2022). Human Augmentation Technology- A Cybersecurity Review for Widespread Adoption. 2022 13th International Conference on Computing Communication and Networking Technologies, ICCCNT 2022, 3–5. doi:10.1109/ICCCNT54827.2022.9984500.

Abrams, Z. (2023). Breakthroughs in Brain Implants. IEEE Pulse, 14(6), 7–10. doi:10.1109/MPULS.2024.3353668.

Gupta, G., Pequito, S., & Bogdan, P. (2018). Re-Thinking EEG-Based Non-Invasive Brain Interfaces: Modeling and Analysis. Proceedings - 9th ACM/IEEE International Conference on Cyber - Physical Systems, 275–286. doi:10.1109/ICCPS.2018.00034.

Rivera, M. V., Cornejo, J., Huallpayunca, K., Diaz, A. B., Ortiz-Benique, Z. N., Reina, A. D., Lino, G. J., & Ticllacuri, V. (2020). Human space medicine: Physiological performance and countermeasures to improve astronaut health. Revista de la Facultad de Medicina Humana, 20(2), 303-314. doi:10.25176/RFMH.v20i2.2920.


Full Text: PDF

DOI: 10.28991/HIJ-2024-05-04-020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mariela Vargas, Yuddy Vasquez, Daira De La Barra, Sandra Charapaqui, Pamela Tapia-Yanayaco, Renzo R. Maldonado-Gómez, Leslie M. Mendoza-Arias, Almendra Altatorre, Cristina Ccellccaro, Mariapaula Bedoya Castillo, Renzo Charapaqui, Adrian Nacarino, Milton V. Rivera, Ricardo Palomares, Mabel Ramirez-Chipana, Jorge Cornejo, José Cornejo, Jhony A. De La Cruz-Vargas