Transformer-Based Sequence Modeling Short Answer Assessment Framework
Abstract
Doi: 10.28991/HIJ-2024-05-03-06
Full Text: PDF
Keywords
References
Liu, T., Hu, Y., Wang, B., Sun, Y., Gao, J., & Yin, B. (2023). Hierarchical Graph Convolutional Networks for Structured Long Document Classification. IEEE Transactions on Neural Networks and Learning Systems, 34(10), 8071–8085. doi:10.1109/TNNLS.2022.3185295.
Ateeq, M. A., Tiun, S., Abdelhaq, H., & Rahhal, N. (2024). Arabic Narrative Question Answering (QA) Using Transformer Models. IEEE Access, 12, 2760 - 2777. doi:10.1109/ACCESS.2023.3348410.
Paiva, J. C., Leal, J. P., & Figueira, Á. (2022). Automated Assessment in Computer Science Education: A State-of-the-Art Review. ACM Transactions on Computing Education, 22(3), 1–40. doi:10.1145/3513140.
Ramesh, D., & Sanampudi, S. K. (2022). An automated essay scoring system: a systematic literature review. Artificial Intelligence Review, 55(3), 2495–2527. doi:10.1007/s10462-021-10068-2.
Neshan, S. A. S., & Akbari, R. (2020). A Combination of Machine Learning and Lexicon Based Techniques for Sentiment Analysis. 2020 6th International Conference on Web Research, ICWR 2020, 8–14. doi:10.1109/ICWR49608.2020.9122298.
Zhu, X., Wu, H., & Zhang, L. (2022). Automatic Short-Answer Grading via BERT-Based Deep Neural Networks. IEEE Transactions on Learning Technologies, 15(3), 364–375. doi:10.1109/TLT.2022.3175537.
Das, B., & Majumder, M. (2017). Factual open cloze question generation for assessment of learner’s knowledge. International Journal of Educational Technology in Higher Education, 14(1), 1–12. doi:10.1186/s41239-017-0060-3.
Sonai, K., Anbananthen, M., Mohamed, A., & Elyasir, H. (2013). Evolution of Opinion Mining. Australian Journal of Basic and Applied Sciences, 7(6), 359–370.
Leacock, C., Chodorow, M., Gamon, M., & Tetreault, J. (2014). Automated Grammatical Error Detection for Language Learners, Second Edition. Synthesis Lectures on Human Language Technologies: Springer Nature, 7(1), 149-151. doi:10.2200/S00562ED1V01Y201401HLT025.
Matsumori, S., Okuoka, K., Shibata, R., Inoue, M., Fukuchi, Y., & Imai, M. (2023). Mask and Cloze: Automatic Open Cloze Question Generation Using a Masked Language Model. IEEE Access, 11, 9835–9850. doi:10.1109/ACCESS.2023.3239005.
Feng, Y., Bagheri, E., Ensan, F., & Jovanovic, J. (2017). The state of the art in semantic relatedness: A framework for comparison. Knowledge Engineering Review, 32, 10. doi:10.1017/S0269888917000029.
Sahu, A., & Bhowmick, P. K. (2020). Feature Engineering and Ensemble-Based Approach for Improving Automatic Short-Answer Grading Performance. IEEE Transactions on Learning Technologies, 13(1), 77–90. doi:10.1109/TLT.2019.2897997.
Rosnelly, R., Hartama, D., Sadikin, M., Lubis, C. P., Simanjuntak, M. S., & Kosasi, S. (2021). The Similarity of Essay Examination Results using Preprocessing Text Mining with Cosine Similarity and Nazief-Adriani Algorithms. Turkish Journal of Computer and Mathematics Education, 12(3), 1415-1422. doi:10.17762/turcomat.v12i3.938.
Wahyuningsih, T., Henderi, & Winarno. (2021). Text Mining an Automatic Short Answer Grading (ASAG), Comparison of Three Methods of Cosine Similarity, Jaccard Similarity and Dice’s Coefficient. Journal of Applied Data Sciences, 2(2), 45–54. doi:10.47738/jads.v2i2.31.
Anbananthen, K. S. M., Kannan, S., Busst, M. M. A., Muthaiyah, S., & Lurudusamy, S. N. (2022). Typographic Error Identification and Correction in Chatbot Using N-gram Overlapping Approach. Journal of System and Management Sciences, 12(5), 91–104. doi:10.33168/JSMS.2022.0506.
Kaur, A., & Sasi Kumar, M. (2019). Performance Analysis of LSA for Descriptive Answer Assessment. Lecture Notes in Networks and Systems, 74, 57–63. doi:10.1007/978-981-13-7082-3_8.
Mardini G, I. D., Quintero M, C. G., Viloria N, C. A., Percybrooks B, W. S., Robles N, H. S., & Villalba R, K. (2024). A deep-learning-based grading system (ASAG) for reading comprehension assessment by using aphorisms as open-answer-questions. Education and Information Technologies, 29(4), 4565–4590. doi:10.1007/s10639-023-11890-7.
Bexte, M., Horbach, A., & Zesch, T. (2023). Similarity-based content scoring-a more classroom-suitable alternative to instance-based scoring?. In Findings of the association for computational linguistics: ACL 2023, 1892-1903.
Bonthu, S., Rama Sree, S., & Krishna Prasad, M. H. M. (2023). Improving the performance of automatic short answer grading using transfer learning and augmentation. Engineering Applications of Artificial Intelligence, 123, 106292. doi:10.1016/j.engappai.2023.106292.
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A Lite Bert for Self-Supervised Learning of Language Representations. 8th International Conference on Learning Representations, ICLR 2020, 344-350, Shenzhen, China. doi:10.1109/SLT48900.2021.9383575.
Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Filippov, A., & Burnaev, E. (2022). NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing. IEEE Access, 10, 45736–45747. doi:10.1109/ACCESS.2022.3169897.
Khodeir, N. A. (2021). Bi-GRU Urgent Classification for MOOC Discussion Forums Based on BERT. IEEE Access, 9, 58243–58255. doi:10.1109/ACCESS.2021.3072734.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(1), 5485–5551.
Alec, R., Jeffrey, W., Rewon, C., David, L., Dario, A., & Ilya, S. (2019). Language Models are Unsupervised Multitask Learners|Enhanced Reader. OpenAI Blog, 1(8), 9.
Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2023). OPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers. 11th International Conference on Learning Representations, 1-16. doi:10.48550/arXiv.2210.17323.
La Quatra, M., & Cagliero, L. (2023). BART-IT: An Efficient Sequence-to-Sequence Model for Italian Text Summarization. Future Internet, 15(1), 15. doi:10.3390/fi15010015.
Zhu, X., Wu, H., & Zhang, L. (2022). Automatic Short-Answer Grading via BERT-Based Deep Neural Networks. IEEE Transactions on Learning Technologies, 15(3), 364–375. doi:10.1109/TLT.2022.3175537.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. ArXiv, 1-9. ArXiv:1310.4546. doi:10.48550/arXiv.1310.4546.
Anbananthen, K. S. M., Krishnan, J. K., Sayeed, M. S., & Muniapan, P. (2017). Comparison of Stochastic and Rule-Based POS Tagging on Malay Online Text. American Journal of Applied Sciences, 14(9), 843–851. doi:10.3844/ajassp.2017.843.851.
Žižovic, M., & Pamucar, D. (2019). New model for determining criteria weights: Level based weight assessment (LBWA) model. Decision Making: Applications in Management and Engineering, 2(2), 126–137. doi:10.31181/dmame1902102z.
Bhole, G. P., & Deshmukh, T. (2018). Multi-criteria decision making (MCDM) methods and its applications. International Journal for Research in Applied Science & Engineering Technology, 6(5), 899-915.
Odu, G. O. (2019). Weighting methods for multi-criteria decision-making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449. doi:10.4314/jasem.v23i8.7.
Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., & Radev, D. (2021). Summeval: Re-evaluating summarization evaluation. Transactions of the Association for Computational Linguistics, 9, 391–409. doi:10.1162/tacl_a_00373.
Barbella, M., & Tortora, G. (2022). Rouge Metric Evaluation for Text Summarization Techniques. SSRN Electronic Journal, 1-31. doi:10.2139/ssrn.4120317.
Saadany, H., & Orăsan, C. (2022). BLEU, METEOR, BERTScore: Evaluation of Metrics Performance in Assessing Critical Translation Errors in Sentiment-oriented Text. Translation and Interpreting Technology Online, 48–56. doi:10.26615/978-954-452-071-7_006.
Muludi, K., Fitria, K. M., Triloka, J., & Sutedi. (2024). Retrieval-Augmented Generation Approach: Document Question Answering using Large Language Model. International Journal of Advanced Computer Science and Applications, 15(3), 776–785. doi:10.14569/IJACSA.2024.0150379.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint, arXiv:1907.11692. doi:10.48550/arXiv.1907.11692.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems, 32, 5754– 5764.
Chen, A., Stanovsky, G., Singh, S., & Gardner, M. (2019). Evaluating question answering evaluation. MRQA@EMNLP 2019 - Proceedings of the 2nd Workshop on Machine Reading for Question Answering, 119–124. doi:10.18653/v1/d19-5817.
DOI: 10.28991/HIJ-2024-05-03-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sharmila P, Kalaiarasi Sonai Muthu Anbananthen, Deisy Chelliah, Parthasarathy S, Baarathi Balasubramaniam, Saravanan Nathan Lurudusamy