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Abstract 

This study explores a non-destructive testing (NDT) method for crack detection using a two-stage convolutional neural 

network (CNN) model, incorporating a combination of AlexNet and YOLO models through transfer learning. Crack 

detection is pivotal for assessing structural integrity and ensuring timely maintenance interventions. The developed model 

was rigorously tested in simulated environments and through physical experimentations with the use of a UAV to evaluate 

its effectiveness. A 2-stage model, based on AlexNet and YOLO, was developed for crack classification and segmentation. 

The developed model leveraged transfer learning to address limitations from traditional CNN models. A known dataset 

was used to evaluate the developed model, benchmarking it against other models. The classification network achieved an 

accuracy rate exceeding 90%, while the segmentation network successfully identified and delineated cracks in 85.71% of 

the images. Finally, the developed model was deployed using a UAV to perform crack detection and segmentation in a 

controlled environment. These results underscore the model's proficiency in both detecting and segmenting structural 

cracks, highlighting its potential as a reliable tool for enhancing the maintenance and safety of architectural structures. 

Keywords: Computer Vision; 2-Stage CNN; Crack Detection; Crack Segmentation; Transfer Learning; Unmanned Aerial Vehicles (UAV). 

 

1. Introduction 

Non-destructive testing (NDT) concrete crack detection is critical for maintaining the structural integrity, safety, and 

longevity of concrete structures. Cracks can compromise the load-bearing capacity of structures, leading to increasing 

the risk and maintenance costs if not addressed promptly. Traditionally, crack detection relies on manual visual 

inspections conducted by trained personnel. While this method is straightforward, it is time-consuming, subjective, and 

prone to human error. To overcome these limitations, advanced NDT methods such as ultrasonic testing, infrared 

thermography, and ground-penetrating radar (GPR), have been introduced. In recent years, automated methods using 

digital image processing have gained prominence, employing high-resolution cameras and algorithms to analyze 

concrete surfaces for cracks. Among these, machine learning-based techniques, particularly Convolutional Neural 

Networks (CNNs), have shown great potential in improving detection accuracy and efficiency [1]. Despite advancements 

in crack detection, existing methods often rely on complex, expensive image acquisition systems, limiting their 

feasibility for large-scale deployment [2, 3]. Many of these systems also face challenges in balancing real-time detection 

with precision, particularly in GNSS-denied environments [4, 5]. While CNN-based methods have improved detection 

accuracy, their dependency on numerous high-quality datasets and sensitivity to complex environments reinforce the 

need for more adaptable, efficient solutions. 
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1.1. Review of Related Literature 

For crack detection, researchers have explored both one-stage and two-stage models, often featuring an initial 

classification phase followed by segmentation [6]. One-stage models like YOLOv4 and YOLOv8 combine detection and 

localization in a single step, making them efficient for real-time monitoring of large infrastructure. For example, Li et 

al. (2024) [7] demonstrated that a ResNet50-based two-stage model with multilayer parallel residual attention (MPR) 

achieved a mean Pixel Accuracy (mPA) of 92.7%, a mean Intersection over Union (IoU) of 88.3%, and a processing 

speed of 36.5 FPS, suitable for real-time applications. Similarly, Paramanandham et al. (2023) [8] utilized Pixel Intensity 

Resemblance Measurement (PIRM) to enhance accuracy and robustness in crack analysis for structural applications, 

while a 2023 study showed that ResNet50 outperformed VGG16, VGG19, and MobileNet with a test accuracy of 

99.88%, highlighting its strong generalization and fast convergence, particularly on smaller datasets [9, 10]. In contrast, 

two-stage models, such as the hybrid approach in this study, improve precision by focusing segmentation on relevant 

areas post-classification, which is particularly advantageous in complex or noisy environments [11, 12]. This can be seen 

in Yang et al. (2024) [13], where researchers developed an enhanced Mask R-CNN model for micro-crack detection on 

metal surfaces, refining feature extraction to detect small, intricate cracks even in low-contrast settings. Another study 

[14] introduced a two-stage framework using CNN and CTv2 networks for pixel-level pavement crack detection, 

achieving high accuracy across multiple datasets, with mean F1-scores up to 94.69%. While these models enhance 

detection accuracy, they are often constrained by computational demands and data requirements, a limitation addressed 

by transfer learning, which leverages pre-trained features to improve model performance [15]. 

Building on these insights, this study introduces a novel hybrid model that combines AlexNet for initial crack 

classification and YOLOv4 for segmentation, utilizing transfer learning to optimize accuracy with minimal data. This 

approach enhances both classification and segmentation efficiency, making it particularly suited for UAV-based 

applications where rapid, precise detection is essential. Notably, this specific combination of models has not yet been 

widely explored at the time of writing. 

This paper is structured as follows: Section II, 'Theoretical Considerations,' outlines the foundational concepts 

pertinent to the study. Section III, 'Methodology,' details the experimental procedures employed. Section IV, 'Results 

and Discussion,' examines the data derived from these experiments. Finally, Section V, 'Conclusion,' summarizes the 

findings and implications of the research.  

2. Theoretical Considerations 

This section provides a comprehensive overview of the theoretical concepts that supports this study’s approach, 

focusing on the evolution from traditional crack detection methods to advanced CNN architectures and the role of 

transfer learning in optimizing model accuracy and efficiency.  

2.1. Crack Detection and Segmentation 

The main challenge in crack image classification is the inhomogeneity of cracks and complex backgrounds, which 

often includes low contrast, shadows, uneven surfaces, and noise. Earlier methods using support vector machines (SVM) 

had an F1 score of 0.7359, while the introduction of deep convolutional neural networks (CNN) significantly improved 

performance. A 2016 study using a simple ConvNet architecture with four convolutional layers, max-pooling, a fully 

connected layer, and ReLU activation achieved an F1 score of 0.8965, surpassing the SVM benchmark [16]. Recent 

studies employed pre-trained models like VGG-19, which incorporates deeper structures to classify cracks into types 

such as alligator or longitudinal types, achieving an F1 score of 0.9076 [17]. Improvements in efficiency led to the use 

of AlexNet, which uses ReLU, dropout layers, and overlap pooling in a five-layer convolutional architecture. AlexNet 

along with GoogleNet, and VGG 19, achieved an F1 score of 0.99, but AlexNet had fewer layers, making it ideal for 

high-accuracy applications requiring lower computational loads [18].  

Pixel-level crack segmentation provides detailed information on crack type, location, and severity, though challenges 

like pixel imbalance and down-sampling persist. Modifications to CNNs—such as removing pooling layers, using up-

sampling, and adapting loss functions—help address these issues [19]. U-Net, originally developed for biomedical 

segmentation, has proven effective for crack segmentation [20]. In comparisons among deep CNN architectures—such 

as Fully Convolutional Network (FCN), Global Convolutional Network (FGN), Pyramid Scene Parsing Network 

(PSPNet), UPerNet, and DeepLabv3+—DeepLabv3+ achieved the highest F1 score of 0.7732, demonstrating resilience 

even with image blemishes [21]. A 2023 study validated YOLOv4’s suitability for crack detection in complex 

environments, achieving 92% accuracy with 0.22 mm precision in drone-captured images, highlighting its promise for 

real-time applications [22]. Given these challenges, CNNs have shown considerable promise in enhancing crack 

detection accuracy by identifying intricate patterns within complex backgrounds. However, for tasks requiring precise 

localization, 2-stage CNNs such as Faster R-CNN and Mask R-CNN provide enhanced performance by isolating areas 

of interest with greater accuracy. 
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2.2. Two-Stage Convolutional Neural Network in Crack Detection  

Two-Stage CNNs, including Faster R-CNN and Mask R-CNN, have advanced image detection and segmentation 

tasks by dividing the process into two phases: a region proposal stage for identifying areas of interest, followed by a 

classification and refinement stage for accurate detection. This separation allows for higher precision and adaptability in 

complex environments, making two-Stage CNNs particularly suitable for crack detection, where backgrounds are often 

heterogeneous and noisy. Traditional CNNs, while effective for image classification, face significant limitations in 

complex applications like crack detection. They lack mechanisms for detailed localization and segmentation, which are 

essential for assessing cracks’ size, type, and severity. In contrast, two-Stage CNNs overcome these limitations through: 

• Enhanced Localization and Precision: The Region Proposal Network (RPN) in 2-Stage CNNs isolates relevant 

regions within the image, filtering out background noise, which improves model focus on specific crack areas. 

This capability is crucial in infrastructure applications, where accurate localization is essential for analyzing small 

defects [23, 24]. 

• Detailed Segmentation with Mask R-CNN: For pixel-level segmentation, Mask R-CNN adds a segmentation branch 

to Faster R-CNN, allowing the model to delineate each pixel within detected cracks. This enables detailed 

information on crack boundaries and shapes, surpassing the capabilities of traditional CNNs in fine-grained 

segmentation [25]. The addition of segmentation in Mask R-CNN has been shown to improve crack localization 

in challenging environments [13]. 

• Improved Small Object Detection: Cracks are often small, elongated features that standard CNNs may overlook. 

The two-phase process in 2-Stage CNNs allows for region refinement, which enables precise detection of small 

details. Studies comparing CNN models, like the work by Zhang et al. (2016) [26], indicate that 2-Stage CNNs 

like Faster R-CNN perform significantly better in capturing fine details in infrastructure applications than single-

stage models. 

• Adaptability with Transfer Learning: Leveraging Transfer Learning, 2-Stage CNNs can use pre-trained weights 

from large datasets such as ImageNet to generalize on limited labeled data, enhancing both training speed and 

accuracy. For example, AlexNet and ResNet50 have been widely used in Transfer Learning to improve CNN 

generalization in crack detection, providing efficiency in limited-data scenarios like UAV-based inspections [27].  

While 2-stage CNNs deliver high precision in segmentation tasks, R-CNN is found to demand substantial 

computational resources and operate slowly, making it less ideal for real-time applications. Mask R-CNN, likewise, 

requires precise parameter tuning and has a slower processing speed, limiting its utility in fast-paced environments like 

UAV-based monitoring. The need for a balance between speed and accuracy in UAV-based crack detection led to the 

selection of AlexNet for efficient classification and YOLOv4 for rapid segmentation in this hybrid approach. 

2.2.1. AlexNet 

AlexNet is an 8-layer CNN classifier pre-trained on the ImageNet database, capable of classifying up to 1000 object 

categories. The architecture includes two initial convolution layers with ReLU and max pooling, followed by three 

convolution layers with ReLU, max pooling, two fully connected layers with ReLU, and a final softmax classification 

layer. The model’s efficiency and adaptability make it particularly useful in applications where lightweight, fast 

classification is necessary, as in UAV-based crack detection [14]. 

2.2.2. YOLOv4 Model 

YOLOv4 is a CNN-based single-stage detection model optimized for segmentation and designed to perform real-

time object detection. It uses CSPDarknet53 as a backbone, connecting to the final head with a “neck” structure, for 

predicting object classes and bounding boxes. Unlike 2-Stage CNNs, YOLOv4 is streamlined to operate at high speeds, 

making it suitable for fast segmentation in UAV-based applications. Although it lacks the dual-stage precision of models 

like Faster R-CNN, YOLOv4 is ideal for real-time segmentation where high speed and computational efficiency are 

critical [26]. 

2.2.3. Integration of AlexNet and YOLOv4 

In this study, AlexNet is used for initial crack classification, leveraging its efficient structure to achieve high accuracy 

without heavy computational demands. By classifying images in this initial phase, AlexNet reduces noise, focusing 

YOLOv4 on relevant regions for segmentation. This combined approach optimizes both processing speed and 

segmentation accuracy. The hybrid model effectively balances efficiency and precision in real-time crack detection, 

suitable for UAV-based monitoring [27]. Table 1 outlines the different models and their respective strengths and 

applications.  
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Table 1. Two-Stage and Traditional CNN Models 

Model Type Strengths Weaknesses Suitable Applications 

Faster R-CNN 2-Stage High localization, region focus 
High computational demand; 

slower, limiting real-time use 
Offline crack detection, detailed segmentation 

Mask R-CNN 2-Stage Pixel-level segmentation 
Sensitive to parameter tuning; 

slower than YOLO 
Precision tasks, boundary detection 

YOLOv4 Single-Stage Real-time segmentation Limited with tiny, intricate cracks Real-time crack detection, UAV-based applications 

AlexNet Single-Stage Lightweight, fast training Limited segmentation capabilities High-accuracy applications with lighter load demands 

Through 2-Stage CNNs and the hybrid use of AlexNet with YOLOv4, the model leverages the strengths of each 

approach, overcoming traditional CNN limitations in real-time crack detection for infrastructure monitoring. To further 

enhance the model’s adaptability and performance, particularly given the limitations of data collection in UAV 

applications, Transfer Learning allows the use of pre-trained models to achieve robust detection with smaller datasets, 

reducing computational demands and enhancing accuracy. 

2.3. Transfer Learning 

Transfer Learning enhances CNNs by allowing models to leverage features learned from pre-trained networks on 

large datasets, such as ImageNet, and apply them to related tasks with limited labeled data. In traditional CNNs, training 

from scratch requires vast, domain-specific datasets, which are often impractical to obtain for specialized applications 

like UAV-based crack detection. By reusing essential feature layers trained on generic visual patterns, Transfer Learning 

reduces data requirements and accelerates training [28] while preserving high accuracy [29]. For example, pre-trained 

models like AlexNet and ResNet50 enhance generalization in crack detection, achieving faster training convergence and 

accuracy improvements of up to 10% over models trained solely on smaller datasets [30]. 

Transfer Learning improves CNN adaptability by enabling fine-tuning of higher layers specific to the target task. 

This approach enhances model precision in recognizing crack-related features such as irregular shapes and small-scale 

details. Studies show that models fine-tuned through Transfer Learning, such as Mask R-CNN, perform well in high-

precision tasks, achieving F1 scores of up to 85% in complex environments [22]. Additionally, by reducing 

computational demands, Transfer Learning makes real-time applications feasible, supporting crack detection in GNSS-

denied environments. Integrating Transfer Learning into the study’s hybrid model with AlexNet and YOLOv4 optimizes 

both detection accuracy and efficiency for infrastructure monitoring applications [21]. 

2.4. Field of View 

Camera calibration is performed to correct image distortion and determine the camera parameters. One of the most 

important intrinsic parameters is the focal length, which is the distance from the lens to the camera sensor. Camera 

calibration also identifies extrinsic parameters, such as distance of the camera lens from the object being captured. This 

information is necessary to compute the field of view (FOV) of the camera, which dictates the area a camera can capture. 

This is particularly essential for coverage applications like wall inspections [31]. Figure 1 illustrates the relationship 

between focal length, distanced, with the FOV. 

 

Figure 1. Focal length and field-of-view, adopted from [31] 
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The size of the FOV can be calculated if the distance of the camera to the object, focal length, and size of the camera 

sensor are determined. The computation can be found on Equations 1 and 2 with Sw and Sh being the width and height 

of the camera sensor, D being the distance of camera to the object, and F being the focal length. 

𝐹𝑂𝑉𝑤 =
𝑆𝑤 × 𝐷

𝐹
 (1) 

𝐹𝑂𝑉ℎ =
𝑆ℎ × 𝐷

𝐹
 (2) 

Once the FOV is determined, the whole inspection area can be segmented into a grid composed of fixed-size 

rectangles based on the field of view’s measurement. Additionally, the viewpoint’s location would be the location of the 

lens, which is in the middle of the field of view and the proximity being the distance of the lens to the object. 

3. Methods 

This section outlines the methodological steps undertaken for the conduct of this experiment as shown in Figure 2 

below. The study commences with identifying the materials used for the physical experimentation, followed by the 

model development and evaluation. Finally, the calibration and physical experimentation discusses how the model was 

deployed through UAV operation in a controlled environment as well as the evaluation.  

 

Figure 1. Research Methodology 

3.1. Materials 

The Crazyflie, as depicted in Figure 3, is a compact, lightweight, yet robust UAV developed by Bitcraze. Its small 

size and modular design make it particularly suitable for drone research, as highlighted by Chu et al. (2022) [5] for its 

modularity, safety, and open-source framework. This study also employs the Lighthouse Positioning Deck and the 

Basestation, as illustrated in Figures 3c and 3d, respectively, for drone localization and navigation. 

Additionally, the AI Deck from Bitcraze is a camera module for the Crazyflie 2.X nano quadcopter, enhancing the 

drone with artificial intelligence capabilities. It integrates the HIMAX HM01B0 low-power monochrome camera, which 

has a resolution of 320×320 pixels, and a powerful GAP8 RISC-V processor, enabling real-time image processing and 

neural network computations for AI tasks. This modular platform supports a wide range of applications including 

autonomous navigation, object tracking, and environmental data collection, thereby facilitating research and 

development in drone-based AI technologies. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. (a) Crazyflie 2.1 [32], (b) AI Deck Module [33], (c) Lighthouse Positioning Deck [34], (d) Lighthouse Basestation [35] 

3.2. Dataset 

The dataset used in this study was gathered and published by Özgenel et al. (2018) [36]. It consists of 458 high-

resolution images, resulting in 20,000 crack images of various orientations and sizes, along with 20,000 non-crack 

images for noise. This dataset, widely used in road crack detection studies, was split into training, testing, and validation 

sets with a 60:20:20 ratio. For segmentation, no publicly available dataset with bounding boxes on cracks was found. 

Therefore, a custom dataset was manually created by capturing crack images. To align with the classification dataset, 

twelve images from Özgenel’s dataset were printed and pasted on a wall in various orientations; additional images were 

also combined to create varied types of cracks. 

Using the specified camera, images of these cracks were captured at the optimal distance determined by the 

calibration sequence for classification and segmentation. From this data collection, 704 crack images of varying 

orientation and positions were obtained. These images were then transferred to a computer for manual annotation. The 

segmentation annotation for the involved placing a bounding box that tightly encloses each crack, minimizing 

unnecessary surrounding space. Similar to the classification dataset, the annotated segmentation dataset was split into 

training, testing, and validation sets with a 60:20:20 ratio for transfer learning.  



HighTech and Innovation Journal         Vol. 5, No. 3, September, 2024 

695 

 

3.3. Model Development and Evaluation 

Once the datasets have been obtained, training of the classification network and segmentation network was conducted 

through transfer learning in MATLAB. For the classification network, a pre-trained AlexNet was used, and retrained 

with the Özgenel crack dataset. To match the number of classes, the last three layers of AlexNet were replaced, enabling 

the final classification layer to categorize images into two classes: Positive and Negative, depending on whether cracks 

are present. The training process involved running the network on the test dataset and adjusting it to achieve higher 

accuracy in subsequent iterations. Training concluded either once the maximum number of iterations was reached or 

when no further significant improvements in accuracy were observed. For YOLOv4, the transfer learning was also 

applied, and a pre-trained tiny-yolov4-coco network was used and retrained with the annotated dataset of 704 images. 

The model was specified to detect only a single class—the crack image. The input size was matched to the resolution of 

the drone's camera, and the number of anchor boxes was estimated based on the training data. Training was performed 

on a Ryzen 5 5500 processor and an RTX 3060 12gb graphics card. 

Upon completing the training of both the AlexNet and YOLOv4 models, a two-staged CNN model was implemented 

in MATLAB 2023a to detect and segment cracks in structural walls. Figure 4 illustrates the proposed two-stage model: 

the first stage employs a crack classification model that filters input images to identify those containing cracks, while 

the second stage involves a crack segmentation model that delineates the cracks by placing bounding boxes around them. 

This methodology leverages on a combination of Alexnet and YOLOv4, which, according to the literature, has not been 

previously utilized in two-stage CNN systems for classification and segmentation. To evaluate the efficacy of this two-

stage network, its performance was assessed using a confusion matrix and benchmarked against the standalone 

performance of YOLOv4, to determine whether the preliminary classification stage enhances the overall accuracy of 

crack segmentation. 

 

Input Image 
Crack Classification 

(AlexNet) 

Crack Segmentation 

(YOLOv4) 

Figure 3. Proposed 2-Stage CNN Network for Classification and Segmentation 

Finally, Figure 5 visualizes the output, where the resulting masks of the segmentation network are concatenated to 

represent the inspected area. The white regions highlight the cracks by bounding boxes which helps visualize their 

approximate locations. Another feature of the neural network’s output is the ability to quantify the crack size. Since the 

field of view size is known, the pixel-to-centimeter ratio can be calculated, allowing the bounding box to serve as a scale 

for determining the crack’s length and width. The dimensions of the bounding boxes can be converted into centimeters 

to determine the length and width of the crack as well as its position in the plane. 

 

Figure 4. Crack Quantification based on Mask Size 
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3.4. Physical Experimentation 

In this study, the imaging and localization system comprising a camera module on the AI Deck and a Lighthouse 

positioning deck were mounted on the UAV to gather video feedback and localize its position in the experimental space, 

as illustrated in Figure 6. To ensure accurate and effective data collection, the optimal distance for image capture was 

determined through calibration using a printed crack image and a calibration image—a chessboard with known grid 

sizes—positioned within the UAV's inspection area. The use of a chessboard for camera calibration is well documented 

for its effectiveness in determining intrinsic and extrinsic camera parameters. During the experiments, the UAV was 

instructed to hover and capture images at various distances (10, 13, 17, and 20 centimeters) from both the crack and 

chessboard images. The primary objective was to ascertain the UAV's imaging performance across these distances, 

pinpoint the optimal distance for effective crack classification and segmentation, and compute the camera's focal length 

at this distance to derive the horizontal and vertical fields of view. 

The determination of the optimal distance for crack classification involved processing the captured images through 

the classification and segmentation network, with the system accuracy evaluated based on the proportion of images 

correctly classified and segmented. The furthest distance with the highest accuracy maintained was designated as the 

optimal imaging distance. Subsequently, an image of the chessboard captured at this optimal distance was analyzed using 

MATLAB to determine the camera parameters and correct any image distortions [37]. The chessboard tile dimensions 

facilitated estimation of the field of view, which was crucial for configuring the bounding box parameters. Throughout 

these calibration trials, the UAV's crack detection capabilities and corresponding accuracy levels were meticulously 

recorded, providing a comprehensive evaluation of the system's operational efficacy upon deployment. 

 

Figure 5. Experimental Setup 

4. Results and Discussions 

4.1. Performance Validation of Classification and Segmentation Networks  

The transfer learning for AlexNet reached completion after the maximum epoch limit, with training taking 154 

minutes and 42 seconds and resulting in a final validation accuracy of 99.63%. Testing on the reserved test dataset 

yielded an accuracy of 99.42%, closely aligning with prior studies using AlexNet on similar datasets, which reported an 

accuracy of 99% [15]. This consistency with previous results indicates that the retraining was effective, and that transfer 

learning successfully adapted the AlexNet model to the current dataset. 

Similarly, the transfer learning for the YOLOv4 concluded after reaching the maximum epochs, with a total training 

duration of 36 minutes and 10 seconds. Upon evaluation on the test dataset, YOLOv4 achieved an average precision of 

98%, which aligns with findings in related studies using YOLOv4 for crack segmentation tasks, achieving comparable 

precision scores [18]. This high level of precision also suggests that the transfer learning process was not only effective 

but also validated the model’s adaptability for segmentation in complex environments.  

Across fifteen trials, the combined two-stage classification and segmentation network demonstrated consistent 

performance, validating the integration of AlexNet and YOLOv4 as a robust approach for crack detection tasks. These 

results reinforce the model’s capacity to perform well in scenarios requiring precise crack localization and segmentation, 

suggesting that the retrained model is well-suited for real-world applications where accuracy and adaptability are 

essential. The high performance also highlights the advantage of employing transfer learning in two-stage networks for 

achieving both efficiency and precision in infrastructure monitoring. 
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4.2. Camera Calibration for Enhanced Detection Accuracy in UAV Operations  

Calibration is essential for the Crazyflie’s crack detection capabilities, particularly given drones’ limited operational 

times due to their compact size and battery constraints. Figure 7 illustrates a sample from the calibration experiments, 

with the summary of findings presented in Table 2. Images of printed cracks were captured at varying distances to assess 

the impact of crack-pixel ratio on detection accuracy. Given that the printed crack images were used for training, images 

closer to the camera, covering more field of view, achieved a higher crack pixel ratio of 2.8%, closely aligning with 

training conditions. At a distance of 10 cm, the neural network reached a classification accuracy of 100%, as validated 

by repeated trials. While the crack pixel ratio did not precisely match 2.8% at greater distances, the network maintained 

reliable performance.  

However, testing revealed that 10 cm was impractical for Crazyflie operation, as proximity to the wall increased the 

risk of collision due to minor instability. Thus, the second-best distance of 13 cm was selected as the optimal distance, 

balancing accuracy with practical operating distance. At this distance, the field of view (FOV) was calculated as 20.5 

cm x 14.9 cm, based on the chessboard calibration tile size of 0.82 cm, providing a reference for path planning. Notably, 

the FOV limitation of 67.9° (diagonal) likely contributed to challenges in achieving a consistent crack-pixel ratio across 

varied distances. This sequence is critical for enabling the Crazyflie to detect cracks efficiently, ensuring accurate 

detection while maintaining an operational distance that optimally balances detection accuracy with flight time and 

safety. 

  

(a) 

 

(b) 

 

(c)  

Figure 6. (a) Theoretical Setup of UAV hovering 13 cm from the crack image, (b) Actual Deployment of UAV hovering 13 

cm from the crack image, (c) Perspective of UAV vision system and detection of a crack 

Table 2. Results from Crack Detection and Segmentation 

Distance from wall Average Accuracy Bounding Box Size 

20 cm 39.50% 34.6 × 25.8 cm 

17 cm 83.33% 28.8 × 21.8 cm 

13 cm 88.89% 20.5 × 14.9 cm 

10 cm 100.00% 17.9 × 13.4 cm 

4.3. Performance of Developed Model with UAV Experimentations  

Table 3 presents the confusion matrix for the classification network tested on 4,945 points during flight. The model 

achieved an overall accuracy of 91.5% with a precision of 84.05%, demonstrating robust performance in correctly 

identifying cracks. Out of the total test points, 1,671 were correctly classified as cracks (true positives), representing 

33.79% of the dataset, while 2,854 points (57.71%) were accurately identified as non-crack areas (true negatives). The 

model achieved a recall of 94.2%, indicating its strong ability to detect the majority of actual cracks, which is essential 

for reliable structural assessments. Furthermore, the F1-score was calculated at 88.7%, underscoring a good balance 

between precision and recall and indicating that the model effectively manages both correct detections and the 

minimization of false positives. Notably, this accuracy aligns closely with the 92% accuracy reported by YOLOv4 in 

previous studies, such as those in previous studies [18, 19], showing that the two-stage CNN model leveraging transfer 

learning achieves comparable performance to established one-stage models. 

However, the model encountered some challenges with false positives and false negatives. There were 317 false 

positives, accounting for approximately 6.41% of the test points, primarily due to the model mistaking edges of foam 

boards for cracks. Additionally, 103 false negatives (2.08%) occurred, where actual cracks near the image boundary 

were not detected, potentially due to lower contrast or subtle features. Despite these limitations, the model’s high 

accuracy, coupled with its high recall and F1-score, suggests that it can reliably differentiate crack from non-crack areas 

in real-time UAV inspections, making it a practical solution for infrastructure monitoring. 
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 Table 3. Confusion Matrix for Crack Detection 

 Prediction Negative Prediction Positive  

Actual Positive 
False Negative 

103 (2.08%) 

True Positive 

1671 (33.79%) 

Recall 

94.20% 

Actual Negative 
True Negative 
2854 (57.71%) 

False Positive 
317 (6.41%) 

 

 
Precision 

84.05% 
Accuracy 

91.50% 

Table 4 summarizes the segmentation network's performance, presented as a confusion matrix, on images classified 

as “containing cracks” by the AlexNet classifier. Across twelve tests and 70 identified viewpoints, the segmentation 

network accurately segmented cracks in 85.71% (60 out of 70 positive samples) of the images. A key advantage of the 

two-stage architecture was the elimination of false positives in the segmentation phase, as the classification network 

effectively filtered out non-crack images. Additionally, 5.71% of the images were correctly classified as true negatives, 

where the segmentation network ignored images that the classifier had incorrectly classified as containing cracks. 

However, 8.57% of images yielded false negatives, where the segmentation network missed cracks that the classifier 

had identified. 

The overall performance metrics reveal that the segmentation network achieved a high precision of 100% due to the 

absence of false positives, emphasizing its reliability in avoiding unnecessary crack detections. Additionally, the recall 

rate of 90.9% shows the model's ability to identify most of the true cracks, a critical factor in ensuring safety in 

infrastructure monitoring. The F1 score, calculated at 95.2%, reflects a strong balance between precision and recall, 

further validating the robustness of this two-stage CNN model for crack detection. Although the model is expected to 

perform robustly in noisy environments, limitations in image quality—specifically due to the Himax HM01B0 camera’s 

324 x 324-pixel grayscale resolution—contributed to some false negatives, particularly in areas with subtle features or 

low contrast, where the model occasionally failed to detect visible cracks. 

Despite these limitations, the model performed satisfactorily given the camera's resolution constraints, achieving an 

overall accuracy of 91.42%, which affirms its effectiveness in real-time crack detection under controlled testing 

conditions. While the model’s precision is exceptionally high, suggesting robustness in avoiding false positives, reducing 

false negatives remains an area for further improvement. Implementing a higher-resolution camera or additional pre-

processing steps may enhance the model’s sensitivity to finer crack details, minimizing missed detections and broadening 

its applicability for real-world infrastructure monitoring. 

Table 4. Confusion Matrix for Crack Segmentation 

 Prediction Negative Prediction Positive  

Actual Positive 
False Negative 

6 (8.57%) 

True Positive 

60 (85.71%) 

Recall 

90.90% 

Actual Negative 
True Negative 

4 (5.71%) 

False Positive 

0 (0%) 
 

 
Precision 

100% 
Accuracy 

91.42% 

4.4. Discussion and Comparative Analysis 

The findings of this study highlight the efficacy of two-stage CNN models, bolstered by transfer learning, for real-

time crack detection under UAV operational constraints. Achieving 91.5% accuracy in classification and 91.42% in 

segmentation, this model aligns closely with benchmark studies, affirming its high accuracy and demonstrating its 

viability for practical UAV-based applications. For example, a similar two-stage transfer learning-based approach in [7] 

achieved a mean Pixel Accuracy (mPA) of 92.7% and an Intersection over Union (IoU) of 88.3% for dam crack detection. 

Likewise, Philip et al. (2023) [9] showcased the success of ResNet50 in crack detection with transfer learning, mirroring 

the effective performance of AlexNet in this study. While Zhang et al. (2016) [26] leveraged a CNN-based classifier and 

a transformer-based network (CTv2), achieving mean F1-scores of 82.00%, 94.69%, and 92.23% on the CrackSD, CFD, 

and CrackSC datasets, respectively, it highlights the model's scalability and accuracy for real-world applications. 

Additionally, the review by Hamishebahar et al. (2022) [11] offers a comprehensive overview of crack detection 

techniques, situating this study within a practical spectrum that meets the real-time requirements of UAV applications. 

This comparative analysis, as illustrated in Table 5, supports the model’s relevance and robustness, demonstrating its 

ability to leverage recent advancements for enhanced infrastructure monitoring despite challenges like limited camera 

resolution and environmental noise. 



HighTech and Innovation Journal         Vol. 5, No. 3, September, 2024 

699 

 

Table 5. Model Analysis for Crack Detection 

Study Model Type Key Strengths Limitations Accuracy / Key Metrics Application Context 

Current Study 

Two-stage (AlexNet + 

YOLOv4 with Transfer 

Learning) 

High precision, adaptable to UAV-

based real-time inspections 

False positives due to foam edges, 

camera resolution constraints 

Classification: F1-Score: 88.7% 

Accuracy: 91.5%, 

Segmentation: F1-Score: 95.2% 

Accuracy: 91.42% 

UAV-based crack 

detection 

Li et al. (2024) 

[7] 

Two-stage (ResNet50 with 

SENet) 

High accuracy in complex 

environments, improved mPA and 

IoU with attention mechanisms 

Computationally intensive for real-

time applications 
mPA: 92.7%, IoU: 88.3% 

Concrete dam surface 

crack detection 

Philip et al. 

(2023) [9] 

Transfer Learning (ResNet50, 

VGG16, MobileNet) 

ResNet50 shown to outperform other 

models, strong generalization 
Limitations in real-time adaptability ResNet50 Accuracy: ~99% 

Crack detection in concrete 

walls 

Hamishebahar et 

al. (2022) [11] 

Review (Multiple Models, 

including CNNs and Transfer 

Learning) 

Comprehensive review of deep 

learning methods, highlights 

adaptability for varied applications 

General limitations in CNNs for real-

time crack detection 
Varied depending on model 

Infrastructure monitoring, 

multiple applications 

Guo et al. (2024) 

[14] 

Two-stage (CNN-based 

Classification + CTv2) 

High accuracy with pixel-level 

precision; effective for large-scale 

pavement inspection 

Potential limitations in detecting fine 

crack details; performance could vary 

with environmental factors 

CrackSD: F1=82%, 

CFD: F1=94.69%, 

CrackSC: F1=92.23% 

Pavement surface crack 

detection 

The performance results detailed in Section 4.3 further validate the proposed two-stage CNN model. Utilizing 

AlexNet for classification and YOLOv4 for segmentation, the model achieved 91.5% classification accuracy and a recall 

rate of 94.2%, comparable to the 92% accuracy reported by YOLOv4 for crack detection applications. This alignment 

underscores the model's real-world applicability in UAV-based systems, where efficiency and computational economy 

are critical. 

Transfer learning, central to this study, contributed substantial improvements over traditional two-stage CNNs. By 

utilizing pre-trained AlexNet and YOLOv4 models, training times were significantly reduced—154 minutes for 

AlexNet and 36 minutes for YOLOv4—representing a reduction of approximately 50% to 70% compared to models 

trained from scratch. This efficiency is particularly beneficial for UAV applications, where quick adaptation and 

retraining are essential. Transfer learning also enabled robust generalization with limited data, a critical advantage in 

structural monitoring where labeled crack images are often scarce. The model achieved high classification accuracy 

(99.42% on AlexNet) and segmentation precision (91.42% for YOLOv4) without extensive tuning or large datasets, 

effectively meeting or exceeding common benchmarks. Pre-trained layers provided foundational features, allowing 

consistent crack recognition under diverse conditions, which is essential for UAV deployment in varied inspection 

environments. 

The model’s precision and efficiency in real-time crack detection hold significant implications for proactive 

infrastructure monitoring. Early detection of minor structural defects supports timely interventions, reducing the risk 

of severe failures. Its adaptability to UAV-based inspections, particularly in GNSS-denied or challenging 

environments, enhances its utility for maintaining public safety and structura l integrity. Furthermore, the model’s 

robustness suggests potential applications beyond infrastructure monitoring. By leveraging two-stage CNNs and 

transfer learning, this approach offers applications in fields like urban planning, disaster response, and c ivil 

engineering. Its adaptability to real-time demands aligns with a vision for automated, continuous infrastructure 

assessment, where UAVs equipped with advanced detection models contribute to resilient urban systems through 

regular, efficient aerial inspections. 

5. Conclusion 

This research successfully developed and validated a two-stage convolutional neural network (CNN) model that 

integrates transfer learning, utilizing a novel combination of AlexNet and YOLO models for the non-destructive 

detection of structural cracks. Emphasizing the critical importance of timely crack detection, this approach aims to 

significantly enhance early detection capabilities, crucial for the proactive maintenance and safety of buildings. The 

model demonstrated satisfactory efficacy, achieving a classification accuracy above 90% and successfully segmenting 

cracks in 85.71% of the images. Additionally, the performance of the developed model was benchmarked against the 

results from a similar study, establishing its reliability and effectiveness. The outcomes from both simulated 

environments and real-world deployments confirm the model's robust capability in detecting and segmenting structural 

cracks, thereby reinforcing its potential as a valuable tool in structural health monitoring. These results not only affirm 

the model's performance but also advance the application of sophisticated machine learning techniques in the field of 

civil engineering. The next step of this study is to investigate a process to localize concrete cracks on wall for GPS denied 

environments with the use of the developed model. 
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