An Investigating of the Impact of Bed Flume Discordance on the Weir-Gate Hydraulic Structure
Abstract
Doi: 10.28991/HIJ-2022-03-03-09
Full Text: PDF
Keywords
References
Aberle, J., Nikora, V., & Walters, R. (2006). Data interpretation for in situ measurements of cohesive sediment erosion. Journal of Hydraulic Engineering, 132(6), 581-588. doi:10.1061/(ASCE)0733-9429 (1983)109:10(1253).
Kennedy, B. A. (1984). On Playfair’s law of accordant junctions. Earth Surface Processes and Landforms, 9(2), 153–173. doi:10.1002/esp.3290090207.
Biron, P., Roy, A. G., & Best, J. L. (1996). Turbulent flow structure at concordant and discordant open-channel confluences. Experiments in Fluids, 21(6), 437–446. doi:10.1007/BF00189046.
Biron, P., Best, J. L., & Roy, A. G. (1996). Effects of Bed Discordance on Flow Dynamics at Open Channel Confluences. Journal of Hydraulic Engineering, 122(12), 676–682. doi:10.1061/(asce)0733-9429(1996)122:12(676).
Bradbrook, K. F., Lane, S. N., Richards, K. S., Biron, P. M., & Roy, A. G. (2001). Role of Bed Discordance at Asymmetrical River Confluences. Journal of Hydraulic Engineering, 127(5), 351–368. doi:10.1061/(asce)0733-9429(2001)127:5(351).
De Serres, B., Roy, A. G., Biron, P. M., & Best, J. L. (1999). Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 26(4), 313–335. doi:10.1016/S0169-555X(98)00064-6.
Boyer, C., Roy, A. G., & Best, J. L. (2006). Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research: Earth Surface, 111(4). doi:10.1029/2005JF000458.
Ramos, P. X., Schindfessel, L., Pêgo, J. P., & De Mulder, T. (2019). Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence. Water Science and Engineering, 12(3), 235–243. doi:10.1016/j.wse.2019.09.005.
Ramos, P. X., Schindfessel, L., Pêgo, J. P., & De Mulder, T. (2018). Influence of bed discordance on head losses in an open channel confluence. 5th IAHR Europe Congress New Challenges in Hydraulic Research and Engineering, 107-108, 12-14 June, 2018, Trento, Italy.
Schindfessel, L., Creëlle, S., & De Mulder, T. (2015). Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water (Switzerland), 7(9), 4724–4751. doi:10.3390/w7094724.
Alhamid, A. A., Husain, D., & Negm, A. A. M. (1996). Discharge equation for simultaneous flow over rectangular weirs and below inverted triangular weirs. Arab Gulf Journal of Scientific Research, 14(3), 595–607.
Alhamid, A. A., Negm, A. A. M., & Al-Brahim, A. M. (1997). Discharge Equation for Proposed Self-cleaning Device. Journal of King Saud University - Engineering Sciences, 9(1), 13–23. doi:10.1016/S1018-3639(18)30664-0.
Negm, A. A. M., Al-Brahim, A. M., & Alhamid, A. A. (2002). Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 40(3), 359–365. doi:10.1080/00221680209499950.
Qasim, R. M., Abdulhussein, I. A., & Al-Asadi, K. (2020). Experimental Study of Composite Inclined Weir – Gate Hydraulic Structure. Wseas Transactions on Fluid Mechanics, 15, 54–61. Portico.doi:10.37394/232013.2020.15.
Qasim, R. M., Abdulhussein, I. A., Mohammed, A. A., & Maatooq, Q. A. (2020). The effect of the obstacle on the hydraulic response of the composite hydraulic structure. INCAS Bulletin, 12(3), 159-172.
Qasim, R. M., Abdulhussein, I. A., & Al-Asadi, K. (2020). The effect of barrier on the hydraulic response of composite weir-gate structure. Archives of Civil Engineering, 66(4). doi:10.24425/ace.2020.135211.
Qasim, R. M., Mohammed, A. A., Abdulhussein, I. A., & Maatooq, Q. A. (2021). Experimental investigation of multi obstacles impact on weir-gate discharge structure. International Journal of Mechatronics and Applied Mechanics, 1(9), 76–83. doi:10.17683/ijomam/issue9.11.
Abdulhussein, I. A., Qasim, R. M., Mohammed, A. A., & Maatooq, Q. A. (2022). Flow–Composite Hydraulic Structure–Longitudinal Obstacle Interaction. GEOMATE Journal, 23(96), 40-49.
Abdulhussein, I. A., Qasim, R. M., & Maatooq, Q. A. (2022). Hydraulic Interaction between Composite Structure and Block Obstacle. International Journal on Technical and Physical Problems of Engineering, 14(2), 65–73.
Abdulhussein, I. A., Qasim, R. M., & Hameed, M. A. (2022). Determination of the General Formula to Estimate the Discharge Quantity of Composite Structure for Free Flow. Instrumentation Mesure Metrologie, 21(1), 13–20. doi:10.18280/i2m.210103.
Streeter, V. L., & Wylie, E. B. (1983). Fluid Mechanics. McGraw-Hill, New York City, United States.
Bos, M. G. (1989). Discharge Measurement Structures (3rd revised Ed.). International Institute for Land Reclamation and Improvement/LLRI, Wageningen, Netherlands.
Rajaratnam, N., & Subramanya, K. (1967). Flow Equation for the Sluice Gate. Journal of the Irrigation and Drainage Division, 93(3), 167–186. doi:10.1061/jrcea4.0000503.
Novak, P., Moffat, A.I.B., Nalluri, C., & Narayanan, R. (2007). Hydraulic Structures (4th Ed.). CRC Press, London, United Kingdom. doi:10.1201/9781315274898.
Munson, B.R., Young, F.D., Okiishi, H.T., & Huebsch, W.W. (2009). ‘Fundamentals of fluid mechanics (6th Ed.). John Wiley & Sons, Hoboken, United States.
DOI: 10.28991/HIJ-2022-03-03-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Rafi M. Qasim, Alya A. Mohammed, Ihsan A. Abdulhussein