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Abstract 

The extended exponentially weighted moving average (Extended EWMA) control chart is an effective statistical process control method 

for monitoring and identifying shifts in process mean, particularly when dealing with autocorrelated data. One key performance measure 

used to evaluate the capability of control charts in detecting changes is the average run length (ARL). The primary goal of this study is to 

present the explicit formulas for calculating the ARL of the extended EWMA control chart for autoregressive models with exogenous 

variables (ARX) and exponential white noise. Another purpose is to compare the performance of the extended EWMA and the classical 

EWMA control charts under various conditions. The explicit formulas are derived from the ARL integral equation, which is expressed by 

the Fredholm integral equation. The accuracy of the exact solutions has been verified using the numerical integral equation (NIE) methods 

that employ four different composite quadrature rules. The result shows that the ARL values obtained from both methods are similar, and 

the computation time for the proposed explicit formulas is less than 0.001 second. In comparing the two control charts, it is evident that 

the extended EWMA control chart outperforms the traditional control chart in detecting shifts in the process mean, as confirmed by various 

overall performance criteria. Additionally, two real datasets, namely SCB stock price and GDP percentage expansions, are applied to 

demonstrate the effectiveness of the relevant control charts. 

Keywords: Average Run Length; Extended EWMA Chart; Explicit Formula; Autoregressive with Exogenous Variables. 

 

1. Introduction 

Statistical Process Control (SPC) is a powerful set of problem-solving methods primarily used in the manufacturing 

industry to maintain and improve the quality of processes and products by reducing variability. A key visual tool in SPC 

is the control chart, which is extensively used to monitor process stability and detect special-cause variations or unnatural 

shifts in process parameters, such as mean and variance. These shifts can lead to the production process becoming out 

of control. The faster a control chart responds to changes, the quicker the process can be addressed and brought back 

into a controlled state. The concept of the traditional Shewhart chart, introduced by Shewhart [1], is classified as a 

memory-less control chart. One significant limitation of memory-less charts is their ineffectiveness in detecting minor 

changes. To overcome this, memory-type control charts, such as the cumulative sum (CUSUM) control chart [2] and the 

exponentially weighted moving average (EWMA) control chart [3], were developed to rapidly identify small to moderate 

variations in processes. Subsequently, several researchers have proposed enhanced control charts. For instance, Patel & 

Divecha [4] presented the modified exponentially weighted moving average (MEWMA) control chart to detect small 

shifts in process mean, and Khan et al. [5] improved upon this with a generalized form of MEWMA. Abbas et al. [6] 

combined the CUSUM and EWMA control charts, demonstrating that the mixed CUSUM-EWMA control chart 

performs better than either individual chart. In 2018, Naveed et al. [7] developed a new design for an EWMA-based 
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statistic called the extended EWMA control chart, which showed greater sensitivity in monitoring small changes 

compared to the classical EWMA control chart. The extended EWMA scheme has since been studied to assess its 

performance in various simulated and practical situations [8, 9]. 

The fundamental assumption underlying traditional control charts is that the observations are independent and identically 

distributed. However, in real applications, successive samples from many processes are often dependent on time intervals and 

exhibit serial correlation. This dependence can negatively impact the performance of standard control charts, leading to 

incorrect indications and conclusions [10, 11]. To address the issue of autocorrelated data, researchers have investigated 

alternative strategies. One such approach involves fitting an appropriate time series model and then applying the uncorrelated 

property of the residuals, or white noise process, in the statistical control chart procedure [12, 13]. The time series 

autoregressive (AR) and moving average (MA) models, as well as the models comprising AR and MA, are usually employed 

for modeling and predicting autocorrelated data that depend on themselves. In some cases, the independent factors can impact 

the behavior of the process, improving prediction accuracy. Consequently, the time series models incorporated with the 

exogenous variables, such as ARX, MAX, or ARMAX, have been studied across various fields [14]. Regarding the random 

error of time series models known as white noise, which usually follows normal distribution, however, the white noise can also 

exhibit an exponential distribution [15]. 

Generally, the performance and sensitivity of control charts for monitoring and detecting variation in the process are 

typically assessed through the average run length, or ARL. This measure indicated the expected number of in-control 

observations before an out-of-control signal is detected. There are two types of ARL; ARL0 refers to the average run length 

for an in-control process with no changes. Ideally, this value should be large, indicating that the control chart is stable and 

effective. ARL1 denotes the average run length when the process is out of control and reflects the detection capabilities for 

various magnitudes of shifts. A smaller value ARL1 is desirable, as it shows that the control chart can quickly identify any out-

of-control conditions. Evaluating the ARL values is a crucial aspect when studying and developing control charts, as it allows 

for comparison of their capability. Previous research has employed different methodologies to calculate ARL values. For 

example, Champ & Rigdon [16] studied and compared the Markov Chain and the numerical integral equation (NIE) method 

for calculating the ARL of quality control charts. Naveed et al. [7] utilized Monte Carlo simulation for assessing the ARL and 

the proposed extended EWMA control chart. Nevertheless, the mentioned approaches can be time-consuming in terms of 

calculations. 

Several researchers have investigated the derivation of the Average Run Length (ARL) integral equation under conditions 

of autocorrelation, particularly when the white noise process follows an exponential distribution, leading to the establishment 

of explicit formulas. Paichit [17] derived an exact solution for the ARL of the Cumulative Sum (CUSUM) control chart for an 

Autoregressive (AR) process with one exogenous variable (ARX(1)), where the white noise is characterized by an exponential 

distribution. The accuracy of the ARL was confirmed with Numerical Integration Evaluation (NIE) using the Gauss-Legendre 

rule, showing excellent agreement. Phanyaem [18] also presented an explicit formula for the ARL, comparing the accuracy of 

this formula against the NIE method using different quadrature rules for the CUSUM control chart when the observations 

belong to a seasonal ARX model with exponential white noise. The ARL from the explicit formula closely matched the NIE 

results, with an absolute percentage difference of less than 1%. Suriyaket & Phetcharat [19] developed an explicit formula for 

the ARL of the Maximum (MAX) process operating on an Exponentially Weighted Moving Average (EWMA) chart using 

techniques from Fredholm integral equations. They applied numerical integration methods, including Gaussian, midpoint, and 

trapezoidal rules, to verify the accuracy of the explicit formula. The results indicated that the ARL derived from their proposed 

method approximated the NIE results and outperformed the numerical methods in terms of computational time. 

Supharakonsakun [20] derived the ARL for a modified EWMA control chart applied to a Seasonal Moving Average (SMA) 

of order q (SMA(q)), where the white noise is exponentially distributed. The findings showed good agreement between the 

explicit formula and the numerical integral equation method.  

Karoon et al. [21] explored explicit formulas for the ARL of an extended EWMA control chart designed for a trend AR(p) 

model, comparing its accuracy to that of the NIE method. Zhang et al. [22] formulated explicit expressions for the ARL and 

Average Delay Time (ADT) for the CUSUM control chart associated with a seasonal SMA(Q)s model. The performance 

comparison between the results obtained from the explicit formulas and the numerical integration approach indicated that the 

explicit formulas considerably reduced computational time. Recently, Peerajit [23] introduced an analytical solution for 

calculating the ARL of a long-memory ARFIMA(1, d, 1)(1, D, 1)s process with exponential white noise operating on a 

CUSUM control chart. The NIE method was employed to verify the accuracy of this proposed approach. The results from both 

methods were in close agreement, but the time required for computing the ARL using the proposed method was significantly 

shorter. Sunthornwat et al. [24] suggested explicit formulas for the ARL of the Homogeneously Weighted Moving Average 

(HWMA) control chart based on an AR process. Phanthuna et al. [25] examined the explicit formula for the ARL of a double-

modified exponentially weighted moving average (DMEWMA) control chart applied to an AR process. They compared the 

ARLs computed using the explicit formula and numerical integral equation method to validate the former. Finally, Phanyaem 

[26] developed an exact formula for computing the average run length in an EWMA control chart, specifically for a 

SARX(P,r)L model. The results showed that the average run length calculated using the proposed method is close with from 

the numerical integral equation method. 
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According to the efficiency of the extended EWMA control chart and the approaches to calculate the ARL that are 

mentioned above, we are interested in deriving the ARL integral equation of the extended EWMA control chart when 

the observation is in the pattern of AR process with an exogenous variable that has not been proposed before. Therefore, 

the aim of this study is to derive the explicit formulas of the ARL on the extended EWMA chart for the ARX model 

when the white noise follows an exponential distribution and compare it to the numerical integral equation method in 

four different composite quadrature rules. Moreover, the comparison of the sensitivity of detecting changes of the 

extended EWMA and the EWMA control chart is conducted under various conditions. The two real datasets are studied 

to assess the proposed explicit formula for the control charts and presented in this article. 

2. Preliminaries 

The definitions of the time series model and the control charts, including their characteristics, are given in this section. 

2.1. Time Series ARX Model 

Let 𝑌𝑡 be a sequence observation from the ARX(p,r) model defined as: 

𝑌𝑡 = 𝜇 + ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 + ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟

𝑗=1

, 𝑡 = 1,2,3, . .. (1) 

where 𝝁 is a constant, 𝝓𝒊 ∈ (−𝟏, 𝟏) is an autoregressive coefficient, 𝑿𝒋𝒕 is an exogenous variable, 𝜷𝒋 is a coefficient of 

𝑿𝒋𝒕 and 𝜺𝒕 is an error term or a white noise process assumed to follow the exponentially distributed, therefore,                          

𝜺𝒕 ∼ 𝑬𝒙𝒑(𝜶). 

2.2. Extended EWMA Control Chart 

The extended EWMA statistic improved by Naveed et al. [7] can be defined by the recursive equation: 

𝐸𝑡 = 𝜆1𝑌𝑡 − 𝜆2𝑌𝑡−1 + (1 − 𝜆1 + 𝜆2)𝐸𝑡−1, 𝑡 = 1, 2, 3, …. (2) 

where 𝑌𝑡 is a sequence observation from the ARX process, 𝜆1 ∈ (0,1] and 𝜆2 ∈ [0, 𝜆1) are smoothing constants. The 

upper control limit (UCL) and the lower control limit (LCL) are: 

UCL=𝜇0 + 𝜔𝜎√
𝜆1

2 + 𝜆2
2 − 2𝜆1𝜆2(1 − 𝜆1 + 𝜆2)

2(𝜆1 − 𝜆2) − (𝜆1 − 𝜆2)2
 

LCL=𝜇0 − 𝜔𝜎√
𝜆1

2 + 𝜆2
2 − 2𝜆1𝜆2(1 − 𝜆1 + 𝜆2)

2(𝜆1 − 𝜆2) − (𝜆1 − 𝜆2)2
 

(3) 

where 𝜇0 is a target mean, 𝜎 is a process standard deviation and 𝜔 is an appropriate control limit width.  

The stopping time for the extended EWMA control chart is 𝜏𝑎,𝑏 = 𝑖𝑛𝑓{ 𝑡 > 0: 𝐸𝑡 < 𝑎 ∪ 𝐸𝑡 > 𝑏} where 𝑎 and 𝑏 

represent the LCL and UCL, respectively. 

The extended EWMA control chart converts to the classical EWMA scheme, 𝑍𝑡 = 𝜆1𝑌𝑡 + (1 − 𝜆1)𝑍𝑡−1 when 𝜆2 =
0. Similarly, the LCL (𝑎′) and UCL (𝑏′) of the EWMA control chart can be determined by equation (3) when𝜆2 = 0 

with constant width 𝜔 = 𝜔𝑐, therefore, the stopping time for the EWMA control chart is 𝜏𝑎′,𝑏′ = 𝑖𝑛𝑓{ 𝑡 > 0: 𝑍𝑡 < 𝑎′ ∪
𝑍𝑡 > 𝑏′}. 

2.3. Average Run Length 

Let 𝜀𝑡 , 𝑡 = 1,2, . .. be a sequence of independent random variables with a probability density function 𝑓(𝑤, 𝛼) where 

𝛼is the parameter. The in-control state is normally with the parameter 𝛼 = 𝛼0 and assumed that there is no change in the 

process. On the contrary, the parameter 𝛼 = 𝛼1 when the process has changed to out-of-control state at the change-point 

time, 𝜑. Average run length or ARL is the common characteristic of control charts to measure and compare their 

performance in detecting changes in parameters. Ideally, the ARL for in-control process denoted as 𝐴𝑅𝐿0 are required 

to be sufficiently large in order to reduce the number of false out-of-control signals, whereas, the ARL for out-of-control 

state or 𝐴𝑅𝐿1 must be small to quickly detect a correct out-of-control signal. In this study, the stopping time (𝜏𝑎,𝑏) are 

used as the alarm signals, therefore, the ARL is defined as: 

𝐴𝑅𝐿 = {
𝐴𝑅𝐿0 = 𝐸̂𝜑(𝜏𝑎,𝑏), 𝜑 = ∞

𝐴𝑅𝐿1 = 𝐸̂𝜑(𝜏𝑎,𝑏|𝜏𝑎,𝑏 ≥ 1), 𝜑 = 1
 (4) 
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where 𝐸̂𝜑 is the expectation of the stopping time under the assumption that the change-point time occur at time, 𝜑. ARL0 

represents the in-control ARL which implies that the change-point time does not exist, whereas ARL1 denotes the out-

of-control ARL when the change point appears at the first time. 

3. ARL Evaluation Methods  

In this section, the explicit formulas of ARL for the extended EWMA control chart of the ARX(p,r) model with 

exponential white noise derived from a Fredholm integral equation of the second kind are presented. Moreover, an 

approximated ARL from the numerical integral equation (NIE) method is used to confirm the accuracy of the exact 

solutions. 

Here, the in-control state of extended EWMA scheme for ARX(p,r) model can be rewritten in the form of white noise process 

𝜀𝑡 as: 

[

𝑎−(𝜆1𝜙1−𝜆2)𝑌0−(1−𝜆1+𝜆2)𝜈

𝜆1
−

𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1

] < 𝜀𝑡 < [

𝑏−(𝜆1𝜙1−𝜆2)𝑌0−(1−𝜆1+𝜆2)𝜈

𝜆1

−𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1

]   (5) 

where 𝜈 is an initial value of the extended EWMA control chart and 𝑌0 is an initial value of ARX(p,r) model. 

Let 𝜕(𝜈) be an ARL of an initial value 𝜈 which can be described by applying the Fredholm integral equation second 

kind according to the method of Champ & Rigdon [16] of as follows: 

𝜕(𝜈) = 1 + ∫ 𝜕(𝐸𝑡)

𝑏−(𝜆1𝜙1−𝜆2)𝑌0−(1−𝜆1+𝜆2)𝜈
𝜆1

−𝜇−∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2 −∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1

𝑎−(𝜆1𝜙1−𝜆2)𝑌0−(1−𝜆1+𝜆2)𝜈
𝜆1

−𝜇−∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

−∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝑓(𝜀𝑡)𝑑𝜀𝑡 (6) 

After setting new variables, then, the 𝜕(𝜈) can be defined as 

𝜕(𝜈) = 1 +
1

𝜆1
∫ 𝜕(𝑤)𝑓 (

𝑤−(𝜆1𝜙1−𝜆2)𝑌0−(1−𝜆1+𝜆2)𝜈

𝜆1
− 𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1 ) 𝑑𝑤

𝑏

𝑎
  (7) 

White noise process is assumed to be random variables exponentially distributed so that the pdf is 𝑓(𝑤) =
1

𝛼
𝑒

−𝑤

𝛼 , 

therefore, the ARL can be rearranged as the following equation: 

𝜕(𝜈) = 1 +
1

𝜆1
∫ 𝜕(𝑤)𝑒

−𝑤+(𝜆1𝜙1−𝜆2)𝑌0+(1−𝜆1+𝜆2)𝜈

𝛼𝜆1
+

𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝛼 𝑑𝑤
𝑏

𝑎
  

(8) 

The exact and the approximated solutions of the integral Equation 8 are revealed in the next subsections. 

3.1. The Proposed Explicit Formula 

From the integral Equation 8, we can rewrite in Equation 9: 

𝜕(𝜈) = 1 +
𝐶(𝜈)

𝛼𝜆1
𝐷  (9) 

where 𝐶(𝜈) = 𝑒
(𝜆1𝜙1−𝜆2)𝑌0+(1−𝜆1+𝜆2)𝜈

𝛼𝜆1
+

𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝛼  and 𝐷 = ∫ 𝜕(𝑤)𝑒
−𝑤

𝛼𝜆1𝑑𝑤
𝑏

𝑎
. Then, consider the variable D in 

this form; 

𝐷 = ∫ (1 +
𝐶(𝑤)

𝛼𝜆1
𝐷) 𝑒

−𝑤

𝛼𝜆1𝑑𝑤
𝑏

𝑎
= ∫ 𝑒

−𝑤

𝛼𝜆1𝑑𝑤
𝑏

𝑎
+

𝐷

𝛼𝜆1
∫ 𝑒

(𝜆1𝜙1−𝜆2)𝑌0+(1−𝜆1+𝜆2)𝑤

𝛼𝜆1
+

𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝛼
−

𝑤

𝛼𝜆1
𝑏

𝑎
𝑑𝑤 =

−𝛼𝜆1(𝑒

−𝑏
𝛼𝜆1−𝑒

−𝑎
𝛼𝜆1)

1+
1

𝜆1−𝜆2
𝑒

(𝜆1𝜙1−𝜆2)𝑌0
𝛼𝜆1

+
𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝛼 (𝑒

−(𝜆1−𝜆2)𝑏
𝛼𝜆1 −𝑒

−(𝜆1−𝜆2)𝑎
𝛼𝜆1 )

  

 (10) 

After substituting D into Equation 9, we finally have the explicit formula for in-control state as, 

𝜕(𝜈) = 1 −

(𝜆1−𝜆2)(𝑒

−𝑏
𝛼0𝜆1−𝑒

−𝑎
𝛼0𝜆1)𝑒

(1−𝜆1+𝜆2)𝜈
𝛼0𝜆1

(𝜆1−𝜆2)𝑒

−(𝜆1𝜙1−𝜆2)𝑌0
𝛼0𝜆1 𝑒

−(𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1 )

𝛼0 +(𝑒

−(𝜆1−𝜆2)𝑏
𝛼0𝜆1 −𝑒

−(𝜆1−𝜆2)𝑎
𝛼0𝜆1 )

   (11) 

and the out-of-control exact solution for ARL as; 
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𝜕(𝜈) = 1 −

(𝜆1−𝜆2)(𝑒

−𝑏
𝛼1𝜆1−𝑒

−𝑎
𝛼𝜆1)𝑒

(1−𝜆1+𝜆2)𝜈
𝛼1𝜆1

(𝜆1−𝜆2)𝑒

−(𝜆1𝜙1−𝜆2)𝑌0
𝛼1𝜆1 𝑒

−(𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1 )

𝛼1 +(𝑒

−(𝜆1−𝜆2)𝑏
𝛼1𝜆1 −𝑒

−(𝜆1−𝜆2)𝑎
𝛼1𝜆1 )

  (12) 

Furthermore, Banach’s fixed point theorem from mathematical analysis is utilized to confirm the existence and 

uniqueness of the proposed explicit formula which is the solution to the ARL integral equation. 

Definition 1. Let (𝑆, 𝛥)be a metric space. An operator 𝑀: 𝑆 → 𝑆is a contractive mapping or a contraction if there 

exists a constant 𝜅 ∈ (0,1)such that 𝛥(𝑀(𝑠1), 𝑀(𝑠2)) ≤ 𝜅𝛥(𝑠1, 𝑠2)for all 𝑠1,𝑠2in 𝑆. 

Theorem 1. Banach’s fixed point theorem: 

Let (𝑆, 𝛥)be a complete metric space and 𝑀: 𝑆 → 𝑆be a contraction on 𝑆. Then 𝑀 has a unique fixed point such that 

𝑀(𝑠) = 𝑠, 𝑠 ∈ 𝑆. 

In this present work, we consider the ARL Equation 8 in the set of all continuous function denoted by 𝐶[𝑎, 𝑏]. 

Consequently, the space (𝐶[𝑎, 𝑏], ‖. ‖∞) is complete with a norm given by ‖𝜕(𝑣)‖∞ = 𝑠𝑢𝑝
𝑣∈[𝑎,𝑏]

|𝜕(𝑣)|. The following 

theorem and its proof provide the second condition of Theorem 1 which can imply that the ARL integral equation has 

an only one solution. 

Theorem 2. Let 𝑀: 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏]  be an operator defined as,  

𝑀(𝜕(𝜈)) = 𝜕(𝜈) = 1 +
1

𝛼𝜆1
∫ 𝜕(𝑤)𝑘(𝜈, 𝑤)𝑑𝑤

𝑏

𝑎
  (14) 

where 𝑘(𝑣, 𝑤) = 𝑒
−𝑤+(𝜆1𝜙1−𝜆2)𝑌0+(1−𝜆1+𝜆2)𝑣

𝛼𝜆1
+

𝜇+∑ 𝜙𝑖𝑌𝑡−𝑖
𝑝
𝑖=2

+∑ 𝛽𝑗𝑋𝑗𝑡
𝑟
𝑗=1

𝛼  is a kernel function. Then, 𝑀 is a contraction. 

Proof. Let 𝜕1(𝜈) and 𝜕2(𝜈) are two arbitrary functions in 𝐶[𝑎, 𝑏], then, consider; 

‖𝑀(𝜕1(𝑣)) − 𝑀(𝜕2(𝑣))‖∞ = 𝑠𝑢𝑝
𝑣∈[𝑎,𝑏]

|∫ |𝜕1(𝑣) − 𝜕2(𝑣)|𝑑𝑤
𝑏

𝑎
| ≤ 𝑠𝑢𝑝

𝑣∈[𝑎,𝑏]
∫ |𝑘(𝑣, 𝑤)|

𝑏

𝑎
|𝜕1(𝑣) − 𝜕2(𝑣)|𝑑𝑦                                      

≤ 𝑠𝑢𝑝
𝑣∈[𝑎,𝑏]

∫ |𝑘(𝑣, 𝑤)|
𝑏

𝑎
𝑑𝑤‖𝑀(𝜕1(𝑣)) − 𝑀(𝜕2(𝑣))‖∞ = 𝜅‖𝑀(𝜕1(𝑣)) − 𝑀(𝜕2(𝑣))‖∞ 

where 𝜅 < 1and 𝜅 = 𝑠𝑢𝑝
𝑣∈[𝑎,𝑏]

∫ |𝑘(𝑣, 𝑤)|
𝑏

𝑎
𝑑𝑤is a positive constant. This implies that 𝑀is a contraction. 

3.2. Numerical Integral Equation Method 

The NIE method for approximating a solution of an integral equation is the use of a quadrature rule which determined 

by the set of nodes or points, {𝑥𝑗 , 𝑗 = 0,1, . . . , 𝑚} obtained from the partition of an integral limit [𝑎, 𝑏] into𝑚subintervals 

and the set of weights, {𝑤𝑗 , 𝑗 = 0,1, . . . , 𝑚}, generally, the approximation of an integral can be expressed as 

∫ 𝑊(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≈ ∑ 𝑤𝑗𝑓(𝑥𝑗)𝑚

𝑗=1 . 

The integral equation to evaluate the ARL in (8) can be estimated by the solution of 𝑚 linear equation systems, 

𝜕(𝑥𝑖) = 1 +
1

𝜆1
∑ 𝑤𝑗𝜕(𝑥𝑗)𝑚

𝑗=1 𝑓 (
𝑥𝑗−(𝜆1𝜙1−𝜆2)𝑌𝑡−1−(1−𝜆1+𝜆2)𝑥𝑖

𝜆1
− 𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1 ) , 𝑖 = 1, . . . , 𝑚  (15) 

The system of the 𝑚 linear equations is 𝐿𝑚×1 = (𝐼𝑚 − 𝑅𝑚×𝑚)−11𝑚×1 where 𝐿𝑚×1 = [𝐿̃(𝑎1) 𝐿̃(𝑎2) . . . 𝐿̃(𝑎𝑚)]𝑇. 

Let 𝑅𝑚×𝑚 be a matrix and define the 𝑚 to 𝑚𝑡ℎ as elements of matrix 𝑅 as follows, 

[𝑅𝑖𝑗] ≈
1

𝜆1
𝑤𝑗𝑓 (

𝑥𝑗−(𝜆1𝜙1−𝜆2)𝑌𝑡−1−(1−𝜆1+𝜆2)𝑥𝑖

𝜆1
− 𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1 )  (16) 

Finally, the general numerical approximation of 𝜕(𝜈) is expressed as: 

𝜕(𝜈) = 1 +
1

𝜆1
∑ 𝑤𝑗𝜕(𝑥𝑗)𝑚

𝑗=1 𝑓 (
𝑥𝑗−(𝜆1𝜙1−𝜆2)𝑌𝑡−1−(1−𝜆1+𝜆2)𝜈

𝜆1
− 𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1 )  (17) 

The details of different composite quadrature rules including the location of nodes and their weights when setting 

the equal width ℎ = (𝑏 − 𝑎)/𝑚 and 𝐾𝑗 =
𝑥𝑗−(𝜆1𝜙1−𝜆2)𝑌𝑡−1−(1−𝜆1+𝜆2)𝜈

𝜆1
− 𝜇 − ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝
𝑖=2 − ∑ 𝛽𝑗𝑋𝑗𝑡

𝑟
𝑗=1 are presented in 

Table 1. 
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Table 1. The composite quadrature rules 

Composite rules Equation Node(𝒙𝒋) Weight (𝒘𝒋) 

Midpoint 𝜕̃𝑀(𝜈) = 1 +
1

𝜆1

∑ 𝑤𝑗𝐿(𝑥𝑗)

𝑚

𝑗=1

𝑓(𝐾𝑗) 𝑎 + (𝑗 −
1

2
) ℎ ℎ 

Trapezoidal 𝜕̃𝑇(𝜈) = 1 +
1

𝜆1

∑ 𝑤𝑗𝐿(𝑤𝑗)

𝑚

𝑗=0

𝑓(𝐾𝑗) 𝑎 + 𝑗ℎ 
ℎ

2
; 𝑗 = 0, 𝑚, ℎ; 𝑗 = 1, . . . , 𝑚 − 1 

Simpson’s 
𝜕̃𝑆(𝜈) = 1 +

1

𝜆1

∑ 𝑤𝑗𝐿(𝑥𝑗)

2𝑛

𝑗=0

𝑓(𝐾𝑗) 

where m=2n 

𝑎 + 𝑗ℎ 
ℎ

3
; 𝑗 = 0,2𝑛,

4ℎ

3
; 𝑗 = 1, . . ,2𝑛 − 1,

2ℎ

3
; 𝑗 = 2, . . ,2𝑛 − 2 

Bool’s 
𝜕̃𝐵(𝜈) = 1 +

1

𝜆1

∑ 𝑤𝑗𝐿(𝑥𝑗)

4𝑛

𝑗=0

𝑓(𝐾𝑗) 

where m=4n 

𝑎 + 𝑗ℎ 

14ℎ

45
; 𝑗 = 0,4𝑛,

64ℎ

45
; 𝑗 = 1, . . . ,4𝑛 − 3,4𝑛 − 1 

24ℎ

45
; 𝑗 = 2, . . . ,4𝑛 − 2, 

28ℎ

45
; 𝑗 = 4, . . . ,4𝑛 − 4 

4. Simulation Result 

The details of simulation study, performance criteria and results for verifying the accuracy of the proposed explicit 

formula to assess the ARL of ARX(p,r) process running on the extended EWMA control chart are provided in subsection 

4.1. The explicit formula and NIE method to evaluate the ARL were computed by the Mathematica program in the 64-

bit operating system, AMD Ryzen 7 4700U with Radeon Graphics 2.00 GHz processor. In addition, the performance 

comparisons of the extended EWMA control chart and the classical EWMA control chart in detecting process mean 

change under different conditions are presented in subsection 4.2. The real datasets in finance and economics fields are 

studied and revealed in 4.3. 

4.1. The Accuracy of the Proposed Explicit Formula 

The numerical algorithm for calculating the ARL can be concluded as the following steps.  

Step 1: Set the values of 

 The autoregressive coefficients (𝜙𝑖), the coefficient exogenous variables (𝛽𝑗), constant (𝜇), the initial value of 

autoregressive: 𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑝 and the exogenous variables (𝑋𝑗𝑡) in the ARX(p,r) model. 

 The smoothing constants (𝜆1, 𝜆2)and the initial value of the extended EWMA control chart (𝐸0 = 𝜈). 

 The exponential white noise parameter for in-control state, 𝛼0. 

 The shifts value, 𝛿 = 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1 to determine the out-of-control state parameter 

𝛼1 = (1 + 𝛿)𝛼0. 

 An acceptable ARL0  = 370 for  in-control state and the lower control limit 𝑎. 

Step 2: Compute the upper control limit, 𝑏 by Equation 11 that yield the desire average run length for in - control 

process.  

Step 3: Compute a solution of ARL1 for the specific shift in process where 𝛼1 = (1 + 𝛿)𝛼0 by the equation of explicit 

formula (12) and the NIE method (17) with different quadrature rules and set the numbers of subinterval, 𝑚 = 600. The 

CPU time of each method is also collected. 

Step 4: Compute the absolute percentage difference, APD (%) which is defined as: 

𝐴𝑃𝐷(%) =
|𝜕(𝜈)−𝜕̃(𝜈)|

𝜕(𝜈)
× 100  (18) 

Table 2 presents the ARL values of the extended EWMA control chart, calculated using an explicit formula and four 

composite quadratic rules for the NIE method. This analysis was conducted on various ARX(p,r) processes, specifically 

the ARX(1,2), ARX(2,1), and ARX(3,2) models when 𝑎 = 0, 𝝁 = 𝟏 and specific 𝝀𝟏 = 𝟎. 𝟎𝟓 and 𝜆2 = 0.025.The results 

indicate that the ARL values obtained from the derived explicit formula are very similar to those approximated by the 

NIE method. In fact, the small APD (%) suggests that the proposed explicit formula can accurately evaluate the ARL 

when compared to the NIE method. In addition, the CPU time shows that the explicit formula takes less than 0.001 

seconds to compute the ARL, whereas the NIE method takes approximately 3.1 to 3.5 seconds. Notably, the composite 

Bool’s rule is the fastest among the other rules. The advantage of explicit formula in this work which rapidly calculating 

the accurate ARL values is similar to the previous studies [20-25] that derived the explicit formula for other control 

charts with various pattern of time series model with exponential white noise.  
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4.2. The Performance of Extended EWMA Control Chart 

The ARL of the extended EWMA control chart has been studied under different conditions of the relevant parameters 

to assess the sensitivity in detecting the process change. The overall performance measures namely the average extra 

quadratic loss (AEQL), the performance comparison index (PCI) and the relative mean index (RMI) are used to compare 

the efficiency of the extended EWMA control chart and the classical EWMA control chart and defined as follows:  

𝐴𝐸𝑄𝐿 =
1

𝛥
∑ (𝛿𝑖

2 × 𝐴𝑅𝐿(𝛿𝑖))
𝛿𝑚𝑎𝑥∑
𝛿𝑖=𝛿𝑚𝑖𝑛

  (19) 

where 𝛿𝑖 is the value of change in the process mean at each level i, 𝐴𝑅𝐿(𝛿𝑖) is the ARL value of the control chart for 

the change level 𝛿𝑖and 𝛥 is the number of shift levels from 𝛿𝑚𝑖𝑛 to 𝛿𝑚𝑎𝑥. In this study, the increments 𝛥 =9 from 𝛿𝑚𝑖𝑛=0 

to 𝛿𝑚𝑎𝑥=1. The control chart with the smallest value of AEQL is implied to be the most effective one.  

The PCI is the ratio of the AEQL of a control chart and the AEQL of the most effective control chart denoted as 

AEQLbase defined as, 

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿𝑏𝑎𝑠𝑒
  (20) 

The RMI is calculated as: 

𝑅𝑀𝐼 =
1

𝑛
∑

𝐴𝑅𝐿(𝛿𝑖)−𝐴𝑅𝐿𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡(𝛿𝑖)

𝐴𝑅𝐿𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡(𝛿𝑖)

𝑛
𝑖=1   (21) 

where 𝑛 is the number of the shifts, 𝐴𝑅𝐿(𝛿𝑖), 𝑖 = 1, . . . , 𝑛is the ARL of a control chart for a shift 𝛿𝑖 and 𝐴𝑅𝐿𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡(𝛿𝑖) 

is the smallest ARL among the competing control charts for the shift 𝛿𝑖. It is similar to the AEQL which can implies 

that a control chart with a lowest value of RMI has the most powerful detection ability. 

Table 3 reveals the ARL values of ARX(1,1) model when 𝜆1= 0.05, 0.10, 0.15  and 𝜆2= 0.015, 0.025, 0.035, 0.045. 

The result shows that the extended EWMA charts with different values of 𝜆2 obtained the lower ARL than the EWMA 

charts for all magnitudes of change. However, it can be seen that the ARL values of the extended EWMA and classical 

EWMA chart are hardly different when the shift sizes are larger. The AEQL, PCI and RMI values indicate that the 

performance of the extended EWMA control chart slightly improved when 𝜆2 increased. Moreover, we consider the 

AEQL values of each fixed 𝜆2and found that the control chart showed the better performance when 𝜆1 is increased. 

Similary, Table 4 illustrate the ARL values of ARX(2,2) model when the smoothing parameter𝜆1= 0.05, 0.10, 0.15 and 

𝜆2=0.3𝜆1, 0.5𝜆1, 0.7𝜆1, 0.9𝜆1. The results confirm that the extended EWMA control charts quicklier detecting changes 

than the EWMA control chart and also show the better performance when 𝜆2increased and close to 𝜆1.  

Table 2. The ARL from explicit formula against NIE method using four quadrature rules for the extended EWMA control 

chart on ARX(p,r) model given 𝒂 = 𝟎, 𝝁 = 𝟏, 𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝀𝟐 = 𝟎. 𝟎𝟐𝟓 and ARL0=370 

ARX 

𝜙𝑖 , 𝛽𝑗 , 𝑏 
𝛿 

Explicit 

(CPU Time) 

NIE (CPU Time in seconds, APD(%)) 

Midpoint Trapezoidal Simpson’s Bool’s 

ARX(1,2) 

𝜙1= -0.2 

𝛽1= 0.25 

𝛽2= 0.10 

b = 0.00029919 

0.000 
370.79588139338 

(<0.001) 

370.7958813921 

(3.437, 3.500×10-10) 

370.7958813968 

(3.422, 9.304×10-10) 

370.7958813937 

(3.375, 7.687×10-11) 

370.7958813937 

(3.360, 7.714×10-11) 

0.005 
138.81636527871 

(<0.001) 

138.8163652788 

(3.453, 9.797×10-11) 

138.8163652806 

(3.484, 1.335×10-9) 

138.8163652794 

(3.438, 4.963×10-10) 

138.8163652794 

(3.437, 5.108×10-10) 

0.010 
84.385613287935 

(<0.001) 

84.38561328855 

(3.453, 6.699×10-10) 

84.38561328957 

(3.484, 1.940×10-9) 

84.38561328889 

(3.453, 1.131×10-9) 

84.38561328889 

(3.438, 1.132×10-9) 

0.025 
37.566999643581 

(<0.001) 

37.56699964348 

(3.563, 2.705×10-10) 

37.56699964391 

(3.484, 8.853×10-10) 

37.56699964362 

(3.437, 1.147×10-10) 

37.56699964362 

(3.438, 1.147×10-10) 

0.050 
18.548715459259 

(<0.001) 

18.54871545920 

(3.547, 2.971×10-10) 

18.54871545940 

(3.453, 7.720×10-10) 

18.54871545927 

(3.438, 5.930×10-11) 

18.54871545927 

(3.437, 5.930×10-11) 

0.100 
8.5084421809348 

(<0.001) 

8.508442180907 

(3.437, 3.267×10-10) 

8.508442180984 

(3.469, 5.807×10-10) 

8.508442180933 

(3.453, 2.434×10-11) 

8.508442180933 

(3.438, 2.421×10-11) 

0.250 
2.8749912056601 

(<0.001) 

2.874991205656 

(3.532, 1.537×10-10) 

2.874991205670 

(3.485, 3.656×10-10) 

2.874991205660 

(3.453, 1.948×10-11) 

2.874991205660 

(3.437, 1.948×10-11) 

0.500 
1.4971503983684 

(<0.001) 
1.497150398367 

(3.500, 2.177×10-9) 
1.497150398370 

(3.468, 1.994×10-9) 
1.497150398368 

(3.438, 2.116×10-9) 
1.497150398368 

(3.437, 2.116×10-9) 

1.000 
1.1054759084698 

(<0.001) 

1.105475908470 

(3.484, 1.087×10-11) 

1.105475908470 

(3.484, 1.900×10-11) 

1.105475908470 

(3.438, 9.039×10-13) 

1.105475908470 

(3.438, 9.039×10-13) 
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ARX(2,1) 

𝜙1= 0.1 

𝜙2= -0.2 

𝛽1= 0.5 

b = 0.004929596 

0.000 
370.00748430131 

(<0.001) 

370.0074838708 

(3.453, 1.163×10-7) 

370.0074851591 

(3.422, 2.318×10-7) 

370.0074843002 

(3.375, 2.876×10-10) 

370.0074843002 

(3.391, 2.873×10-10) 

0.005 
190.55222061678 

(<0.001) 

190.5522204017 

(3.468, 1.129×10-7) 

190.5522210465 

(3.469, 2.254×10-7) 

190.5522206167 

(3.438, 7.872×10-11) 

190.5522206167 

(3.438, 7.872×10-11) 

0.010 
127.43166667364 

(<0.001) 

127.4316665325 

(3.469, 1.107×10-7) 

127.4316669558 

(3.484, 2.215×10-7) 

127.4316666736 

(3.453, 1.724×10-11) 

127.4316666736 

(3.422, 1.648×10-11) 

0.025 
62.634879012605 

(<0.001) 

62.63487894622 

(3.531, 1.060×10-7) 

62.63487914542 

(3.453, 2.120×10-7) 

62.63487901262 

(3.437, 2.699×10-11) 

62.63487901262 

(3.422, 2.699×10-11) 

0.050 
32.758067253609 

(<0.001) 

32.75806722111 

(3.438, 9.919×10-8) 

32.75806731864 

(3.500, 1.986×10-7) 

32.75806725362 

(3.453, 5.709×10-11) 

32.75806725362 

(3.453, 5.709×10-11) 

0.100 
15.823474648979 

(<0.001) 
15.82347463517 

(3.438, 8.739×10-8) 
15.82347467659 

(3.500, 1.744×10-7) 
15.82347464898 

(3.438, 1.416×10-10) 
15.82347464898 

(3.422, 1.416×10-10) 

0.250 
5.5103356099647 

(<0.001) 
5.510335606715 

(3.469, 5.897×10-8) 
5.510335616464 

(3.500, 1.179×10-7) 
5.510335609965 

(3.453, 2.354×10-12) 
5.510335609966 

(3.438, 2.354×10-12) 

0.500 
2.5546720917965 

(<0.001) 

2.554672091019 

(3.515, 3.044×10-8) 

2.554672093352 

(3.468, 6.087×10-8) 

2.554672091796 

(3.437, 3.824×10-13) 

2.554672091795 

(3.438, 3.824×10-13) 

1.000 
1.4769505548513 

(<0.001) 

1.476950554717 

(3.453, 9.083×10-9) 

1.47695055512 

(3.484, 1.817×10-8) 

1.476950554851 

(3.453, 6.765×10-13) 

1.476950554851 

(3.453, 6.765×10-13) 

ARX(3,2) 

𝜙1= -0.1 

𝜙2= 0.2 

𝜙3= -0.3 

𝛽1= 0.5 

𝛽2=-0.25 

b = 0.000347603 

0.000 
370.02826148995 

(<0.001) 

370.0282614895 

(3.516, 1.311×10-10) 

370.0282614959 

(3.437, 1.597×10-9) 

370.028261491595 

(3.422, 4.446×10-10) 

370.028261491598 

(3.422, 4.454×10-10) 

0.005 
140.84047889377 

(<0.001) 

140.840478892 

(3.484, 1.267×10-9) 

140.8404788943 

(3.532, 4.040×10-10) 

140.840478892769 

(3.422, 7.100×10-10) 

140.84047889277 

(3.500, 7.093×10-10) 

0.010 
85.969167561932 

(<0.001) 

85.96916756157 

(3.516, 4.169×10-10) 

85.96916756298 

(3.516, 1.222×10-9) 

85.9691675620432 

(3.484, 1.292×10-10) 

85.9691675620434 

(3.469, 1.295×10-10) 

0.025 
38.427560279249 

(<0.001) 

38.42756027909 

(3.547, 4.205×10-10) 

38.42756027969 

(3.547, 1.141×10-9) 

38.427560279287 

(3.516, 9.966×10-11) 

38.4275602792872 

(3.485, 9.992×10-11) 

0.050 
19.019467342452 

(<0.001) 

19.01946734238 

(3.515, 3.801×10-10) 

19.01946734265 

(3.532, 1.065×10-9) 

19.01946734247 

(3.484, 1.105×10-10) 

19.01946734247 

(3.469, 1.105×10-10) 

0.100 
8.7437261931818 

(<0.001) 

8.743726193149 

(3.640, 3.704×10-10) 

8.743726193257 

(3.531, 8.588×10-10) 

8.7437261931852 

(3.469, 3.923×10-11) 

8.74372619318519 

(3.469, 3.935×10-11) 

0.250 
2.9548002268956 

(<0.001) 

2.954800226896 

(3.485, 2.427×10-10) 

2.95480022691 

(3.500, 4.680×10-10) 

2.954800226896 

(3.484, 5.756×10-12) 

2.954800226896 

(3.469, 5.756×10-12) 

0.500 
1.5261219828111 

(<0.001) 

1.526121982810 

(3.500, 8.845×10-11) 

1.526121982814 

(3.515, 1.684×10-10) 

1.526121982811 

(3.484, 3.274×10-12) 

1.526121982811 

(3.453, 3.274×10-12) 

1.000 
1.1140149698577 

(<0.001) 
1.1140149698575 

(3.578, 1.437×10-11) 
1.114014969858 

(3.562, 2.872×10-11) 
1.1140149698578 

(3.484, 2.872×10-11) 
1.114014969858 

(3.484, 2.872×10-11) 

Table 3. The ARL for the extended EWMA control chart on ARX(1,1) model compare with the EWMA chart when 𝒂 = 𝟎, 

𝝓𝟏 = 𝟎. 𝟑 and 𝜷𝟏 = 𝟎. 𝟓 are given 

𝝀𝟏 Shift 

𝝀𝟐 
EWMA 

(𝒃′= 0.02128157) 0.015 

(𝒃 = 0.00856734) 

0.025 

(𝒃 =0.004688704) 

0.035 

(𝒃 =0.002569308) 

0.045 

(𝒃 =0.001408792) 

0.05 0.000 370.0230749 370.020397 370.0022024 370.0094036 370.0106203 

 0.005 202.5551198 189.3755089 177.7365048 167.4941544 225.9518908 

 0.010 138.6254961 126.3611946 116.0110431 107.2478077 161.9505653 

 0.025 69.96172424 61.9557122 55.51111554 50.26046147 86.40129664 

 0.050 37.18100648 32.35704228 28.56364099 25.52882316 47.48474047 

 0.100 18.23027117 15.61062999 13.58536505 11.98626866 23.98344592 

 0.250 6.461339461 5.429878966 4.652293688 4.051757178 8.80793257 

 0.500 2.979979859 2.520221731 2.185067614 1.93488656 4.069266324 

 1.000 1.650467505 1.463568934 1.334456146 1.243486237 2.121210512 

 AEQL 0.348578213 0.302898171 0.26994368 0.245605819 0.458157095 

 PCI 1.419258775 1.233269522 1.09909318 1 1.865416289 

 RMI 0.370374045 0.214558988 0.094476877 0 0.713546025 
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0.10  (𝑏 =0.0274078) (𝑏 =0.02021706) (𝑏 =0.014933349) (𝑏 =0.01104089) (𝑏∗=0.04343651) 

 0.000 370.08679 370.0148561 370.0069575 370.0150284 370.0130927 

 0.005 126.6270088 119.6525792 113.4260721 107.8149375 138.9463404 

 0.010 76.35379692 71.31980306 66.91788227 63.02495293 85.53792815 

 0.025 34.8301204 32.20631679 29.95111527 27.98707599 39.74672435 

 0.050 18.27777373 16.8175237 15.57170341 14.49398222 21.04399329 

 0.100 9.419977003 8.63595675 7.970708904 7.39822652 10.91527025 

 0.250 4.005211661 3.668840714 3.386090563 3.145134846 4.652867167 

 0.500 2.285739767 2.112181538 1.968257802 1.847385373 2.624587041 

 1.000 1.524507577 1.437949538 1.367737098 1.310163906 1.69751911 

 AEQL 0.279859148 0.261550343 0.246479494 0.23392091 0.315900212 

 PCI 1.196383633 1.118114422 1.053687307 1 1.350457349 

 RMI 0.204350975 0.125239921 0.057967885 0 0.354353665 

0.15  (𝑏 =0.04833234) (𝑏 =0.03935632) (𝑏 =0.03208744) (𝑏 =0.02618639) (𝑏∗=0.06598734) 

 0.000 370.0397208 370.0157474 370.0168905 370.0286903 370.0338381 

 0.005 105.0220357 100.3838646 96.18482371 92.34918578 113.0463707 

 0.010 61.35845538 58.22081974 55.41829121 52.88969654 66.89597728 

 0.025 27.50341639 25.94585264 24.56893211 23.33825561 30.29427181 

 0.050 14.51714039 13.66250439 12.90998692 12.23993223 16.0568046 

 0.100 7.667982244 7.208446946 6.804820954 6.446376029 8.498012692 

 0.250 3.482624435 3.279985683 3.102726461 2.946075936 3.849774279 

 0.500 2.122980254 2.01370871 1.918774969 1.835538708 2.322185838 

 1.000 1.492216472 1.43421367 1.384430089 1.341369114 1.599268701 

 AEQL 0.264394363 0.252603169 0.242407716 0.233514582 0.285999763 

 PCI 1.132239199 1.081744732 1.038083849 1 1.2247619 

 RMI 0.144727436 0.090399477 0.042560489 0 0.242358726 

The higher performance of the extended EWMA chart is consistent with the study of Karoon et al [21] which reported 

that when smoothing parameter 𝜆2is increasing. In addition, the findings that the adjusted EWMA-type are consistent 

show more effective in detecting changes the classical EWMA chart with previously presented such as studies showing 

in previous studies [24, 25]. 

 According to the results from Tables 3 to 5 illustrate the study of the extended EWMA chart and original EWMA 

when choosing 𝜆1 = 0.15 and 𝜆2 = 0.9𝜆1 to evaluated the ARL and overall performance criteria on ARX(3,1) model with 

varying the values of LCL from 0 to 0.075. The results insist that the extended EWMA control charts are more effective 

than the classical EWMA control chart for every different value of 𝑎, furthermore, the AEQL value indicate that the 

control charts are more slightly sensitivity when the LCL value increase.    

Table 4. The ARL for the extended EWMA control chart on ARX(2,2) model compare with the EWMA chart given 𝝓𝟏 =

𝝓𝟐 = 𝟎. 𝟑, 𝜷𝟏 = 𝟎. 𝟓 and 𝜷𝟐 = 𝟎. 𝟐𝟓 

𝝀𝟏 𝜹 

𝝀𝟐 
EWMA 

(𝒃′=0.00210744) 𝟎. 𝟑𝝀𝟏 

(𝒃 =0.000469435) 

𝟎. 𝟓𝝀𝟏 

(𝒃 =0.000172602) 

𝟎. 𝟕𝝀𝟏 

(𝒃 =0.00006347) 

𝟎. 𝟗𝝀𝟏 

(𝒃 =0.00002334) 

0.05 0.000 370.0623806 370.0851232 370.2705782 370.303918 370.0557168 

 0.005 143.6099899 131.3741982 121.3469874 112.9932666 167.4925777 

 0.010 88.1180071 78.84564694 71.50919257 65.57709639 107.3486736 

 0.025 39.62228502 34.65638219 30.84069842 27.82653203 50.49432756 

 0.050 19.70209443 16.97689337 14.90780681 13.28804074 25.81118976 

 0.100 9.109697307 7.729595114 6.692445983 5.887764573 12.25996381 

 0.250 3.095444374 2.614765165 2.265882038 2.005240113 4.241481434 

 0.500 1.582397851 1.404972604 1.285218258 1.202671002 2.041950164 

 1.000 1.132053547 1.079399244 1.048080721 1.029242898 1.289990658 

 AEQL 0.210959608 0.194070285 0.182739658 0.174901114 0.255464393 

 PCI 1.206165032 1.109600048 1.044817003 1 1.460621874 

 RMI 0.336424167 0.191309977 0.083133016 0 0.669446511 
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0.10  (𝑏 =0.000949982) (𝑏 =0.0003493386) (𝑏 =0.0001284868) (𝑏 =0.00004726) (𝑏′=0.004266463) 

 0.000 370.0087502 370.0120179 370.0252132 370.0816262 370.0300218 

 0.005 71.649121 63.8472325 57.75480129 52.88951613 88.24019188 

 0.010 39.57608587 34.83510149 31.20579234 28.35098335 50.02999584 

 0.025 16.82029518 14.65876241 13.02550689 11.75257144 21.71070307 

 0.050 8.564602417 7.429641125 6.5759909 5.912616074 11.15848394 

 0.100 4.361126688 3.781726754 3.348530314 3.013730289 5.698686323 

 0.250 1.957676502 1.73723013 1.577566986 1.458460132 2.48618116 

 0.500 1.303114058 1.210685405 1.148358179 1.105417891 1.543269823 

 1.000 1.08108828 1.048751844 1.029524129 1.01795948 1.178254014 

 AEQL 0.178945097 0.170070318 0.164204698 0.160209916 0.202791007 

 PCI 1.116941452 1.061546765 1.024934671 1 1.265783113 

 RMI 0.29562144 0.167910647 0.072906246 0 0.590748109 

0.15  (𝑏 =0.0014279593) (𝑏 =0.0005250648) (𝑏 =0.0001931210) (𝑏 =0.0000710357) (𝑏′=0.006418365) 

 0.000 370.0007716 370.0137482 370.2646943 370.0054564 370.0056041 

 0.005 54.72707532 48.48968749 43.67986131 39.86641746 68.30247889 

 0.010 29.6429765 26.02645315 23.27907858 21.12757265 37.74195095 

 0.025 12.59578915 10.99351383 9.787432007 8.849442004 16.25336403 

 0.050 6.55216269 5.714438353 5.085790438 4.597862738 8.478559573 

 0.100 3.494654209 3.063447519 2.741505761 2.492863279 4.494553824 

 0.250 1.735702035 1.566190128 1.443509752 1.352019619 2.143298599 

 0.500 1.243300745 1.169081181 1.119055437 1.084595034 1.436557432 

 1.000 1.068790317 1.04135321 1.025043217 1.015233965 1.151365586 

 AEQL 0.172403186 0.165235199 0.160521447 0.157327506 0.191804795 

 PCI 1.095823545 1.050262621 1.020301219 1 1.219143424 

 RMI 0.27876938 0.158247137 0.068716666 0 0.558574232 

Table 5. The ARL of the EWMA and the extended EWMA control charts on ARX(3,1) model when the lower control limits 

(𝒂) are varied and 𝝀𝟏 = 𝟎. 𝟏𝟓, 𝝀𝟐 = 𝟎. 𝟗𝝀𝟏, 𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐 = 𝝓𝟑 = 𝟎. 𝟐, 𝜷𝟏 = 𝟎. 𝟐𝟓 are given 

𝒂 Control chart 
𝜹 

AEQL PCI RMI 
0 0.005 0.01 0.025 0.050 0.100 0.250 0.500 1.000 

0 

Extended 

𝑏 =0.00125924 
370 56.45 30.62 12.99 6.729 3.561 1.744 1.241 1.066 0.200 1 0 

EWMA 

𝑏′=0.1205195 
370 134.9 82.73 38.55 20.65 10.975 4.932 2.904 1.912 0.407 2.034 1.403 

0.025 

Extended 

𝑏 =0.026263382 
370 49.25 26.52 11.28 5.918 3.211 1.654 1.217 1.061 0.197 1 0 

EWMA 

𝑏′=0.1488308 
370 124.4 75.052 34.61 18.55 9.938 4.575 2.766 1.867 0.392 1.986 1.433 

0.05 

Extended 

𝑏 =0.051267388 
370 42.84 22.94 9.807 5.220 2.909 1.574 1.194 1.057 0.195 1 0 

EWMA 

𝑏′=0.17723 
370 114.3 67.93 31.04 16.66 9.007 4.251 2.638 1.825 0.378 1.940 1.462 

0.075 

Extended 

𝑏 =0.07627128 
370 37.19 19.84 8.539 4.619 2.647 1.504 1.175 1.052 0.192 1 0 

EWMA 

𝑏′=0.2057207 
370 104.7 61.37 27.83 14.97 8.173 3.956 2.519 1.785 0.364 1.894 1.489 

4.3. Applications 

Typically, data in economics and financial applications is collected over specific periods, such as daily, weekly, or 

monthly. Current observations often depend on previous data, leading to correlations within the data itself. In this 

context, the SCB stock price (measured in THB) and the exchange rate (USD/THB) are considered exogenous variables. 

Data was collected daily from January 4, 2022, to June 28, 2022. The second application examines the Thailand GDP 

percentage expansion (%YoY) incorporating two exogenous variables: the exports (%) and the imports (%). This data 
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was collected quarterly from 2001 to 2020 and is of great interest for study. In this section, the explicit formula for 

evaluating the ARL of the ARX(p,r) model on the extended EWMA control chart are applied to the real datasets. We 

also compare the efficiency of detecting process changes with the traditional control chart. 

The two applications, SCB stock price and GDP percentage expansion are tested for autocorrelation using the Box-

Jenkins time series technique. The exogenous variables also incorporate to the prediction models for test the significant 

effect in the model. Table 6 reveals t-test statistic, the coefficient estimation and the Root Mean Square Error (RMSE) 

and Normalized Bayesian Information Criterion (BIC) values from the fitted ARX(p,r) model. The result indicates that 

ARX(1,1) model is the most suitable model for describing the pattern of the first application due to the lowest RMSE 

and Normalized BIC values. For GDP percentage expansion observation, the prediction model ARX(1,2) has the lowest 

of RMSE and normalized BIC values.  

To apply the explicit formula to the practical situation, the residuals between the actual values and the prediction 

assumed as the exponential white noise are determined by Kolmogonov-Smirnov testing. Table 7 shows that the residuals 

of the optimal model of two applications are all exponentially distributed. Therefore, the prediction model, ARX(1,1) 

for the SCB stock price (𝑌𝑡)with exchange rate (USD/THB) as input variable (𝑋1𝑡)can be assigned as  

𝑌𝑡 = 0.956𝑌𝑡−1 + 3.432𝑋1𝑡 + 𝜀𝑡 

where the in-control parameter, 𝛼0= 2.334. 

For the second dataset, the residuals follow the exponential distribution, 𝜀𝑡 ∼ 𝐸𝑥𝑝(1.426) when the process is an in-

control state. Thus, the prediction model ARX(1,2)  for GDP percentage expansion (𝑌𝑡)with the export (𝑋1𝑡)and import 

(𝑋2𝑡) can be written as 

𝑌𝑡 = 0.819𝑌𝑡−1 + 0.255𝑋1𝑡 + 0.062𝑋2𝑡 + 𝜀𝑡 

Tables 8 and 9 demonstrate the ARL values calculated form the explicit formula of ARX(1,1) and ARX(1,2) for the 

two real-word data when the smoothing parameter 𝜆1= 0.05, 0.10, 0.15 and 𝜆2=0.3𝜆1,0.5𝜆1,0.7𝜆1,0.9𝜆1was set. The 

results confirm that the extended EWMA control chart quicklier detecting changes than the EWMA control chart and 

also show the better performance when 𝜆2increased and close to𝜆1, The overall performance measure AEQL, PCI and 

RMI also present in Figures 1 and 2 for stock price and GDP, respectively 

Table 6. The ARX(p,r,) estimation and the model fit for applications 

Data Model Variables Coefficient Std. t Sig 
Model fit 

RMSE Normalized BIC 

SCB stock price 

ARX(1,1) 
AR(1) (𝜙̂1) 0.956 0.029 33.041 0.000 

3.915 2.813 
Exchange rate(𝛽̂1) 3.432 0.207 16.566 0.000 

ARX(2,1) 

AR(1) (𝜙̂1) 0.867 0.095 9.133 0.000 

3.930 2.863 AR(2) (𝜙̂1) 0.094 0.096 0.979 0.330 

Exchange rate(𝛽̂1) 3.419 0.233 14.650 0.000 

GDP percentage 

expansion 

ARX(1,2) 

AR(1) (𝜙̂1) 0.819 0.067 12.238 0.000 

1.807 1.347 Export(𝛽̂1) 0.255 0.037 6.806 0.000 

Import(𝛽̂2) 0.062 0.030 2.075 0.041 

ARX(2,2) 

AR(1) (𝜙̂1) 0.902 0.116 7.793 0.000 

1.811 1.407 
AR(2) (𝜙̂1) -0.103 0.115 -0.901 0.370 

Export(𝛽̂1) 0.254 0.036 7.044 0.000 

Import(𝛽̂2) 0.072 0.029 2.468 0.016 

Table 7. Exponential white noise testing 

Data Model Mean (𝜶𝟎) Kolmogorov-Smirnov Z Sig. 

SCB stock price ARX(1,1) 2.334 0.854 0.460 

GDP percentage expansion ARX(1,2) 1.426 0.917 0.370 
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Table 8. The ARL for ARX(1,1) applying to SCB stock price data 

𝝀𝟏 𝜹 

𝝀𝟐 
EWMA 

(𝒃′=0.0317708) 𝟎. 𝟑𝝀𝟏 

(𝒃 =0.018917715) 

𝟎. 𝟓𝝀𝟏 

(𝒃 =0.013406835) 

𝟎. 𝟕𝝀𝟏 

(𝒃 =0.0095070806) 

𝟎. 𝟗𝝀𝟏 

(𝒃 =0.00674426) 

0.05 0.000 370.0040501 370.0007067 370.0004582 370.0599657 370.3089563 

 0.005 106.820121 100.4375606 94.729478 89.60972967 117.9773533 

 0.010 62.42901753 58.09904009 54.29967473 50.94787977 70.20205248 

 0.025 27.81192489 25.66414057 23.80794348 22.19160901 31.75271609 

 0.050 14.49887529 13.32686357 12.32088143 11.4500065 16.67061524 

 0.100 7.489519175 6.867501306 6.336730702 5.879612506 8.65150742 

 0.250 3.257345392 2.993835405 2.771643106 2.582446113 3.757137073 

 0.500 1.935603515 1.801737894 1.690857261 1.598142672 2.195037645 

 1.000 1.365284958 1.300277016 1.247971345 1.205547605 1.495656746 

 AEQL 0.243356 0.229353 0.217862 0.208346 0.270805 

 PCI 1.168041 1.10083 1.045677 1 1.299786 

 RMI 0.201751 0.123876 0.057337 0 0.346859 

0.10  𝑏 = 0.038019014 𝑏 = 0.0269074 𝑏 = 0.019065803 𝑏 = 0.013519388 𝑏′= 0.0641 

 0.000 370.0008847 370.0180957 370.002168 370.0111296 370.1931347 

 0.005 78.12655773 72.89852825 68.31871872 64.27717034 87.58161942 

 0.010 43.89350325 40.63849202 37.82925685 35.38170207 49.90909725 

 0.025 19.21316807 17.69225938 16.39399277 15.2734093 22.06984454 

 0.050 10.14435448 9.327202978 8.633014535 8.036299121 11.68975246 

 0.100 5.448509626 5.013056812 4.644729563 4.329359697 6.276711769 

 0.250 2.614675638 2.423520999 2.263449008 2.127751184 2.982606894 

 0.500 1.707551758 1.605294058 1.521063555 1.45087754 1.908159639 

 1.000 1.296473483 1.243334201 1.200767108 1.166335662 1.404112067 

 AEQL 0.220553 0.209613 0.200696 0.193346 0.242281 

 PCI 1.140715 1.084136 1.038015 1 1.253096 

 RMI 0.194682 0.119009 0.05491 0 0.338152 

0.15  𝑏 = 0.057220513 𝑏 = 0.04044011 𝑏 = 0.02863122 𝑏 = 0.02029285 𝑏′= 0.096866815 

 0.000 370.0002681 370.00073 370.0373006 370.0491258 370.0012379 

 0.005 70.05726393 65.15864916 60.92132591 57.63997126 79.10781293 

 0.010 38.96391285 35.98501512 33.44259984 31.24396259 44.5831598 

 0.025 17.01228401 15.64200086 14.48366842 13.49029437 19.6358306 

 0.050 9.040053548 8.306713536 7.689271449 7.161623511 10.45229959 

 0.100 4.928824771 4.537551996 4.209261916 3.929640297 5.685608497 

 0.250 2.446797359 2.273286471 2.128957938 2.007123417 2.785598961 

 0.500 1.64587503 1.551618886 1.474405078 1.410285066 1.833044172 

 1.000 1.277067435 1.227051647 1.187164634 1.15498856 1.379405859 

 AEQL 0.214403 0.204243 0.196007 0.189245 0.234829 

 PCI 1.132942 1.079251 1.035732 1 1.240876 

 RMI 0.192439 0.116833 0.05331 0 0.338134 
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(b) 

 

(c) 

Figure 1. AEQL, PCI and RMI value on the control charts for SCB stock price application where (a) 𝝀𝟏 = 𝟎. 𝟎𝟓, (b) 𝝀𝟏 =

𝟎. 𝟏𝟎 and (c) 𝝀𝟏 = 𝟎. 𝟏𝟓 
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Table 9. The ARL for ARX(1,2) applying to GDP percentage expansions data 

𝝀𝟏 𝜹 

𝝀𝟐 
EWMA 

(𝒃′=0.01069878) 𝟎. 𝟑𝝀𝟏 

(𝒃 =0.00229284) 

𝟎. 𝟓𝝀𝟏 

(𝒃 =0.000823678) 

𝟎. 𝟕𝝀𝟏 

(𝒃 =0.000296076) 

𝟎. 𝟗𝝀𝟏 

(𝒃 =0.00010644541) 

0.05 0.000 370.0195125 370.0168014 370.0111423 370.0010579 370.0193069 

 0.005 176.1708882 158.5753877 144.2945208 132.6327563 210.3047398 

 0.010 114.6481409 99.88600383 88.54410867 79.67349984 146.0956492 

 0.025 54.67975265 46.01742504 39.69272597 34.92894616 74.99295654 

 0.050 28.07796619 23.1364354 19.61045931 16.99686804 40.2267433 

 0.100 13.32666035 10.75927865 8.958461228 7.640384668 19.86256417 

 0.250 4.553212746 3.613581107 2.977569056 2.528109829 7.079400055 

 0.500 2.142852181 1.762440126 1.520724827 1.361474675 3.247087222 

 1.000 1.318633449 1.18534282 1.10951606 1.065340391 1.757527932 

 AEQL 0.265825 0.228883 0.205742 0.190636 0.375299 

 PCI 1.394412 1.200629 1.079238 1 1.968667 

 RMI 0.482399 0.263632 0.110906 0 1.040855 

0.10  𝑏 =0.00464517 𝑏 =0.0016683882 𝑏 =0.0005998031 𝑏 =0.0002156943 𝑏′=0.021751807 

 0.000 370.0844572 370.004395 370.0081256 370.0006901 370.0002399 

 0.005 93.258375 80.48276256 70.90113885 63.53864909 121.8164902 

 0.010 53.2575307 45.03837717 39.07747821 34.60957764 72.87038299 

 0.025 23.20433801 19.30221432 16.54093729 14.50635031 33.00876762 

 0.050 11.91624534 9.836255509 8.379050339 7.312193249 17.26214393 

 0.100 6.056588517 4.981442311 4.235229765 3.692728425 8.873488972 

 0.250 2.602744369 2.175942576 1.888509094 1.685962798 3.769792565 

 0.500 1.587676052 1.391521285 1.267234871 1.18545813 2.163745959 

 1.000 1.193841436 1.112669882 1.066563681 1.039715824 1.463351631 

 AEQL 0.207328 0.187726 0.175636 0.167864 0.266973 

 PCI 1.235092 1.11832 1.046298 1 1.590409 

 RMI 0.434137 0.236377 0.09922 0 0.947839 

0.15  𝑏 =0.006987309 𝑏 =0.002508225 𝑏 =0.00090163 𝑏 = 0.0003242357 𝑏′=0.032870324 

 0.000 370.0015582 370.0069603 370.0544269 370.0026892 370.0008461 

 0.005 72.02856861 61.51285853 53.79130086 47.9445093 96.72326424 

 0.010 39.99670149 33.62557532 29.07021455 25.68715058 55.77959201 

 0.025 17.25654106 14.34934962 12.30871606 10.81213801 24.75080983 

 0.050 8.984280125 7.44793 6.377499842 5.596034753 13.01337024 

 0.100 4.736081026 3.937189241 3.384884769 2.984071306 6.863927909 

 0.250 2.225599379 1.898323953 1.678483015 1.523718346 3.131910337 

 0.500 1.469854915 1.312777862 1.213434874 1.148109584 1.935891627 

 1.000 1.163970193 1.095243656 1.056258866 1.033566465 1.39405184 

 AEQL 0.195216 0.179327 0.169584 0.163354 0.244267 

 PCI 1.19505 1.097785 1.038144 1 1.49533 

 RMI 0.412786 0.224275 0.094051 0 0.910455 
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(c) 

Figure 2. AEQL, PCI and RMI value on the control charts for GDP percentage expansions application where (a) 𝝀𝟏 = 𝟎. 𝟎𝟓, 

(b) 𝝀𝟏 = 𝟎. 𝟏𝟎 and (c) 𝝀𝟏 = 𝟎. 𝟏𝟓 
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5. Conclusion 

The capacity of the control charts in capturing changes in the process is usually assessed by the general characteristic, 

the ARL, which can be described through the Fredholm integral equation of the second kind. This research focused on the 

alternative methodology in calculating the ARL of the extended EWMA control chart for the ARX model with exponential 

white noise. The explicit formula derived from the ARL integral equation is proposed and proved the existence and 

uniqueness by applying the condition of Banach’s fixed point theorem. The accuracy of the exact solutions is verified by 

NIE methods with four different composite quadrature rules. The result indicates that the ARL from two methods is close, 

and the computation time of the proposed explicit formulas is less than 0.001 second. 

The second purpose of this study is to compare the sensitivity of the extended EWMA and the classical EWMA control 

charts under various situations and also examine the optimal condition of the smoothing parameter of the EWMA-type 

charts. It can be seen that the extended EWMA control chart shows better performance in detecting process mean changes, 

especially small shift sizes, as confirmed by overall performance criteria such as AEQL, PCI, and RMI values. Moreover, 

the result indicated that the extended EWMA control chart has higher efficiency when the smoothing parameter 𝝀𝟐 is almost 

equal to 𝝀𝟏. The two real datasets, namely SCB stock price and GDP percentage expansions with external factors, are 

applied to demonstrate the performance of the relevant control charts when the residuals of the forecasting model are 

exponentially distributed. 

However, the proposed procedure, an explicit formula, works in some conditions, in particular, when data is 

autocorrelated with exponential white noise. For future study, an explicit formula for the ARL will be developed for other 

time series models running on extended EWMA or the new adjusted control charts. 
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