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Abstract 

The present article intends to explore how a deep learning model could be applied to improve the ability of AI-generated 

content (AIGC) technology in graphic recognition within the IoT ecosystem. Objectives: This research pursues two key 

objectives: first, the model is compressed to a smaller size and decreased computational cost for on-device deployment on 

resource-poor IoT devices, and second, it achieves better adaptability through data augmentation and regularization 

techniques. Methods/Analysis: A purpose-built CNN design was built and trained to solve IoT-specific constraints. Model 

compression techniques such as weight pruning and quantization were used to reduce resource requirements. To ameliorate 

this, we applied data augmentation techniques like rotation, shear, and zoom, and regularization techniques like dropout 

to avoid overfitting. The work was done on MNIST and CIFAR-10 typical datasets using TensorFlow as a deep learning 

framework. Results: The pattern-recognition accuracy on MNIST and CIFAR-10 datasets achieved are 99.5% and 89.2%, 

respectively. Moreover, the recognition speed was improved by around 30% since the computational cost of the DL 

algorithm is effective because of parallel processing, resulting in lower processing time. The compressed model overcame 

the massive computational complexity, which is more suitable for resource-limited IoT devices. Novelty/Improvement: a 

new methodology is presented that integrates CNN optimization and model compression in conjunction with sophisticated 

regularization techniques to develop a suitable solution for the peculiarities of the IoT landscape. Ultimately, overcoming 

the universal problems like limited resources and real-time processes in this research helps to improve the technological 

and theoretical support for practical IoT applications and accelerate the practical implementation of AIGC performance 

optimization across various industries such as smart homes, smart transportation, and smart security. 

Keywords: Deep Learning; Convolutional Neural Network; Internet of Things; AIGC Technology; Pattern Recognition Optimization.

1. Introduction 

Science and technology have seen remarkable advancements, leading to the widespread integration of the IoT into 

our daily lives. As a seamless connector between the physical and digital worlds, IoT has made its mark in various 

domains [1]. Be it in smart homes, industrial automation, or even the development of smart cities, IoT devices are 

proliferating at an unparalleled rate, generating enormous amounts of data [2]. Among these data, graphic data occupy 

a large part, and they carry rich information, which is of great significance for realizing intelligent decision-making and 

precise control [3]. 

However, pattern recognition in the IoT environment faces many challenges. First of all, IoT devices are usually 

limited in resources, such as computing power, storage space, and energy supply, which makes it difficult to directly 

perform complex graphics processing on devices [4]. Secondly, the graphic data in IoT environments often have diversity 

and complexity, such as different lighting conditions, angle changes, obstructions, etc., which increase the difficulty of 
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graphic recognition [5]. In addition, with the continuous expansion of IoT applications, higher requirements are put 

forward for the real-time and accuracy of pattern recognition [6]. 

AIGC technology (Fusion Technology of Artificial Intelligence, IoT, Graphic Computing, and Cloud Computing) 

has important application value in IoT graphic recognition [7]. By integrating the robust computational capabilities of 

artificial intelligence with the meticulous processing strengths of graphic computing, AIGC technology has the potential 

to achieve efficient and precise graphic recognition within the IoT landscape. This advancement can not only elevate the 

intelligence quotient of IoT devices but also usher in transformative shifts across various sectors, including intelligent 

transportation, security, and healthcare [8]. Concurrently, the ongoing evolution of DL technology, particularly its 

proven efficacy in image recognition, presents a fresh optimization pathway for AIGC technology [9]. Through its 

inherent ability to discern underlying patterns and representations from extensive sample datasets, DL can adeptly extract 

pertinent feature information from images, thereby substantially enhancing pattern recognition performance. Therefore, 

applying DL technology to AIGC technology is expected to solve many challenges of pattern recognition in the IoT 

environment and promote the further development of IoT technology. 

This article aims to optimize the pattern recognition performance of AIGC technology in IoT environments through 

the DL algorithm. The following are the innovations of this article: 

In this article, the DL algorithm is introduced into the pattern recognition of AIGC technology, and optimized 

according to the characteristics of the IoT environment. By constructing the CNN model and improving and adjusting 

it, the accuracy and speed of pattern recognition are significantly improved. This innovation breaks the limitation of 

traditional AIGC technology in pattern recognition and expands new possibilities for its application in the IoT field. 

Aiming at the problem of limited IoT equipment resources, this article innovatively adopts model compression 

technology, which effectively reduces the volume and computational complexity of the DL model. This innovation 

makes the optimized AIGC technology more suitable for IoT environments with limited resources and improves its 

practicability and deployment. 

This article holistically addresses pattern recognition, emphasizing accuracy and speed while also taking into account 

model size, computational complexity, and other pertinent factors. Through this approach, it achieves a comprehensive 

enhancement of AIGC technology's performance. Furthermore, the article aligns with real-world IoT application 

scenarios and requirements, exploring the prospects and obstacles of optimized AIGC technology in areas like intelligent 

transportation and smart homes. This offers valuable insights and direction for practical implementation, underscoring 

the study's pragmatic value and forward-thinking nature. 

Our research expands on the current studies on graphic recognition in AIGC technology, intending to address the 

exclusive challenges presented by IoT environments. While some previous attempts have touched on aspects of our 

solution, none have provided a fully integrated and comprehensive approach that specifically tackles the key issues 

encountered in IoT deployments. This paper bridges that gap by combining advanced techniques like CNN, model 

compression, data augmentation, and regularization methods to create a sophisticated and efficient model. We showcase 

the capabilities of our model through thorough simulations and assessments using well-established datasets (MNIST and 

CIFAR-10). Significantly, our comparative analyses highlight substantial enhancements in recognition accuracy, 

processing speed, and resource utilization compared to traditional methods. Consequently, our work contributes to the 

advancement of AIGC technology in IoT settings, paving the way for wider adoption and enhanced functionality. 

The article comprises five distinct sections, each focusing on the following key aspects: 

Section I: Introduction. Introduce the research background, significance, objectives, and overall structure of the paper. 

Section II: Theoretical basis and literature review. This article expounds on the related theories and research progress 

of DL, AIGC technology, and image recognition in the IoT environment. 

Section III: Optimization model construction. The DL algorithm, pattern recognition method, and model construction 

process used in this article are described in detail. 

Section IV: Experimental results and analysis. The simulation results are displayed, and the results are deeply 

analyzed and discussed to verify the effectiveness of DL in optimizing AIGC technology. At the same 

time, the performance, limitations, and practical application prospects of this method are discussed 

comprehensively. 

Section V: Conclusion and Prospect. Summarize the main research results and contributions of this article, and put 

forward prospects and suggestions for future research. 
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2. Theoretical Basis and Literature Review 

2.1. DL Overview 

DL is a branch of machine learning, and its basic principle is to simulate the learning process of the human brain by 

constructing a multi-layer neural network. These networks can automatically extract useful features from a large number 

of data and abstract higher-level information representation layer by layer [10]. The core of DL lies in its powerful ability 

of feature learning and hierarchical representation, which gives it obvious advantages in dealing with complex nonlinear 

problems. In Deep Learning (DL), several models are commonly employed, namely CNN (Convolutional Neural 

Network), RNN (Recurrent Neural Network), and GAN (Generative Adversarial Network). CNN excels in image data 

processing, utilizing convolution operations to adeptly capture local image features while pooling operations facilitate 

feature dimension reduction and abstraction. RNN, on the other hand, is tailored for handling sequential data like text 

and voice, enabling the capture of time-dependent information within sequences. GAN stands out as a generative model, 

generating realistic novel data through an adversarial training process pitting the generator against the discriminator. 

2.2.  Introduction of AIGC Technology 

AIGC technology represents a multifaceted approach that emerged to tackle numerous data processing and intelligent 

decision-making challenges within the IoT landscape [11]. In AIGC technology, artificial intelligence is responsible for 

providing powerful computing and reasoning capabilities; IoT is responsible for connecting various devices and sensors 

and collecting massive data; Graphic computing focuses on processing the graphic information in these data and 

extracting useful features; And cloud computing provides flexible computing and storage resources for all this [12]. In 

graphic recognition, AIGC technology has been widely used. Schütt et al. [13] pointed out that in the field of intelligent 

transportation, real-time recognition and tracking of vehicles and pedestrians can be achieved through AIGC technology; 

In the field of intelligent security, AIGC technology can help achieve functions such as facial recognition and behavior 

analysis. 

2.3. Graphic Recognition in the IoT Environment 

Graphic recognition in an IoT environment has some special requirements and challenges. First of all, because IoT 

devices are usually limited in resources, it is necessary to reduce the computational complexity and resource consumption 

as much as possible on the premise of ensuring the accuracy of identification. Secondly, the graphic data in IoT 

environments often has diversity and complexity, such as different lighting conditions, angle changes, obstructions, and 

so on, which will have an impact on the recognition results. In addition, IoT applications usually require real-time 

response, so the pattern recognition algorithm needs to have a fast processing speed. To meet these challenges, 

researchers have put forward many targeted methods and technologies. For example, Andriyanov et al. [14] used 

lightweight neural network models to reduce computational complexity. Cheng et al. [15] used data augmentation 

techniques to improve the generalization ability of the model. Niederberger [16] utilized hardware acceleration 

technology to improve processing speed, among other things. 

2.4. Literature Review 

In recent years, notable advancements have been achieved in the study of DL, AIGC technology, and pattern 

recognition within the IoT environment. In the realm of DL, scholars have introduced numerous innovative network 

architectures and training techniques, consistently breaking benchmark records. Meanwhile, AIGC technology has seen 

its application scope broaden considerably with the ongoing evolution and convergence of various technologies. 

Within the IoT context, specifically in image recognition, researchers have devised multiple effective strategies to 

tackle diverse challenges. For instance, Leroux et al. [17] presented a methodology for managing diverse resource 

availability in dynamic Internet of Things (IoT) environments by dynamically selecting neural network architectures 

during runtime. Through a hierarchical neural architecture search strategy, they developed a range of neural networks 

with different sizes but shared substructures, enabling efficient storage and deployment. This approach enabled the 

adjustment of complexity and accuracy levels to meet changing resource constraints. While the method has shown 

promise in standard image recognition datasets, some limitations point towards areas for further investigation. For 

instance, the reliance on image recognition benchmark datasets alone restricts the understanding of challenges that may 

arise with other data types such as video or audio. Moreover, the study's use of static complexity increments for neural 

networks raises questions about the impact of varying these increments. Although the authors acknowledge the dynamic 

nature of IoT environments, they do not fully consider the variability of hardware platforms. Furthermore, the research 

overlooks the runtime overhead associated with the neural architecture search and switching process. Lastly, the 

assumption that neural network configurations are predetermined offline based on expected resource availability neglects 

the potential implications of real-time, online decisions. 

Horng et al. [18] introduced a method that utilizes deep convolutional neural networks (DCNNs) to improve the 

resolution of facial images. By focusing on subtle color variations, this technique extracts effective features for 

classification purposes. The effectiveness of this method was tested on three different databases: the AR face database, 
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Georgia Tech face database (GT), and Labelled Faces in the Wild (LFW). The results of the experiments show that this 

approach outperforms existing methods in terms of identification accuracy. Nevertheless, it is important to recognize the 

limitations, such as potential biases in the training data and the necessity for robustness against changes in lighting, pose, 

and obstructions. Integrating these findings into our research paper will enrich our review of face recognition methods 

in surveillance systems. 

Wu et al. [19] contributed a method for recognizing large-scale images using exceptionally deep CNNs, offering 

fresh perspectives for pattern recognition optimization. The TDIBS_AWS method represented a significant advancement 

in hyperspectral imaging for target detection by effectively addressing the issue of complex background noise that often 

impacts detection accuracy. What distinguishes this method is its exclusive dual approach to background suppression, 

utilizing principal component analysis and spectral unmixing to accurately differentiate between targets and their 

surroundings. Moreover, the method integrates the particle swarm optimization algorithm to dynamically adjust weights, 

thereby enhancing the overall background suppression model. Through the incorporation of support vector data 

description, the method further improves detection capabilities by analyzing residual data post background and noise 

removal. Comparative studies using both synthetic and real hyperspectral images have showcased the superior detection 

performance of TDIBS_AWS in comparison to alternative methods. Nevertheless, it is crucial to acknowledge that the 

reliance on the PSO algorithm for weight optimization may introduce computational complexity, and the method's 

effectiveness is influenced by the quality of the initial parameters set for the SVDD. This factor could potentially restrict 

its applicability in scenarios with highly variable or unpredictable background elements. 

Mariappan et al. [20] focused on the detection of copy-move forgeries in the realm of digital image manipulation and 

the widespread use of photo editing applications. The challenge lay in identifying instances where parts of an image 

were duplicated and placed elsewhere to deceive viewers. Existing techniques often struggle with noisy or blurred 

images. To overcome these limitations, the proposed method utilized a deep neuro-fuzzy network and a novel 

optimization algorithm. Notable features included adaptive partitioning, which divided the image using a rectangular 

search, and the extraction of local Gabor XOR patterns and Texton features. The deep neuro-fuzzy network effectively 

identifies forgeries, and its training incorporates the multi-verse invasive weed optimization (MVIWO) technique, a 

fusion of the multi-verse optimizer and invasive weed optimization. While achieving impressive performance metrics 

(specificity: 93.54%, accuracy: 94.01%, sensitivity: 97.75%), it is important to acknowledge that the reliance on the 

MVIWO algorithm may introduce computational complexity, and the effectiveness of the method depends on the quality 

of initial parameters set for the support vector data description (SVDD). These considerations should be taken into 

account when applying this approach in scenarios with diverse or unpredictable background elements. 

Zhang et al. [21] put forth GoogLeNet, which refines the CNN structure through the incorporation of the Inception 

module, boosting both the accuracy and efficiency of pattern recognition. Firstly, they categorized pixels into three 

groups: unchanged, false changes caused by strong speckles, and real changes due to terrain variation. Secondly, they 

utilized superpixel objects to use a local spatial framework. The methodology consists of two phases: Object Generation 

and Classification. In this phase, objects are generated using the simple linear iterative clustering (SLIC) algorithm and 

then classified into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. This 

phase produces a set of changed and unchanged superpixels. The next phase, Deep Learning for Real Change 

Discrimination, focuses on the changed superpixels obtained in the first phase. Deep learning was applied to distinguish 

real changes from false changes. SLIC was employed again to create new superpixels and low-rank and sparse 

decomposition techniques are used to suppress speckle noise significantly. These new superpixels underwent further 

clustering via FCM, followed by training a new PCANet to classify the two types of changed superpixels and generate 

the final change maps. While the proposed approach achieves impressive change detection accuracy (up to 99.71%) 

using multi-temporal SAR imagery, it is important to consider its limitations. Specifically, the reliance on the SLIC 

algorithm and the computational complexity associated with deep learning may impact scalability. Additionally, the 

effectiveness of the method depends on the quality of initial parameters set for the superpixel-based techniques, which 

could be a limitation in scenarios with diverse or unpredictable background elements. 

While these approaches do have a significant impact on the development of the suggested approach, we do not assert 

that they can be directly compared. Rather, their concepts and advancements have been utilized to challenge the obstacles 

present in the IoT setting. It is important to note that each of these approaches has its limitations and assumptions, which 

are detailed. By amalgamating their most effective techniques and addressing their constraints, we have devised our 

proposed method to achieve a harmonious equilibrium between resource utilization, processing speed, and recognition 

accuracy. 

Nevertheless, existing research harbors certain limitations and gaps. For instance, despite significant enhancements 

in DL model performance, the training phase still demands considerable labeled data and computational resources. 

Additionally, the integration of various technologies within AIGC remains insufficiently seamless and efficient. In the 

domain of image recognition within the IoT environment, striking a balance between minimizing resource usage, 

processing latency, and maintaining recognition accuracy remains a pressing challenge. Hence, this article strives to 

refine the pattern recognition capabilities of AIGC technology within the IoT context through DL, offering fresh 

perspectives and approaches for related research endeavors. 
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3. Optimization Model Construction 

3.1. CNN Model 

In this article, the DL algorithm is employed to enhance the pattern recognition capabilities of AIGC technology 

within the IoT environment. DL, as a cutting-edge machine learning technique, possesses the ability to automatically 

learn and extract valuable features from vast datasets, thereby bolstering the model's generalization and overall 

performance [22]. Among the numerous DL architectures available, this study opts for the CNN as its foundational 

model. The rationale behind this choice lies in CNN's remarkable proficiency in image processing tasks, thanks to its 

distinctive convolutional structure and pooling operations which adeptly capture local features and spatial information 

within images. 

Convolution Layer: This serves as the backbone of the CNN, tasked with extracting local features from inputted 

images. It achieves this by performing convolution operations on the input image using a set of learnable filters, 

effectively capturing diverse feature patterns such as edges, corners, and textures. Subsequently, a nonlinear activation 

function is often introduced to augment the model's nonlinear representation capabilities. It is noteworthy that when the 

convolution operation's stride exceeds 1, the corresponding deconvolution step size becomes fractional, leading to the 

alternative nomenclature of "fractional-strided convolution" for deconvolution, as illustrated in Figure 1. 

 

Figure 1. Deconvolution operation 

Pooling Layer: This layer follows the Convolution Layer and is tasked with spatially down-sampling its output. This 

process serves to diminish the size and computational demands of the feature map [23]. Widely used pooling techniques 

include Maximum Pooling and Average Pooling, both of which prove effective in retaining crucial image features while 

mitigating the risk of model overfitting. 

Fully Connected Layer: Typically, one or more Fully Connected Layers crown the CNN architecture [24]. These 

layers are dedicated to amalgamating and classifying the features extracted by the preceding Convolution and Pooling 

Layers. Each neuron in this layer maintains connections with every neuron in the layer before it, fostering a 

comprehensive feature representation. 

Within the CNN framework, the feature map is computed according to a specific formula. 

𝑚𝑖 = 𝑓(𝐷∗𝐹𝑖 + 𝑏𝑖) (1) 

where ∗ stands for convolution calculation; 𝑏𝑖 represents an offset term; 𝑓(⋅) and stands for activation function. Assume 

that the characteristic map obtained in the t  convolution layer is: 

𝑀𝑡 = {𝑚1, 𝑚2, 𝑚3, …, 𝑚𝑠} (2) 

Maximum pooling is adopted to extract the maximum value of 𝑀𝑡; 𝑝𝑖  represents the pooling result of the 𝑡𝑖 
convolution layer, which is formally expressed as: 

𝑝𝑖 = 𝑚𝑎𝑥(𝑀𝑡) = 𝑚𝑎𝑥{𝑚1, 𝑚2, 𝑚3, …, 𝑚𝑠} (3) 

In light of the resource constraints inherent to IoT devices, this article aims to refine the CNN model's structure. By 

scaling down the number and dimensions of convolution layers, along with pruning the neuron count in fully connected 

layers, we can achieve a reduction in both the model's size and computational demands. This makes it ideally suited for 

resource-limited IoT environments. 

During the training phase, the SGD algorithm is employed for optimizing the model's parameters. SGD is a widely 

adopted optimization technique in machine learning, particularly when dealing with large datasets and online learning 

scenarios. As a variation of the traditional gradient descent algorithm, SGD operates on the principle of updating model 

parameters based on the gradient computed from a randomly selected sample at each iteration, rather than considering 

the entire dataset [25]. While the standard gradient descent calculates gradients for all samples in every iteration and 

updates model parameters in the opposite direction to minimize the loss function, this approach becomes prohibitively 

expensive in terms of time and resources when dealing with extensive datasets. SGD significantly reduces computational 

costs by relying on gradients from a single random sample, while still being highly effective in model optimization. 

Denoting the input vector of the training network as: 
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𝑋 = [𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑛] (4) 

The radial quantity of the training network is: 

𝐻 = [𝑦1, 𝑦2, 𝑦3, …, 𝑦𝑗] (5) 

Then the formula of the Gauss function is: 

𝑦𝑗 = 𝑒𝑥𝑝 (−
‖𝑋 − 𝐶𝑗‖

2

2𝑏𝑗
2 ) (6) 

𝐶𝑗 = [𝑐1𝑗, 𝑐2𝑗, …, 𝑐𝑖𝑗 , …, 𝑐𝑛𝑗];   𝑗 = 1, 2, 3, …, 𝑚 (7) 

where 𝐶𝑗 is the center vector of the 𝑗 node of the neural training network; 𝐵 = [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑚] is the base width vector; 

𝑏𝑗 is the base width parameter of node 𝑗, and 𝑏𝑗 > 0. The weight vector of the network is: 

𝑊 = [𝑤1, 𝑤2, 𝑤3, …, 𝑤𝑚] (8) 

Because the gradient of only one sample is calculated at a time, SGD can quickly iterate and update the model 

parameters. It does not need to store the gradient of the whole data set and is suitable for processing large data sets. By 

constantly adjusting the super parameters such as learning rate and momentum, we hope to find the optimal model 

configuration [26]. At the same time, this article also uses the early stop technique to prevent the model from over-fitting 

in the training set. The image resolution processing process of the model is shown in Figure 2. 

 

Figure 2. Image resolution processing 

Cross-entropy stands as a pivotal concept in information theory, serving as a measure of the divergence between two 

probability distributions. In the realm of machine learning, it frequently assumes the role of a loss function, aiding in the 

training of classification models. The loss incurred by the function diminishes as the model's predicted event probabilities 

align more closely with their true counterparts, and vice versa. By striving to minimize cross-entropy loss, the model's 

predicted probability distribution can be fine-tuned to mimic the actual distribution as closely as feasible, ultimately 

enhancing the model's predictive capabilities [27]. During training, this article opts for cross-entropy loss as the guiding 

loss function. 

𝐻(𝑝, 𝑞) = −∑𝑝(𝑥) 𝑙𝑜𝑔 𝑞 (𝑥)

𝑥

 (9) 

It should be noted that the calculation of cross-entropy requires that both the real distribution 𝑝 and the predicted 

distribution 𝑞 must be probability distributions, that is, their value ranges are between [0,1], and the sum of probabilities 

of all events is 1. In addition, cross-entropy is only applicable to discrete variables, and other measurement methods are 

needed for continuous variables. 

By introducing the CNN model, this article can take the original image as input, and gradually abstract and extract 

the key features in the image through multi-layer convolution and pooling operation. These features not only include 

basic information such as texture, edge, and color of the image but also capture higher-level semantic information, such 

as the shape and position of the object. This makes CNN have strong expressive ability and generalization performance 

when dealing with complex image recognition tasks. 
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3.2. Optimization Strategy 

In the realm of optimization strategies, this article carefully considers key aspects to address the unique challenges 

presented by the IoT environment and enhance the performance of the pattern recognition model. 

To begin with, given the constraints of limited resources in IoT devices, this article leverages model compression 

techniques. These devices typically have restricted computational resources, storage capabilities, and power supply, 

necessitating the use of lightweight and efficient models. To this end, techniques such as weight pruning and quantization 

are employed. Weight pruning involves eliminating insignificant weight connections within the model, thereby reducing 

its parameter count and computational complexity. This, in turn, diminishes the resource requirements of the model. 

Quantization, on the other hand, converts the model's weights and activation values from floating-point to low-precision 

fixed-point representations, further optimizing storage needs and reducing the amount of computation required. The 

integration of these model compression techniques enables the efficient deployment of the pattern recognition model on 

resource-constrained IoT devices while preserving its recognition performance. 

Furthermore, to bolster the model's generalization capabilities, this article incorporates data augmentation techniques. 

The diverse and variable nature of graphic data in the IoT environment demands robust generalization abilities from the 

model. To this end, a range of transformation operations are applied to the original images, generating additional training 

samples. These operations, including rotation, cropping, scaling, and flipping, are designed to mimic the variety of image 

variations encountered in practical settings. By expanding the diversity and quantity of training data, data augmentation 

techniques assist the model in learning more resilient and generalized representations, ultimately enhancing its 

recognition performance in unseen scenarios. This is particularly crucial for IoT applications, as they often encounter a 

multitude of complex and dynamic environmental conditions, necessitating strong generalization capabilities from the 

model. 

4. Experimental Results and Analysis 

4.1. Experimental Setup 

To optimize AIGC technology for IoT environments, the study used a Convolutional Neural Network (CNN) as its 

core architecture, ensuring a customized performance-resource efficiency trade-off. The model's size and computational 

complexity were decreased without accuracy loss with the deployment of model compression techniques such as weight 

pruning and quantization. Weight pruning removed unnecessary connections, and quantization transformed weights to 

lower precision formats to optimize storage and computation resource utilization. Reducing the number of convolution 

layers and neurons in fully connected layers helped reduce computational requirements, suitable for IoT devices with 

limited resources. 

The process of training was optimized through gradient update through min-batch selection by SGD, which updates 

the parameters based on the averages of random examples, rather than using all training examples that provide extensive 

computational savings over the traditional approach. To improve generalization, we applied regularization such as 

dropout as well as data augmentation in the form of rotation, scaling, and flipping to ensure that the model performed 

well against common IoT issues such as lighting variation or obstructions. One general design concept has been to 

maximize weight efficiency within all systems, allowing for compatibility with devices with lower computing power, 

storage, and energy supply. 

But there was no new CNN architecture reported, instead innovations were achieved by joining existing methods 

together such as model compression, data augmentation, regularization, and lightweight design, all of which established 

a homogenous framework suitable for IoT. 

By treating these as primary challenges, it was able to ensure strong pattern recognition capabilities without 

unnecessarily compromising resource efficiency, which is part of what makes this approach so effective. This section 

outlines a range of simulation experiments aimed at validating the efficacy of the DL algorithm in refining AIGC 

technology. Detailed experimental configurations are as follows: 

Data sources: We chose two widely used image datasets for our tests: MNIST and CIFAR-10. The MNIST dataset 

comprises grayscale handwritten numerals, ideal for initial algorithm validation. In contrast, CIFAR-10 offers a more 

challenging set of 10 distinct categories of color images. Additionally, to emulate the vast and intricate nature of the IoT 

landscape, we have augmented and enhanced both datasets. 

Testing infrastructure: Our server is outfitted with a multicore CPU, ample memory, and a state-of-the-art GPU 

to facilitate seamless experimentation. Furthermore, we've leveraged TensorFlow, a renowned DL framework, for 

algorithm and model development. Key DL algorithm parameters and their respective values are summarized in 

Table 1. 
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Table 1. Algorithm parameter setting 

Parameter name Numerical value Describe 

Learning rate 0.001 Control the step size of the model weight update. 

Batch size 64 The number of samples used to update the model weights in each iteration. 

Iterations 100 Iteration number of model training 

Optimizer Adam Algorithm for optimizing model weight 

Activation function ReLU Functions for increasing the nonlinearity of the model 

Number of convolution layers 5 Number of convolution layers in the model 

Convolution kernel size 3×3 The size of the convolution kernel in the convolution layer 

Pool layer number 2 Number of pools in the model 

Pool nucleus size 2×2 Size of Pool Nuclei in Pool Layer 

Fully connected layer number 2 Number of fully connected layers in the model 

Dropout ratio 0.5 The ratio of Dropout is applied after the full connection layer to prevent overfitting. 

Evaluation metrics: To thoroughly assess the algorithm's performance, this article has chosen the following metrics 

as benchmarks: recognition accuracy, model compactness, processing speed, and resource utilization. Recognition 

accuracy serves as the most straightforward measure of the model's recognition capabilities. Model compactness and 

processing speed jointly indicate the model's viability and responsiveness on IoT devices. Lastly, resource utilization 

reflects the model's demands on device resources. 

The above experimental design is expected to verify the effectiveness of the DL algorithm in optimizing AIGC 

technology and provide valuable references for research in related fields. 

4.2. Results Analysis and Discussion 

In this simulation experiment, the DL algorithm is used to optimize AIGC technology, and the pattern recognition 

test is carried out in an IoT environment. Figure 3 shows the flowchart diagram of the proposed methodology. 

 

Figure 3. The flowchart diagram of the proposed methodology 

The following are the main results of the experiment. The accuracy of pattern recognition is an important index to 

measure the performance of a pattern recognition system. The AIGC technology optimized by DL shows excellent 

performance on several standard data sets, as shown in Figure 4. 
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Figure 4. Recognition accuracy 

Experimental results show the proposed model achieves 99.5% and 89.2% accuracy on MNIST and CIFAR-10 
datasets respectively, with a lower percentage accuracy on pattern recognition tasks. Moreover, the recognition speed 
was greatly improved, with processing time being decreased roughly by 30%. By employing the DL algorithm to 
automatically learn and optimize feature representations over hand-crafted feature-based traditional pattern recognition 

techniques, these improvements are achieved. The study also covers the challenges of IoT systems such as resource 
constraints in devices, heterogeneous and complex graphical data, and real-time processing. 

Using model compression methods, this work reduces the size and computation complexity of the DL model to 
configure it for application on IoT devices. Moreover, data augmentation and regularization techniques assist the model 
to generalize and make it robust to lighting, angles, and obstruction variations. It integrates several advanced techniques, 
including lightweight neural networks, hardware acceleration, and hierarchical neural architecture search, to achieve a 
better tradeoff of resource utilization, processing speed, and recognition accuracy than existing approaches. 
Nonetheless, the study has its limitations, including obtaining a large amount of labeled data, the need for high-

performance hardware devices and software licenses when training the model, and the issue of seamlessly integrating 
multiple technologies to form an AIGC system snugly. Although limitations exist, the proposed method provides a 
complete solution, specifically for IoT applications and it would be useful for implementing, e.g., smart transportation, 
smart homes, and security systems. This study plays an integral role in elevating AIGC technology for IoT 
environments, bridging gaps, and setting the stage for further advancements. 

Compared with traditional pattern recognition methods, DL can capture and recognize key information in images 
more accurately by automatically learning and optimizing feature representation, thus achieving better performance in 
complex recognition tasks. The recognition speed of the algorithm is shown in Figure 5. 

 

Figure 5. Recognition speed 
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Recognition speed: While ensuring accuracy, the DL algorithm also significantly improves the speed of pattern 

recognition. Traditional pattern recognition methods often need complex preprocessing steps and a time-consuming 

feature extraction process, which leads to slow recognition speed. The DL algorithm integrates feature extraction and 

classification into one model through end-to-end training, which greatly simplifies the processing flow. Therefore, in the 

same hardware environment, the time for processing a single image by the optimized AIGC technology is about 30% 

shorter than that by the traditional method. This remarkable improvement is mainly due to the efficient calculation and 

parallel processing ability of the DL algorithm. 

This increase in recognition speed from the deep learning (DL) algorithm is a great step towards adapting AIGC 

technology for optimal performance in Internet of Things (IoT) environments. Traditional pattern recognition 

techniques frequently engage in time-consuming preprocessing processes and manual extraction of features, leading to 

the inherent infusion of error in human-centered manipulation and the strain of inadequate feature extraction at the 

assessment stage. Unlike traditional extensive features extracted methods in previous studies, the DL algorithm used in 

this study regarded the features extraction and classification in end-to-end training as a whole blended model. 

They do not need separate processing pipelines till inward, so it eases the process and subsequent overhead. Thus, 

optimized AIGC technology can process data in approximately 30% shorter recognition speed than traditional AIGC 

technology, and remains on the same hardware infrastructure. 

The efficiency improvement however is mostly because of the properties of the DL algorithm, which can compute 

efficiently and take advantage of parallel processing architectures. This approach allows the DL-based model to run 

faster and on larger volumes of data while achieving similar accuracy. 

These enhancements are especially important for IoT applications that require near real-time decision-making and 

responsiveness. The system performance and reliability can be greatly improved in pattern recognition for applications 

like autonomous driving, and smart home systems. 

In addition, the decreased processing duration means lesser energy consumption and resource utilization, hence a 

more desirable technology for deployment on resource-constrained IoT devices. 

The increase in recognition speed of the AIGC technology based on deep learning optimization makes it more 

conducive to real-time application, and the delta increase in this area has great potential along with technology landing 

in various fields such as intelligent transportation, intelligent security, industry 4.0, and medical care. 

In the DL model, the size and computational complexity of the model are the key factors that affect its application in 

IoT devices. Due to the limited resources of IoT devices, such as storage space, computing power, and energy 

consumption, the DL model needs to be compressed and optimized to adapt to the characteristics of these devices. The 

model size and computational complexity are shown in Figure 6. 

 

Figure 6. Model size and computational complexity 

Model size and computational complexity: By using model compression technology, this article successfully 

reduces the size of the DL model and reduces the computational complexity. The optimized AIGC technology model 

is not only smaller in size but also lower in computational complexity at runtime. This makes this technology more 

suitable for IoT devices with limited resources and can realize efficient pattern recognition functions on these devices. 
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At the same time, reducing the computational complexity also helps to reduce the energy consumption of equipment 

and prolong its service life. 

Comparing the performance of this method with the traditional method, the support vector machine (SVM), the 

accuracy of pattern recognition of different algorithms is achieved. The parameter values for this research are as follows: 

𝐶 = 1, 𝑑𝑒𝑔𝑟𝑒𝑒 = 3, 𝜀 = 0.2, 𝛾 = 0.36, c=tolerance=0.001. The comparison results are given in Figure 7. 

 

Figure 7. Comparison of recognition accuracy 

The speed of pattern recognition of different algorithms is shown in Figure 8. 

 

Figure 8. Recognition speed comparison 

The results show that under the same experimental conditions, the proposed method is superior to the traditional 

method in recognition accuracy and speed. This discovery is based on strict experimental comparison and detailed data 

analysis. In terms of recognition accuracy, this method shows significant advantages. By adopting the advanced DL 

algorithm and model structure, this method can capture and identify the key features and information in the image more 

accurately. In contrast, traditional methods are often limited by their fixed feature extraction methods and model 

expression ability when dealing with complex and diverse graphic data, which leads to the decline of recognition 

accuracy. The method in this article can adaptively learn and optimize the feature extraction process through the powerful 

representation learning ability of DL, thus improving the accuracy of recognition. In terms of speed, this method also 
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shows obvious advantages. Due to the efficient calculation and parallel processing ability of the DL algorithm, this 

method can achieve fast training and reasoning speed when dealing with large-scale graphic data. However, traditional 

methods often need long computing time and resources to complete the same task. This speed advantage makes this 

method more suitable for real-time and high-efficiency IoT application scenarios and can meet the needs of rapid 

response and decision-making. 

This section verifies the effectiveness of the DL algorithm in optimizing AIGC technology through simulation 

experiments and performance comparison. The experimental results show that the DL algorithm has achieved remarkable 

results in optimizing AIGC technology. Firstly, DL improves the accuracy of pattern recognition by automatically 

extracting image features. Secondly, by optimizing the network structure and using hardware acceleration technology, 

the DL algorithm achieves faster recognition speed. Finally, the application of model compression technology makes the 

DL model more suitable for the IoT environment. 

At last, Table 2 indicates the comparison between the results of the present study with those from previous studies in 

the literature (Leroux et al. [17], Horng et al. [18], Wu et al. [19], Mariappan et al. [20], Zhang et al. [21]). This 

comparison contains main metrics for instance recognition accuracy, computational complexity, resource utilization, and 

adaptability to IoT environments. 

Table 2. Comparison analysis 

Study Accuracy (%) Computational Complexity Resource Utilization 

Present Study 
MNIST: 99.5 

CIFAR-10: 89.2 
Low (via model compression) Optimized for IoT devices 

Leroux et al. [17] Varies by dataset Adjustable via architecture search Dynamic resource allocation 

Horng et al. [18] 
Improved facial recognition 

accuracy 
Moderate (focuses on subtle features) Standard hardware 

Wu et al. [19] High (hyperspectral imaging) High (due to PSO algorithm) Requires significant resources 

Mariappan et al. 

[20] 

Specificity: 93.54% 

Accuracy: 94.01% 

Sensitivity: 97.75% 

High (deep neuro-fuzzy network) Resource-intensive 

Zhang et al. [21] Up to 99.71% (SAR imagery) Moderate-High (SLIC + deep learning) Requires substantial resources 

Study 
Adaptability to IoT 

Environments 
Strengths Limitations 

Leroux et al. [17] 
High (real-time processing, 

low latency) 

 Achieves high accuracy on standard datasets. 

 Efficiently reduces model size and complexity. 

 Incorporates data augmentation and regularization for 

robustness. 

 Limited testing on diverse or real-world IoT 

datasets. 

 Potential challenges in scalability for larger 

models. 

Horng et al. [18] 
Moderate (dynamic adjustment 

possible) 

 Introduces hierarchical neural architecture search for 

dynamic complexity adjustment. 

 Shares substructures among networks to save storage. 

 Relies on benchmark datasets only. 

 Static complexity increments may not suit all 

scenarios. 

 Overlooks runtime overhead of switching 

architectures. 

Wu et al. [19] Low (not optimized for IoT) 

 Extracts effective features using DCNNs for facial image 

resolution enhancement. 

 Outperforms existing methods in identification accuracy. 

 Limited robustness against lighting, pose, and 

obstructions. 

 Not tailored for IoT resource constraints. 

Mariappan et al. 

[20] 

Low (complexity unsuitable 

for IoT) 

 Dual approach for background suppression improves 

detection accuracy. 

 Effective in handling complex background noise. 

 Computational complexity due to PSO weight 

optimization 

 Sensitivity to initial parameter settings. 

 Limited applicability in highly variable 

backgrounds. 

Zhang et al. [21] Low (not IoT-focused) 

 Detects copy-move forgeries effectively. 

 Combines adaptive partitioning and Gabor XOR patterns 

for robustness. 

 Computational complexity introduced by 

MVIWO algorithm. 

 Dependent on the quality of initial parameters 

for SVDD. 

This paper aimed to improve the AI-generated content (AIGC) solution through the application of deep learning (DL) 

technology in the field of graphic recognition, which was mainly based on Convolutional Neural Networks (CNNs) in 

the application of Internet of Things (IoT) technology. The main goals are compressed models to lower computational 

demand and resource usage, along with enhanced model adaptability achieved from data augmentation and regularization 

techniques. 



HighTech and Innovation Journal         Vol. 6, No. 3, September, 2025 

988 

 

Experimental results show that the proposed methods are significantly improved in terms of recognition accuracy 

(99.5% on MNIST and 89.2% on CIFAR-10 datasets) and processing time which is 30% less than the classical methods. 

In contrast to prior studies such as Leroux et al. [17], Horng et al. [18], Wu et al. [19], Mariappan et al. [20], and 

Zhang et al. [21], focusing on some specific issues, including dynamic resource management, facial recognition, 

hyperspectral imaging, forgery detection, and SAR change detection. However, this work presents a complete pipeline 

suitable for IoT devices with limited resources. The proposed method combines state-of-the-art techniques, including 

CNNs, model compression, and hardware acceleration to make it realistic, accurate, fast, and memory-efficient in 

practice, which are important for real-world IoT applications, such as intelligent transportation, and smart home. 

5. Discussion 

In this paper, our focus lies in introducing a new perspective to address the limitations identified in previous studies 

on graphic recognition in AIGC technology. Instead of attempting to challenge all the identified issues at once, our 

research specifically targets key problem areas, pushing the boundaries of knowledge in specific domains. We are fully 

aware that previous works have encountered challenges stemming from the unique complexities of IoT environments. 

However, our proposed solution takes significant strides in overcoming these obstacles. While we acknowledge that not 

all criticisms of prior research are fully addressed in our work, we firmly believe that our approach brings forth tangible 

and substantial advancements. 

Furthermore, we recognize the importance of future investigations in further addressing any remaining deficiencies. 

With this in mind, we have structured our presentation to communicate the specific aspects of the earlier research 

landscape that we aim to modify, as well as the potential avenues for future exploration. 

The proposed framework has shown promising results in enhancing the graphic recognition capabilities of AIGC 

technology within the IoT ecosystem. However, certain limitations require further investigation. The generalizability of 

the framework across different graphical datasets has not been thoroughly examined, and its success on MNIST and 

CIFAR-10 datasets may not translate to other datasets. Expanding the scope of research to include diverse and larger 

datasets will help strengthen confidence in the framework's effectiveness.  

Additionally, questions regarding the framework's scalability in handling complex IoT ecosystems need to be 

addressed. Further research should focus on understanding the framework's limitations in accommodating larger and 

more sophisticated IoT environments. Furthermore, verifying the framework's real-time processing capability in high-

traffic IoT ecosystems is essential, especially with the increasing number of IoT devices and data generation. Lastly, 

assessing the framework's robustness against noise and adversarial attacks is crucial for establishing trust in its reliability.  

Addressing these limitations will contribute to the continued growth and development of the framework, benefiting 

the research community and driving practical applications in the evolving IoT landscape. 

6. Conclusion 

As IoT continues to evolve rapidly, the significance of pattern recognition in numerous domains has escalated. 

Simultaneously, the role of AIGC technology, which serves as a vital link between artificial intelligence and graphic 

computing, has become increasingly pivotal, emphasizing the crucial nature of its performance optimization. Therefore, 

this article introduces the DL algorithm to improve the accuracy and speed of pattern recognition. After a series of 

research and experiments, this article draws the following conclusions: DL algorithm has obvious advantages in pattern 

recognition, which can automatically extract image features and realize efficient classification and recognition. By 

constructing the CNN model and improving and adjusting it, this article successfully improves the accuracy and speed 

of pattern recognition of AIGC technology in the IoT environment. Aiming at the resource limitation of IoT equipment, 

this article adopts model compression technology to reduce the size of the model and reduce the computational 

complexity. This makes the optimized AIGC technology more suitable for IoT environments with limited resources and 

provides feasibility for practical application. 

The optimized AIGC technology has broad potential and challenges in the practical application of IoT. First of all, 

with the increasing popularity of IoT devices and the increasing demand for intelligence, pattern recognition will become 

an important part of IoT applications. The optimized AIGC technology can provide more accurate and faster graphic 

recognition services for intelligent transportation, smart homes, intelligent security, and other fields. Secondly, in the 

face of complex and changeable challenges in the IoT environment, the optimized AIGC technology needs to constantly 

adapt to new application scenarios and demand changes, which puts forward higher requirements for its robustness and 

scalability. Therefore, future research should focus on how to improve the adaptability and generalization performance 

of AIGC technology in an IoT environment. 
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