Early Identification of Skin Cancer Using Region Growing Technique and a Deep Learning Algorithm
Abstract
Doi: 10.28991/HIJ-2024-05-03-07
Full Text: PDF
Keywords
References
Wang, H., Shen, Z., Zhang, Z., Xu, Z., Li, S., Jiao, S., & Lei, Y. (2021). Improvement of region-merging image segmentation accuracy using multiple merging criteria. Remote Sensing, 13(14), 2782. doi:10.3390/rs13142782.
Dai, A., & Kim, S. J. (2024). Systemic calcineurin inhibitors tacrolimus and voclosporin: A review of off-label dermatologic uses. Journal of the American Academy of Dermatology, 90(2), 358–367. doi:10.1016/j.jaad.2023.05.074.
Dildar, M., Akram, S., Irfan, M., Khan, H. U., Ramzan, M., Mahmood, A. R., Alsaiari, S. A., Saeed, A. H. M., Alraddadi, M. O., & Mahnashi, M. H. (2021). Skin cancer detection: A review using deep learning techniques. International Journal of Environmental Research and Public Health, 18(10), 5479. doi:10.3390/ijerph18105479.
Hamilton, N. A., Pantelic, R. S., Hanson, K., & Teasdale, R. D. (2007). Fast automated cell phenotype image classification. BMC Bioinformatics, 8. doi:10.1186/1471-2105-8-110.
Leiter, U., Keim, U., & Garbe, C. (2020). Epidemiology of skin cancer: Update 2019. In Advances in Experimental Medicine and Biology, 1268, 123–139. doi:10.1007/978-3-030-46227-7_6.
Stevenson, M. L., Glazer, A. M., Cohen, D. E., Rigel, D. S., & Rieder, E. A. (2017). Frequency of total body skin examinations among US dermatologists. Journal of the American Academy of Dermatology, 76(2), 343–344. doi:10.1016/j.jaad.2016.09.017.
Blackledge, J. M. (2005). Digital Image Processing: Mathematical and Computational Methods. In Digital Image Processing: Mathematical and Computational Methods, 1–797. doi:10.1533/9780857099464.
Imtiaz, I., Ahmed, I., Jeon, G., & Muramatsu, S. (2021). An Efficient Image Processing and Machine Learning based Technique for Skin Lesion Segmentation and Classification. 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings, December, 1499–1505.
Arnal Barbedo, J. G. (2013). Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus, 2(1), 660. doi:10.1186/2193-1801-2-660.
Rajendran, V. A., & Shanmugam, S. (2024). Automated Skin Cancer Detection and Classification using Cat Swarm Optimization with a Deep Learning Model. Engineering, Technology and Applied Science Research, 14(1), 12734–12739. doi:10.48084/etasr.6681.
Kuran, U., & Kuran, E. C. (2021). Parameter selection for CLAHE using multi-objective cuckoo search algorithm for image contrast enhancement. Intelligent Systems with Applications, 12. doi:10.1016/j.iswa.2021.200051.
Tang, X., & Rashid Sheykhahmad, F. (2024). Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach. Heliyon, 10(5), e26415. doi:10.1016/j.heliyon.2024.e26415.
Shinde, P., & Ingle, Y. (2024). Skin Cancer Detection: A Review Using Machine Learning Techniques. Asian Journal of Research in Computer Science, 17(2), 15–26. doi:10.9734/ajrcos/2024/v17i2416.
Chakkarapani, V., & Poornapushpakala, S. (2024). Chronological Dingo Optimizer-based Deep Maxout Network for skin cancer detection and skin lesion segmentation using Double U-Net. Multimedia Tools and Applications, 83, 71235–71263. doi:10.1007/s11042-024-18229-5.
Likhar, K., & Ridhorkar, S. (2024). Enhancing Skin Cancer Detection: A Comparative Analysis of Models with VGG-16, VGG-19, and Inception V3. International Journal of Intelligent Systems and Applications in Engineering, 12(10s), 502–514.
Moturi, D., Surapaneni, R. K., & Avanigadda, V. S. G. (2024). Developing an efficient method for melanoma detection using CNN techniques. Journal of the Egyptian National Cancer Institute, 36(1). doi:10.1186/s43046-024-00210-w.
Sharma, P., & Suji, J. (2016). A Review on Image Segmentation with its Clustering Techniques. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(5), 209–218. doi:10.14257/ijsip.2016.9.5.18.
Zhao, S., Gu, C., Yu, J., Akashi, T., & Zhang, C. (2024). TriClick: Interactive Dermoscopic Image Segmentation with Triangle Map. IEEJ Transactions on Electrical and Electronic Engineering, 19(5), 733–744. doi:10.1002/tee.24020.
Abualigah, L., Al-Okbi, N. K., Awwad, E. M., Sharaf, M., & Daoud, M. S. (2024). Correction to: Boosted Aquila Arithmetic Optimization Algorithm for multi-level thresholding image segmentation. Evolving Systems, 15(4), 1399-1427. doi:10.1007/s12530-024-09576-7.
Ram, P., & Padmavathi, S. (2017). Analysis of Harris corner detection for color images. In International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016 - Proceedings. doi:10.1109/SCOPES.2016.7955862.
Haggui, O., Tadonki, C., Lacassagne, L., Sayadi, F., & Ouni, B. (2018). Harris corner detection on a NUMA manycore. Future Generation Computer Systems, 88, 442–452. doi:10.1016/j.future.2018.01.048.
Zhou, P., Zhang, H., & Liang, W. (2023). Research on hybrid intrusion detection based on improved Harris Hawk optimization algorithm. Connection Science, 35(1), 2195595. doi:10.1080/09540091.2023.2195595.
Li, Y. B., & Li, J. J. (2011). Harris corner detection algorithm based on improved contourlet transform. Procedia Engineering, 15, 2239–2243. doi:10.1016/j.proeng.2011.08.419.
Han, X., Wang, X., Leng, Y., & Zhou, W. (2021). A plane extraction approach in inverse depth images based on region-growing. Sensors (Switzerland), 21(4), 1–15. doi:10.3390/s21041141.
Adams, R., & Bischof, L. (1994). Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647. doi:10.1109/34.295913.
Poux, F., Mattes, C., Selman, Z., & Kobbelt, L. (2022). Automatic region-growing system for the segmentation of large point clouds. Automation in Construction, 138. doi:10.1016/j.autcon.2022.104250.
Arjun, K. P., & Kumar, K. S. (2022). A combined approach of VGG 16 and LSTM transfer learning technique for skin melanoma classification. International Journal of Health Sciences, 13504–13516. doi:10.53730/ijhs.v6ns1.8378.
Jiang, L., Sun, X., Mercaldo, F., & Santone, A. (2020). DECAB-LSTM: Deep Contextualized Attentional Bidirectional LSTM for cancer hallmark classification. Knowledge-Based Systems, 210. doi:10.1016/j.knosys.2020.106486.
Roy, S. S., Awad, A. I., Amare, L. A., Erkihun, M. T., & Anas, M. (2022). Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models. Future Internet, 14(11). doi:10.3390/fi14110340.
Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. doi:10.1109/TNNLS.2016.2582924.
Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. doi:10.1016/j.physd.2019.132306.
Wang, Y., & Zhang, W. (2021). A Dense RNN for Sequential Four-Chamber View Left Ventricle Wall Segmentation and Cardiac State Estimation. Frontiers in Bioengineering and Biotechnology, 9(August), 1–8. doi:10.3389/fbioe.2021.696227.
Müller, D., Hartmann, D., Meyer, P., Auer, F., Soto-Rey, I., & Kramer, F. (2022). MISeval: A Metric Library for Medical Image Segmentation Evaluation. In Studies in Health Technology and Informatics, 294, 33–37. doi:10.3233/SHTI220391.
Li, J., Udupa, J. K., Tong, Y., Wang, L., & Torigian, D. A. (2021). Segmentation evaluation with sparse ground truth data: Simulating true segmentations as perfect/imperfect as those generated by humans. Medical Image Analysis, 69. doi:10.1016/j.media.2021.101980.
Behura, A. (2021). Congruence of Deep Learning in Medical Image Processing: Future Prospects and Challenges. Studies in Computational Intelligence, 936, 197–221. doi:10.1007/978-981-33-4698-7_10.
Singh, C., Nischitha, Shetty, S. S., Bekal, A., Bhat, S., & Badiger, M. (2024). Deep Learning Analysis for Skin Cancer Detection. Lecture Notes in Electrical Engineering: Vol. 1062 LNEE, 159–171. doi:10.1007/978-981-99-4444-6_12.
Obaid, A. M., Shawkat, A. S., & Abdulhussein, N. S. (2024). A powerful deep learning method for skin cancer detection. Journal of Autonomous Intelligence, 7(1), 1156. doi:10.32629/jai.v7i1.1156.
Lu, Y., Cheung, Y. M., & Tang, Y. Y. (2020). Bayes Imbalance Impact Index: A Measure of Class Imbalanced Data Set for Classification Problem. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3525–3539. doi:10.1109/TNNLS.2019.2944962.
Zhang, X., Li, R., Zhang, B., Yang, Y., Guo, J., & Ji, X. (2019). An instance-based learning recommendation algorithm of imbalance handling methods. Applied Mathematics and Computation, 351, 204–218. doi:10.1016/j.amc.2018.12.020.
Shilpa Kamdi, R. (2012). Image Segmentation and Region Growing Algorithm. International Journal of Computer Technology and Electronics Engineering, 2(1), 103–107.
Ali, E., Ullah Khan, E., Zarrar Mahmudi, E., & Ullah, R. (2016). A Comparison of FAST, SURF, Eigen, Harris, and MSER Features. International Journal of Computer Engineering and Information Technology, 8(6), 100–105.
Gulzar, Y., & Khan, S. A. (2022). Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study. Applied Sciences (Switzerland), 12(12), 5590. doi:10.3390/app12125990.
Vishnu Priya, A., Singh, H. K., Siva Chaitanya Prasad, M., & Jai Siva Sai, G. (2023). RNN-LSTM Based Deep Learning Model for Tor Traffic Classification. Cyber-Physical Systems, 9(1), 25–42. doi:10.1080/23335777.2021.1924284.
Hayati, M., Muchtar, K., Roslidar, Maulina, N., Syamsuddin, I., Elwirehardja, G. N., & Pardamean, B. (2022). Impact of CLAHE-based image enhancement for diabetic retinopathy classification through deep learning. Procedia Computer Science, 216, 57–66. doi:10.1016/j.procs.2022.12.111.
Imtiaz, I., Ahmed, I., Ahmad, M., Ullah, K., Adnan, A., & Ahmad, M. (2019). Segmentation of Skin Lesion Using Harris Corner Detection and Region Growing. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2019, 0614–0619. doi:10.1109/UEMCON47517.2019.8993034.
Gowthami, V., & Sneha, G. (2021). Melanoma Detection Using Recurrent Neural Network. Lecture Notes in Electrical Engineering, 700, 1563–1573. doi:10.1007/978-981-15-8221-9_146.
Asyhar, A. H., Foeady, A. Z., Thohir, M., Arifin, A. Z., Haq, D. Z., & Novitasari, D. C. R. (2020). Implementation LSTM Algorithm for Cervical Cancer using Colposcopy Data. 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020, 485–489. doi:10.1109/ICAIIC48513.2020.9065068.
Jain, A., Mittal, N., & Nain, S. (2023). CNN-based Recognition of Skin Cancer Using Contrast Limited Adaptive Histogram Equalization. Lecture Notes in Networks and Systems: Vol. 617 LNNS, 667–678. doi:10.1007/978-981-19-9512-5_61.
Ray, P. J., Priya, S., & Kumar, T. A. (2015). Nuclear segmentation for skin cancer diagnosis from histopathological images. Global Conference on Communication Technologies, GCCT 2015, 397–401. doi:10.1109/GCCT.2015.7342692.
Patra, A., Behera, S. K., & Barpanda, N. K. (2022). Hybrid deep CNN-LSTM network for breast histopathological image classification. Onkologia i Radioterapia, 16(9), 12–15.
Limanto, S., Buliali, J. L., & Saikhu, A. (2024). GLoW SMOTE-D: Oversampling Technique to Improve Prediction Model Performance of Students Failure in Courses. IEEE Access, 12, 8889–8901. doi:10.1109/ACCESS.2024.3351569.
DOI: 10.28991/HIJ-2024-05-03-07
Refbacks
Copyright (c) 2024 Suhendro Yusuf Irianto