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Abstract 

Dust pollution can harm the urban environment and the health of citizens. Each stage in highway construction generates 

unorganized dust emissions to varying degrees, which complicates their quantification. To precisely forecast dust 

emissions during the construction of highway subgrades and reduce the associated pollution risks, this study introduces a 

predictive model based on a deep neural network (DNN) for dust emissions during highway subgrade-filling operations. 

Dust concentration is treated as a nonlinear multivariate problem, with predictive indicators encompassing particulate 

matter 2.5 (PM2.5), particulate matter 10 (PM10), ground surface temperature, wind speed, air temperature, surface 

pressure, and relative humidity. Using a DNN model, this study forecasts the concentrations of PM2.5 and PM10 at 

highway construction sites. Based on a highway project in Hebei Province, this study predicts dust-emission concentrations 

via field monitoring conducted using self-developed equipment. The model’s predictions exhibit a small mean-absolute-

percentage error and root-mean-square error compared with the actual values, and the model’s accuracy significantly 

surpasses that of conventional regression models. Accurate forecasting can facilitate the timely control of dust 

concentrations at construction sites, thus facilitating more environmentally friendly and efficient construction. 
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1. Introduction 

Highway transportation significantly affects the development of the national economy and daily life. In recent 

years, the construction of expressway networks in China has accelerated, with the total mileage of highways 

increasing annually. According to statistics from the Ministry of Transport, the total length of expressways 

nationwide reached 535,000 km by the end of 2022 [1]. However, large-scale construction of expressways inevitably 

generates substantial amounts of construction dust. Therefore, construction dust has contributed significantly to 

excessive atmospheric particulate matter concentrations in recent years [2]. Prolonged human exposure to 

environments with excessive particulate-matter concentrations can result in diseases to the skin [3], respiratory 

system, and cardiovascular system [4–6], thereby damaging health and resulting in economic and property losses. 

Therefore, the concentration of construction dust must be predicted and controlled to mitigate its impact on the 

environment and human health. 
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In recent years, researchers have extensively investigated construction dust, including topics such as dust-monitoring 

techniques [7], dust emission factors [8, 9], dust dispersion [10–12], dust-pollution characteristics [13, 14], health-hazard 

assessments [15–17], and dust-control measures [18]. 

Instrumental sampling is the most commonly used method for monitoring the concentration of construction dust. Gao 

et al. [19] employed an HXF35 dust sampler to measure the concentration of total suspended particulates. To address 

the complexity and uniqueness of construction sites, Ma et al. [20] designed an automatic monitoring system for 

construction-dust pollution sources using unmanned aerial vehicles and image recognition technology. Construction dust 

was analyzed from three perspectives: detection of construction-dust pollution sources, identification of construction-

dust pollution areas, and comparison of characteristics of construction-dust pollution sources. 

In terms of fugitive-dust emission factors, numerous researchers have considered the relationship between fugitive-

dust emissions and major gaseous pollutants such as NOX and SOX. Liu et al. [21] employed the land-use regression 

model to elucidate the correlation and spatial variation between PM2.5 and NO2 in Shanghai, China. By analyzing data 

from multiple monitoring sites, Eeftens et al. [22] identified a generally high correlation between NO2 and PM2.5 

absorbance. Recently, researchers investigated the relationship between fugitive-dust pollutants and meteorological 

factors. Using 11 years (1998–2008) of continuous observational data from the contiguous United States, Tai et al. [23] 

applied the multiple linear regression (MLR) model to demonstrate a robust correlation between PM2.5 and 

meteorological factors. Pateraki et al. [24] investigated the effects of meteorological conditions on particles of different 

diameters (PM10, PM2.5, and PM2.5–10) in cities surrounding the Mediterranean and confirmed a close relationship 

between high concentrations of PM10 and PM2.5–10 and the local southwesterly wind regime. Zhang et al. [25] 

discovered that relative humidity and sunshine hours were most closely associated with PM2.5. Zhang et al. [26] 

performed a multifractal asymmetric detrended cross-correlation analysis to discuss the cross-correlations between 

PM2.5 concentrations and meteorological factors such as temperature, air pressure, relative humidity, and wind speed in 

Beijing and Hong Kong. They reported that the cross-correlations between PM2.5 concentrations and these four 

meteorological factors exhibited multifractal and anti-persistent characteristics. 

Additionally, researchers have extensively investigated the forecasting of construction dust concentration. To 

establish predictive models for construction dust emissions, researchers have used conventional MLR models [27–28]. 

Linear regression models are advantageous owing to their computational simplicity and minimal data requirements. 

However, they present significant limitations in capturing the relationship between the concentration of dust-emission 

particles and the monitoring factors of dust emissions, thus resulting in less accurate predictions. Subsequently, the 

autoregressive integrated moving average model (ARIMA) [29], which is based on an MLR model and integrates 

autoregressive and moving averages, is used for monitoring and forecasting. This model considers seasonal variations 

in the study subjects and can effectively predict linear data. However, its predictive accuracy is relatively low in nonlinear 

cases. 

Aided by the advancement and proliferation of computer technology, researchers have addressed the disadvantages 

of regression models in fugitive dust forecasting by applying several machine learning methods to mitigate 

environmental issues caused by air pollution and construction dust. The most commonly used predictive methods include 

artificial neural networks (ANNs) [30], recurrent neural networks [31], convolutional neural networks (CNNs) [32, 33], 

and long short-term memory (LSTM) neural networks [34, 35]. ANNs are among the most commonly used models for 

forecasting fugitive-dust concentrations. Wang et al. [36] and Araújo et al. [37] employed ANN models to estimate the 

health risks associated with air pollution and predict the daily concentrations of PM2.5. Karacan [38, 39] and Mathatho 

et al. [40] utilized ANNs to predict and optimize hazardous-substance concentrations in specific operational 

environments. Park et al. [41] proposed an ANN model to measure PM10 concentrations in large urban areas, which 

achieved a value that was 60% to 80% of the actual values. In addition to ANNs, dust-pollution forecasting models based 

on LSTM networks have demonstrated superior performance compared with other conventional models, such as ARIMA 

and support vector regression [42]. For instance, Li et al. [43] attempted to integrate LSTM with quadratic decomposition 

and optimization algorithms to establish a hybrid model for air quality index forecasting. Furthermore, to enhance model 

accuracy, researchers have begun to investigate the combination of multiple deep-learning networks [44, 45]. The highly 

regarded CNN-LSTM model combines the advantages of CNNs and LSTM. CNNs can effectively extract features from 

grid data, whereas LSTM exhibits excellent processing capabilities for time-series data. For example, the CNN-LSTM 

model designed by Huang et al. for forecasting PM2.5 in smart cities uses features extracted by CNNs and analyzed by 

LSTM [46]. Compared with standalone LSTM models, hybrid forecasting models based on CNN-LSTM exhibit 

significantly lower errors [47]. 

Theories and practical applications pertaining to fugitive-dust monitoring equipment, monitoring factors, and 

forecasting methods have been extensively investigated. However, issues remain, such as the insufficient frequency of 
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data updates from monitoring equipment, the incomplete consideration of monitoring factors, and the necessity for 

improving forecasting models. In the existing fugitive-dust forecasting models, MLR models cannot readily capture the 

relationship between the concentration of fugitive-dust emission particles and the monitoring factors. Although machine 

learning models such as ANNs, CNNs, and LSTM networks can improve the accuracy of forecasting results, they present 

certain issues in nonlinear modeling and require a long time for model training. Deep neural network (DNN) models 

[48, 49] offer a distinct advantage in nonlinear modeling that facilitates the establishment of nonlinear predictive models 

capable of accurately reflecting the relationship between fugitive dust concentrations and monitoring factors. As such, 

they are extremely beneficial in enhancing the accuracy of forecasting outcomes. 

To accurately predict the concentration of fugitive dust emissions during the roadbed filling phase of highway 

construction, this study focuses on forecasting PM2.5 and PM10, which are key indicators of dust emissions. By referring 

to previous studies pertaining to dust monitoring factors, we select surface temperature, wind speed, air temperature, 

surface pressure, and relative humidity as meteorological factors for dust monitoring, in addition to concentrations of 

PM2.5 and PM10 from the preceding moment as auxiliary influencing factors to synthesize indicators for dust 

concentration forecasting. Considering a highway construction site in Hebei as the experimental scenario, we use a self-

developed dust-monitoring data-acquisition system to obtain data at 1-minute intervals. Based on the acquired 

monitoring data, we establish a DNN model to predict the concentrations of construction dust emissions in a specific 

environment. A flowchart of this study is shown in Figure 1. 
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Figure 1. Framework for predicting construction dust based on DNN 

2. Construction-Dust Monitoring Data-Acquisition System 

Air-pollutant concentrations of PM2.5 and PM10 were obtained during the daytime from October to November 2020. 

The weather conditions, temperature, and other conditions were stable during the data-acquisition period. 

An indigenously developed device was used for data acquisition, as shown in Figure 2. A Raspberry Pi4B (Raspberry 

Pi) was used as the data-analysis processor, and SDS011 was used as a high-precision laser PM2.5 sensor for 

environmental monitoring. Based on the network signal provided by the wireless system Cato, the data was uploaded to 

a self-developed Alibaba Cloud server for data storage. 
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Figure 2. Fixed data-acquisition equipment 

A Raspberry Pi processor was used for data analysis, as shown in Figure 2. The Raspberry Pi is a single-chip 
microcomputer that includes central processors, random-access memory, read-only memory, various input/output 
interfaces, interrupt systems, timers/counters, and other functions. We used a fourth-generation Raspberry Pi with a 
BCM2711 processor. 

The acquisition equipment used was the RS-BYH-M meteorological multifactor screen, which integrates several 
environmental detection functions, including noise acquisition, PM2.5 and PM10 particle concentrations, temperature 

and humidity, atmospheric pressure, and light. A screen was installed in a louver box, the standard MODBUS-RTU 
communication protocol was used, and RS485 signals were output. The measured results showed that the maximum 
communication distance of the device was 2000 m. This transmitter is suitable for various applications, including 
ambient temperature and humidity measurements, noise monitoring, air quality detection, and atmospheric pressure and 
light intensity measurements. 

The device was powered by a solar panel cell comprising solar elements of a specific size connected to form an 

efficient energy panel. The solar controller is the core control component of the photovoltaic power-supply system and 
manages the operation state of the entire system. The main functions of the solar controller include overcharging and 
discharge protection for the battery and load control voltage for voltage-sensitive devices. Through these controls and 
adjustments, the solar controller ensures the stable operation of the entire system and maximizes the use of solar energy 
resources. 

3. Construction of DNN Model 

3.1. Model Construction 

A DNN offers excellent nonlinear processing capability owing to its compact and efficient nonlinear mapping 

structure. It features one input layer, multiple hidden layers, and one output layer, and it can manage significant amounts 
of data and complex features. Implementing more hidden layers results in a more complex model, better nonlinear 
characteristics, and richer features to be learned. The characteristics of a DNN are shown in Figure 3. 
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Figure 3. Characteristics of deep neural network 
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The input layer of a neural network inputs dust and environmental data at time t. Subsequently, the output layer 
outputs the predicted values of PM2.5 or PM10 at time (t+1). In Figure 3, D(t) is the input factor at time t, and PM2.5(t+1) 
and PM10(t+1) are the predicted values of PM2.5 or PM10 at time (t+1), respectively. The correspondence between the 

input layer of the DNN and the dust monitoring indicators is listed in Table 1. 

Table 1. Input indicators for dust prediction 

Input Node Indicator Name 

X1 PM2.5 

X2 PM10 

X3 Surface temperature 

X4 Wind speed 

X5 Air temperature 

X6 Surface pressure 

X7 Relative humidity 

The different layers of a DNN are fully connected; that is, any neuron in layer i is compulsorily connected to a neuron 

in layer i+1. If the input layer of the model contains n neurons, then the input of the kth neuron xk can be expressed as 

𝑎𝑘
𝑙 = 𝑥𝑘 (1) 

If layer l-1 contains m neurons, then the output a
l 
k for the jth neuron in the first layer l can be expressed as 

𝑎𝑗
𝑙 = 𝑓 (∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝑚

𝑘=1

) (2) 

where f is the activation function in the hidden layer and a linear transfer function is used in the output layer. In the 

model, w is the connection weight and b is the offset; if l = 2, then a
l 

k corresponds to the input layer xk. 

In this model, RELU was used as the activation function, as shown in Equation (3). 

𝑅𝐸𝐿𝑈(𝑥) = {
 𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

, (3) 

where x denotes the corresponding input. 

To facilitate rapid convergence during neural-network training, the original data were normalized. Considering the 

requirements of the neural-network algorithm for eigenvalue quantization, min–max normalization was adopted for the 

actual data. 

𝑥 =
𝑥′ − 𝑚𝑖𝑛 (𝑥′)

𝑚𝑎𝑥(𝑥′) − 𝑚𝑖𝑛(𝑥′)
, (4) 

where x´ represents the original data, x the air-quality data after processing, min(x´) the minimum value for the same 

type of indicator data, and max(x´) the maximum value for the same type of data. 

3.2. Error Analysis 

The universality and accuracy of the prediction models must be verified. Statistical indicators, including the mean 
error (ME), standardized mean deviation (NMB), mean-absolute-percentage error (MAPE), root-mean-square error 
(RMSE), and correlation coefficient (R), are typically used for error analysis. In this study, the MAPE and RMSE were 
selected for error analysis. 

(1) The MAPE can be calculated as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖
∗ − 𝑦𝑖|

𝑦𝑖

𝑁

𝑖=1

× 100%, (5) 

where yi is the actual value of the ith sample, y
* 

i  the predicted value of the ith sample, and N the total number of predicted 

values. 

(2) The RMSE can be calculated as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖

∗ − 𝑦𝑖)
2

𝑁

𝑖=1

 (6) 

where yi is the true value of the ith sample; y
* 

i  is the predicted value of the ith sample; and N is the total number of 

predicted values. 
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4. Case Analysis 

4.1. Data Acquisition 

Considering a highway project in Hebei as an example, real-time monitoring of relevant data at the construction site 

was conducted using fixed construction dust monitoring equipment, as shown in Figure 2, and the portable monitoring 

equipment shown in Figure 4, which was utilized to supplement unclear or missing monitoring data from the fixed 

equipment. 

   

 (a) Portable data-acquisition instrument          (b) Variable monitoring points                  (c) Fixed monitoring points 

Figure 4. Installation of equipment at construction site  

Considering safety, an application-oriented professional unmanned aerial vehicle (UAV, DJI M600 Pro, China) was 

used to conduct field explorations and comprehensive analyses of the topography, ground facilities, and airspace of the 

construction areas. The UAV can be equipped with data-acquisition instruments, as shown in Figure 4, which are 

designed to obtain PM2.5 and PM10 concentration data at a relative altitude of 100 m above the ground, as shown in 

Figure 5. 

  

Figure 5. UAV equipped with portable data-acquisition instrument for data acquisition 

Data were obtained on five days between October and November, from 10:00 to 15:00. The monitoring data included 

1500 data points. The data obtained from the highway construction dust monitoring equipment is listed in Table 2. 

Table 2. Partial monitoring data of highway construction-dust monitoring equipment 

Number PM2.5 PM10 
Surface 

Temperature (°C) 

Wind Speed 

（m⸳s-1） 

Air Temperature 

(°C) 

Surface 

Pressure (hPa) 

Relative 

Humidity (%) 
Time 

1 69.8 123.5 10.4 1.03 13.1 1024.00 57.7 2020-10-29 10：00 

2 71.3 143.6 10.4 1.40 13.1 1024.19 57.5 2020-10-29 10：01 

3 70.6 125.9 10.5 1.40 13.3 1024.35 57.2 2020-10-29 10：02 

4 71.7 129.2 10.4 1.47 13.3 1024.12 57.7 2020-10-29 10：03 

5 81 142.4 10.3 1.39 13.2 1024.33 58.4 2020-10-29 10：04 

6 74.8 136.4 10.2 1.26 13.5 1024.43 56.1 2020-10-29 10：05 

7 69.9 133.3 10.2 1.09 13.5 1024.42 56.4 2020-10-29 10：06 

8 73.9 130 10.2 1.08 13.5 1024.13 55.8 2020-10-29 10：07 

9 74.9 151.2 10.4 1.31 13.6 1024.22 55.2 2020-10-29 10：08 

10 71.7 132.1 10.5 1.34 13.6 1024.02 55.4 2020-10-29 10：09 

11 76.9 158.3 10.7 1.11 13.6 1024.16 54.9 2020-10-29 10：10 
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12 76.8 137.3 11.0 1.13 13.6 1024.31 55 2020-10-29 10：11 

13 70.5 133.5 10.8 1.07 13.4 1024.53 55.6 2020-10-29 10：12 

… … … … … …   … 

1496 65.35 113.1 13.04 2.13 16.89 1019.01 50.62 2020-11-13 14：55 

1497 67.25 117.3 13.12 2.13 16.89 1019.01 50.6 2020-11-13 14：56 

1498 65.75 114.05 13.23 2.09 16.89 1019.01 50.63 2020-11-13 14：57 

1499 65.3 114.2 13.24 2.44 13.22 1019.61 50.82 2020-11-13 14：58 

1500 64.25 107.95 13.27 2.43 13.22 1019.61 51.02 2020-11-13 14：59 

4.2. Data Analysis 

The highway construction subgrade-filling process was selected, where road construction-dust monitoring and 

meteorological factor data were used as the original data. Based on the DNN algorithm, PM2.5 and PM10 concentrations 

in the highway subgrade-filling construction dust were predicted. In this study, the first 80% of the monitoring data 

obtained from a fixed point was selected as the training set, and the final 20% as the test set. The predicted and actual 

values of PM2.5 and PM10 concentrations were compared, as shown in Figure 6. 

 

(a) Actual and predicted PM2.5 concentrations 

 

(b) Actual and predicted PM10 concentrations 

Figure 6. Comparison between predicted and actual values of PM2.5 and PM10 concentrations 
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The fitting relationship between the predicted and actual values of PM2.5 and PM10 concentrations in the model test 

set is shown in Figure 7. 

 

(a) Fitting graph of predicted and actual PM2.5 concentrations in test set 

 

(b) Fitting graph of predicted and actual PM10 concentration in test set 

Figure 7. Fitting graph between predicted and actual PM2.5 and PM10 concentrations in test set 

The predicted values were compared with the actual values, and an error analysis was performed to verify the 

accuracy of the DNN-based dust prediction model for highway subgrade-filling construction. The MAPE and RMSE 

were selected for error analysis. The error calculation results for the test set obtained using Equations 5 and 6 are listed 

in Table 3. 

Table 3. Error calculation results for test set 

 MAPE (%) RMSE 

PM2.5 1.0427 0.6591 

PM10 2.5304 1.4845 
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A comparison of the error transmission effect between the linear regression and DNN models is shown in Figure 8. 

 

(a) Comparison of PM2.5 concentrations obtained using different methods 

 

(a) Comparison of PM2.5 concentrations obtained using different methods 

Figure 8. Comparison between predicted and actual values obtained using different methods 

In summary, the DNN model exhibited better prediction performance for dust emissions during highway subgrade-

filling construction than the linear regression model. The DNN-predicted values of PM2.5 and PM10 concentrations 

exhibited a trend similar to that of the actual values; the RMSE between the predicted and actual values was small; and 

the MAPE was approximately zero. The accuracy and effectiveness of the proposed model were verified. However, 

significant differences were observed between the predicted and actual values for some data peaks. The analysis results 

revealed four reasons contributing to the peak value: ① meteorological factors, such as wind and dry climate, which 

increased the dust content; ② mechanical factors, such as vehicles driving through, which contributed to dust settling 

on the ground; ③ operational factors, such as earthwork backfilling as well as loading and unloading of soil materials 

in subgrade filling; ④ process factors, such as paving, leveling, and rolling. 

The accurate prediction of highway construction dust data will allow the appropriate measures to be initiated timely 

to reduce dust concentrations and ensure orderly construction and progress. 
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5. Conclusion 

This study demonstrated that the DNN model outperformed conventional linear regression models in predicting 

fugitive-dust emissions. This superiority can be attributed to the capability of the DNN to capture complex nonlinear 

relationships between environmental factors and fugitive-dust emission concentrations. Additionally, results showed that 

the MAPE and RMSE between the predicted and measured PM2.5 values of this model were 1.0427 and 0.6591, whereas 

those between the predicted and measured PM10 values were 2.5304 and 1.4845, respectively, thus indicating a minimal 

error. This high level of accuracy is crucial for practical applications of the model in highway engineering. 

The findings of this study corroborate the notion presented in related studies, i.e., a correlation exists between fugitive 

construction dust concentrations and meteorological factors. Moreover, the prediction of fugitive construction-dust 

concentration was confirmed to be a nonlinear multivariate issue with strong coupling among the influencing factors. 

While ensuring the accuracy of the predicted results, this study addressed the disadvantages of previous prediction 

models, which could neither effectively perform nonlinear modeling nor capture the relationship between fugitive-dust 

concentration and monitoring factors. Consequently, engineering managers can implement targeted measures to reduce 

fugitive-dust generation, such as by adjusting the frequency of water spraying, cleaning construction vehicles, and 

enclosing waste-transportation vehicles. This would reduce fugitive-dust concentrations at construction sites and 

promote the sustainable development of highway construction. However, the real-time monitoring and feedback 

capabilities of DNN models are currently insufficient and require further improvement. 

In the future, the DNN model can be extended to other construction scenarios and incorporated with a broader range 

of environmental indicators to further refine its predictive power. Additionally, one should examine the potential for 

integrating real-time data acquisition and analysis using the DNN model to enhance the dynamism of dust-management 

strategies at construction sites. 

In summary, our observations validated the effectiveness of the DNN model for predicting fugitive dust emissions 

during roadbed filling in highway construction. The ability of the DNN model to manage complex nonlinear relationships 

renders it an effective tool for environmental management in the construction industry. The findings of this study are 

crucial for reducing fugitive construction dust and advocating green construction practices. 
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