An Investigating of the Impact of Bed Flume Discordance on the Weir-Gate Hydraulic Structure

Rafi M. Qasim, Alya A. Mohammed, Ihsan A. Abdulhussein

Abstract


Discordance and concordance play a significant role in the hydraulic response for the flume, open channel, hydraulic structure, and flow field measurement. Bed discordance and bed concordance are regarded as common problems in open channels. Discordance is the dominant one, which could have an effect on the hydraulic structure that is constructed inside the channel. This paper deals with the impact of bed flume discordance on hydraulic flow characteristics at the weir-gate downstream hydraulic regime. Four configurations with different lengths and heights of the bed flume discordance are adopted here to investigate the impact of these configurations on the hydraulic characteristics. In addition, one configuration of the bed flume concordance is adopted to compare with the other four configurations. At downstream, the average water depth becomes dimensionless by dividing by upstream water depth, vertical distance between weir and gate, length of downstream, length of concordance, and length of discordance in order to evaluate the inequality in the distribution of Froude number. On one hand, certain results appear strongly between Reynolds number and Froude number at downstream, actual discharge and flow velocity at downstream, flow area past the gate and Froude number at downstream. On the other hand, there was a complex dramatic relation between the weir-gate discharge coefficient and Froude number at downstream. Overall, the study shows that there is a good relationship between specific energy, water depth, and flow speed.

 

Doi: 10.28991/HIJ-2022-03-03-09

Full Text: PDF


Keywords


Bed Flume; Gate; Hydraulic Structure; Specific Energy; Weir.

References


Aberle, J., Nikora, V., & Walters, R. (2006). Data interpretation for in situ measurements of cohesive sediment erosion. Journal of Hydraulic Engineering, 132(6), 581-588. doi:10.1061/(ASCE)0733-9429 (1983)109:10(1253).

Kennedy, B. A. (1984). On Playfair’s law of accordant junctions. Earth Surface Processes and Landforms, 9(2), 153–173. doi:10.1002/esp.3290090207.

Biron, P., Roy, A. G., & Best, J. L. (1996). Turbulent flow structure at concordant and discordant open-channel confluences. Experiments in Fluids, 21(6), 437–446. doi:10.1007/BF00189046.

Biron, P., Best, J. L., & Roy, A. G. (1996). Effects of Bed Discordance on Flow Dynamics at Open Channel Confluences. Journal of Hydraulic Engineering, 122(12), 676–682. doi:10.1061/(asce)0733-9429(1996)122:12(676).

Bradbrook, K. F., Lane, S. N., Richards, K. S., Biron, P. M., & Roy, A. G. (2001). Role of Bed Discordance at Asymmetrical River Confluences. Journal of Hydraulic Engineering, 127(5), 351–368. doi:10.1061/(asce)0733-9429(2001)127:5(351).

De Serres, B., Roy, A. G., Biron, P. M., & Best, J. L. (1999). Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 26(4), 313–335. doi:10.1016/S0169-555X(98)00064-6.

Boyer, C., Roy, A. G., & Best, J. L. (2006). Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research: Earth Surface, 111(4). doi:10.1029/2005JF000458.

Ramos, P. X., Schindfessel, L., Pêgo, J. P., & De Mulder, T. (2019). Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence. Water Science and Engineering, 12(3), 235–243. doi:10.1016/j.wse.2019.09.005.

Ramos, P. X., Schindfessel, L., Pêgo, J. P., & De Mulder, T. (2018). Influence of bed discordance on head losses in an open channel confluence. 5th IAHR Europe Congress New Challenges in Hydraulic Research and Engineering, 107-108, 12-14 June, 2018, Trento, Italy.

Schindfessel, L., Creëlle, S., & De Mulder, T. (2015). Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water (Switzerland), 7(9), 4724–4751. doi:10.3390/w7094724.

Alhamid, A. A., Husain, D., & Negm, A. A. M. (1996). Discharge equation for simultaneous flow over rectangular weirs and below inverted triangular weirs. Arab Gulf Journal of Scientific Research, 14(3), 595–607.

Alhamid, A. A., Negm, A. A. M., & Al-Brahim, A. M. (1997). Discharge Equation for Proposed Self-cleaning Device. Journal of King Saud University - Engineering Sciences, 9(1), 13–23. doi:10.1016/S1018-3639(18)30664-0.

Negm, A. A. M., Al-Brahim, A. M., & Alhamid, A. A. (2002). Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 40(3), 359–365. doi:10.1080/00221680209499950.

Qasim, R. M., Abdulhussein, I. A., & Al-Asadi, K. (2020). Experimental Study of Composite Inclined Weir – Gate Hydraulic Structure. Wseas Transactions on Fluid Mechanics, 15, 54–61. Portico.doi:10.37394/232013.2020.15.

Qasim, R. M., Abdulhussein, I. A., Mohammed, A. A., & Maatooq, Q. A. (2020). The effect of the obstacle on the hydraulic response of the composite hydraulic structure. INCAS Bulletin, 12(3), 159-172.

Qasim, R. M., Abdulhussein, I. A., & Al-Asadi, K. (2020). The effect of barrier on the hydraulic response of composite weir-gate structure. Archives of Civil Engineering, 66(4). doi:10.24425/ace.2020.135211.

Qasim, R. M., Mohammed, A. A., Abdulhussein, I. A., & Maatooq, Q. A. (2021). Experimental investigation of multi obstacles impact on weir-gate discharge structure. International Journal of Mechatronics and Applied Mechanics, 1(9), 76–83. doi:10.17683/ijomam/issue9.11.

Abdulhussein, I. A., Qasim, R. M., Mohammed, A. A., & Maatooq, Q. A. (2022). Flow–Composite Hydraulic Structure–Longitudinal Obstacle Interaction. GEOMATE Journal, 23(96), 40-49.

Abdulhussein, I. A., Qasim, R. M., & Maatooq, Q. A. (2022). Hydraulic Interaction between Composite Structure and Block Obstacle. International Journal on Technical and Physical Problems of Engineering, 14(2), 65–73.

Abdulhussein, I. A., Qasim, R. M., & Hameed, M. A. (2022). Determination of the General Formula to Estimate the Discharge Quantity of Composite Structure for Free Flow. Instrumentation Mesure Metrologie, 21(1), 13–20. doi:10.18280/i2m.210103.

Streeter, V. L., & Wylie, E. B. (1983). Fluid Mechanics. McGraw-Hill, New York City, United States.

Bos, M. G. (1989). Discharge Measurement Structures (3rd revised Ed.). International Institute for Land Reclamation and Improvement/LLRI, Wageningen, Netherlands.

Rajaratnam, N., & Subramanya, K. (1967). Flow Equation for the Sluice Gate. Journal of the Irrigation and Drainage Division, 93(3), 167–186. doi:10.1061/jrcea4.0000503.

Novak, P., Moffat, A.I.B., Nalluri, C., & Narayanan, R. (2007). Hydraulic Structures (4th Ed.). CRC Press, London, United Kingdom. doi:10.1201/9781315274898.

Munson, B.R., Young, F.D., Okiishi, H.T., & Huebsch, W.W. (2009). ‘Fundamentals of fluid mechanics (6th Ed.). John Wiley & Sons, Hoboken, United States.


Full Text: PDF

DOI: 10.28991/HIJ-2022-03-03-09

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rafi M. Qasim, Alya A. Mohammed, Ihsan A. Abdulhussein