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Abstract 

The scarcity of empty containers presents a significant logistical challenge globally. To address this issue, this study 

proposes the application of the optimal box arrangement in a container with a 3D bin packing problem to enhance fill rates 

and accommodate the complex packing criteria of the textile and garment industry. The study’s objective is to optimize 

box stacking into containers by considering various factors such as multiple product types, diverse box sizes, varying 

container sizes, and prioritizing stacking according to purchase orders (PO). In tackling the NP-hard problem with the 

added constraint of PO-based stacking, this study advocates employing a genetic algorithm combined with a wall-building 

algorithm to address practical challenges. The genetic algorithm demonstrates optimal efficacy in solving large-scale 

optimization problems within specified timeframes, yielding high-quality results. In addition, normalization methods are 

applied to convert box sizes to pallet sizes, expediting problem-solving and facilitating the selection of appropriate 

container sizes, namely 20- or 40-feet. The research findings indicate that the proposed method achieved a container fill 

rate of up to 91.67% and minimized the number of containers used. 

Keywords: 3D Bin Packing; Genetic Algorithm; Wall Building; Garment and Textile. 

 

1. Introduction 

The container shortage issue has become increasingly serious since 2021 due to the COVID-19 pandemic [1]. In 

2024, disruptions in Red Sea shipping will further exacerbate the problem, resulting in a 173% increase in freight 

rates for the Asia–Northern Europe route [2]. This shortage of containers has affected numerous countries and 

industries, particularly the textile and garment industry, which boasts a market size of US$ 1.7 trillion and contributes 

approximately 2% to the world’s GDP [3]. Container shortages  extend lead times and escalate logistic costs [2]. 

Moreover, with a significant volume of manufactured goods being imported and exported worldwide, constituting 

63% of global exports, and textiles and clothing accounting for 4% of manufactured goods [4], optimizing logistics 

costs and maximizing container fill rates have emerged as crucial concerns. Consequently, addressing the bin packing 

problem offers a potential solution to minimize transportation costs in container shipping, air cargo loading, and rai l 

transport. The bin packing problem has received extensive attention and development aimed at optimizing container 

use. It is classified as an NP-hard problem with the objective of efficiently packing items of varying volumes into 

containers to minimize the number of containers required. This problem has been the subject of study by numerous 

researchers. The variants of bin packing considered important factors such as multidimensional items, item sizes, 

item stacking, and rotation [5]. 
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The problem of packing boxes into containers is challenging with many variables, especially considering the 

enormous volume of goods exported through seaports. Each exported cargo container that is not optimally filled will 

result in significant waste in the context of the shortage of empty containers and the current high logistic costs. Therefore, 

the optimization problem of packing goods into containers is of particular significance in the current global transportation 

environment. Research on the bin packing issue is primarily based on various variants depending on the characteristics 

of the container, the nature of the problem, and the characteristics of the carton. The research on the bin packing problem 

has been extensive, including limited rotations of bin packing [6], constraints of weight limits [7], and stability of 

stacking [5, 8]. However, studies specifically focusing on the textile and garment industries remain scarce. Considering 

the unique characteristics of this industry in exportation, priorities in purchase orders extend beyond mere constraints 

such as box orientation limits, weight limits, and container dimensions. When stacking, adherence to prioritizing orders 

becomes imperative to streamline unloading at the destination. Nevertheless, previous studies have primarily addressed 

the arrangement of goods into containers without considering the priority of packing according to the purchase order. 

Given the industry’s specific nature in exports, aligning with the purchase order sequence is also a criterion requiring 

consideration to facilitate efficient unloading at the destination. Therefore, this paper’s contribution focuses on 

developing and proposing practical and realistic bin packing models suitable for textile and garment enterprises, such as 

3D bin packing with constraints related to limited rotation, weight, dimension, and purchase orders (PO). To address the 

3D bin packing problem in this research, genetic algorithms and wall-stacking techniques were employed. Unlike 

previous studies that randomly selected container sizes, this study uses normalization coefficients to determine the 

appropriate container size. 

2. Literature Review 

2.1. Bin Packing Problem 

The bin-packing problem has become an important issue in many fields, especially in the logistics industry. Cid-

Garcia & Rios-Solis [9] solved the two-dimensional (2D) bin-packing problem with a 90° rotation condition using exact 

algorithms of positioning and covering. Huan et al. [10] proposed a fitting method with direct and indirect algorithms to 

solve the 2D bin-packing problem, as well as a pseudo-language and complexity evaluation of the algorithms. Kundu et 

al. [11] proposed a deep reinforcement learning method to solve the 2D bin-packing problem. This method optimized 

the gaps in a short time and showed superior results compared to other methods at the same time, as well as an easy 

extension of the problem model into the 3D bin-packing form. The 3D bin-packing problem is an NP-hard problem and 

has gradually received a lot of attention from researchers over the years because of its highly practical applications. 

Variants of the 3D bin-packing problem will also be analyzed, including container properties, product properties, packing 

methods, and safety considerations. Regarding containers, fundamental factors such as type, size, weight limits, and 

weight distribution will be considered. In reality, logistic companies have various types of containers with different sizes 

and weight limits. The weight limit of the container ensures that goods are loaded into containers with a weight that does 

not exceed the maximum recommended weight by research groups [7]. Weight distribution constraints ensure that goods 

are evenly distributed on the container, avoiding situations where goods are overloaded at the front or rear, causing 

difficulties in transportation [12]. The stacking constraint ensures that stacking containers on top of each other will not 

cause damage or breakage. The weight or pressure that a container can withstand depends on four main factors: the 

material of the container, the products inside the container, the rigidity of the container edges, and transportation-related 

factors such as time and humidity. This is a very important practical factor, and researchers have focused on developing 

models that limit the weight and pressure that a carton container can withstand per unit area [13, 14]. In addition, other 

researchers such as Nishiyama et al. [15] and Paquay et al. [16] have expanded their research directions by limiting the 

stacking of heavy containers on light containers and not placing fragile items on top of other fragile items. 

On another front, when studies address the real-world challenge of handling various types of goods with different 

delivery priorities, they often discuss the prioritization of goods’ lead times as a minor variant of the bin packing problem. 

The constraint of priority goods often considers optimizing output due to limited container quantities. Therefore, it is 

necessary to prioritize products with special characteristics, high value, and short lead times. This helps meet customer 

demand promptly and ensures delivery schedules and minimal losses. In the study by Sheng et al. [17], the issue of 

prioritizing orders for goods with approaching deadlines over orders with longer deadlines was addressed. The authors 

used a simulated annealing algorithm and then packed the product containers into containers through a treegraph search 

process. The results achieved after testing were around an 85% container fill rate. 

The product orientation constraint in container stacking ensures that carton containers can be stacked in six 

orientations parallel to the container edges, with some orientations restricted based on product characteristics. 

Researchers have developed variations, including unlimited orientations, to accommodate different product types, as 

introduced by various research groups (Kurpel et al. [18], Mahvash et al. [19], Sharma [20]). The product flow constraint 

ensures that different types of products can be packed into the same container or not. The complete delivery constraint 

is crucial for orders where customers request all items to be delivered in the same shipment. For safety issues in cargo 

stacking, ensuring the stability and integrity of containers is crucial because instability can damage cargo, pose safety 
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risks, and cause injury to workers during cargo handling. Variants of the bin-packing problem that ensure stability have 

been significantly emphasized in studies by Olsson et al. [8] and Oliveira et al. [21]. Stability is divided into two main 

types: static stability and dynamic stability. Static stability (in the vertical direction) is applied when the containers are 

not moving. This constraint ensures that the containers are securely standing on the container floor and the surfaces of 

other boxes [22]. Dynamic stability (in the horizontal direction) is relevant when containers are in motion, experiencing 

forces such as acceleration, braking, and inertia [8, 15]. As for cargo stacking positions, products with specific size and 

weight requirements may need to be positioned on the floor or in designated spots within the container [23]. Weiwang 

Zhu et al. [5] solved the 3D bin packing problem with stacking constraints using two subproblems: the stacking problem 

and the 2D bin packing problem. The brand and price algorithm was applied to minimize the total number of containers 

used. The studies on the bin-packing problem that have been conducted previously addressed one or more constraints 

simultaneously, such as weight, priority of packing, orientation, hazardous goods, and multiple delivery points, in order 

to maximize the amount of cargo loaded into containers [24, 25]. 

The approaches for solving the bin packing problem include exact and approximate algorithms. These exact algorithm 

models can solve 3D packing, the Single Knapsack Problem (SKP), the Single Large Object Placement Problem 

(SLOPP), the Container Loading Problem (CLP), and the Multiple Bin-Size Bin Packing Problem (MBSBPP) [26, 27]. 

They optimize solutions while considering real-world constraints like weight distribution, stability, and item 

prioritization, with achievements including optimal solutions for various case scenarios. However, exact algorithms can 

find optimal solutions for small-sized problems but often face difficulties when solving large and complex problems. 

Kevin Tole et al. introduced a new variant of the bin packing problem called the Circular Bin Packing Problem with 

Rectangular Items (CBPP-RI), which involves the dense orthogonal packing of rectangular items into a minimum 

number of bins. They applied Simulated Annealing (SA) to present the its effectiveness compared to previous algorithms 

in solving a bin packing problem and CBPP-RI [28]. 

2.2. Genetic Algorithm for Solving Bin Packing Problems 

Then, approximate algorithms often provide the best possible solutions within a given time by exploring a search 

space and iteratively making changes to complete solutions to improve their quality. Their advantage lies in their ability 

to solve complex problems with real-world constraints and large scales in the shortest possible time. This is a strength 

of approximate algorithms compared to exact algorithms in optimizing solutions. As a result, many researchers have 

applied and developed exact algorithms to solve bin packing problems, especially 3D bin packing problems. 

The Genetic Algorithm (GA) uses a fitness function in each iteration to measure the quality of each generation and 

combines the most desired characteristics to improve the quality of solutions. Due to its excellent result quality and 

runtime, it has been widely applied to 3D-PPs problems. Olsson et al. [8] used a greedy-style heuristic where boxes are 

first packed into piles, and then potential positions are evaluated using a weighted scoring function. The authors used a 

GA to automatically adjust the weighted scoring function and improve packing quality. Xiang et al. [29] also used box 

order and rotation as two encodings in their GA. Building on a wall-building heuristic, the authors developed an adaptive 

GA that adjusts the probability of crossover and mutation based on individual fitness. 

The multiple bin size and box size problem with constraints such as weight and dimensions has been addressed using 

hybrid metaheuristics based on simulated annealing (SA) and genetic algorithms (GA) to minimize the number of boxes 

needed to be packed. The algorithm demonstrates that it can find an optimal arrangement model with minimal cost [30]. 

Ananno & Ribeiro [31] applied a genetic algorithm to minimize the number of pallets used, maximize the compactness 

of the packed items, and minimize the heterogeneity of item types in each pallet. They proposed a model to satisfy eight 

different constraints: item orientation, non-conllision, stability, support, pattern complexity, complete shipment, 

customer positioning, and layer interlocking. The model respects volume utilization when introducing additional load 

carriers, which is commonly practiced in the F&B industry. Ying Yang et al. explored a novel approach by redesigning 

bin sizes to fit items ready to be packed. They considered a general three-dimensional open-dimension probem (3D-

ODP) where all dimensions of a number of heterogeneous bin types are unknown. The objective of this study is to 

minimize total costs based on the designed bin types and packing scheme. The combination of the 3D ODP and the 

three-dimensional multiple bin size bin packing problem (3D MBSBPP) was solved by two-layer heuristics, including a 

genetic algorithm (GA) and an inner deterministic constructive heuristic [32]. 

In summary, bin packing problems have been studied and solved for various cases with constraints such as size and 

weight, aiming to minimize the number of boxes packed into containers. However, for the specific nature of garment 

exports, in addition to constraints on box size and container size, the items need to be prioritized according to each 

purchase order. Therefore, this study focuses on the problem of real constraints such as multiple container types, multiple 

product types, and multiple purchase orders (PO) with different sizes and colors of products. Moreover, the research 

illustrated the efficiency of heuristic algorithms in tackling. 
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3. Methodology and the Model 

In this study, the research process (Figure 1) is divided into the following main stages: research model development, 

algorithm model construction, data analysis execution, and model evaluation. 

 

Figure 1. Process of research 

3.1. 3D Bin Packing 

The 3D bin-packing problem is an NP-hard problem where the initial input consists of small carton containers that 

need to be packed into larger containers (bins) to minimize the number of containers used. For the textile and garment 

industry, which has unique characteristics such as high volume, diverse designs, numerous orders, and varied sizes and 

colors, the 3D bin-packing problem is tailored with the following features: 

• Carton containers from the same purchase order (PO) are stacked together (without mixing items from different 

POs). 

• Various types of containers are used, including 20- and 40-feet containers. 

• Carton containers can be rotated. 

• Other constraints, such as load distribution and stacking, are considered due to the lightweight nature of textile 

and garment products. 

The problem of packing carton box (i, j) needs to be arranged to container k. Each box i, j has three corresponding 

dimensions (𝑙𝑖, 𝑤𝑖 , ℎ𝑖) (cm) representing the length, width, and height. Each box also has a specific weight 𝑞𝑖 

(kilograms). Container k has similar dimensions and load capacity (𝐿𝑘,𝑊𝑘,𝐻𝑘) (in centimeters) for length, width, and 

height, with a load capacity 𝑄𝑘 (in kilograms). In this mathematical model, the research team employs the "front-left-

bottom" (FLB) method to arrange the containers within the container. For example, each box i, when arranged within 

container k, is determined by coordinates (𝑥𝑖𝑘, 𝑦𝑖𝑘 , 𝑧𝑖𝑘) corresponding to a coordinate axis attached to the container. 

Each box i has initial dimensions of length, width, and height represented as (𝑙𝑖, 𝑤𝑖 , ℎ𝑖) in centimeters. However, when 

placing this box into a larger container, there are six different orientations (𝛿1𝑖, 𝛿2𝑖, 𝛿3𝑖, 𝛿4𝑖, 𝛿5𝑖, 𝛿6𝑖), leading to changes 

in dimensions compared to the original size of box i. The actual dimensions of box 𝑖 when placed into container k will 

be (𝑙′𝑖 , 𝑤′𝑖 , ℎ′𝑖) corresponding to the various rotations of the box. 

When using the FLB method (front – left – bottom), box i will have three relative positions with respect to other 

boxes within container k (front, left, or bottom of box j), which are determined by three corresponding variables: (𝑎𝑖𝑗𝑘 , 

𝑏𝑖𝑗𝑘 ,𝑐𝑖𝑗𝑘) (Figure 2, Tables 1 to 3). 

 

Figure 2. Specification of carton box i and different orientations for stacking carton box i 

Table 1. Sets and Indexes 

Index Description 

n The number of carton boxes that need to be packed. 

i,j = {1,…n} Box 

k Container 

V {n} Container set 

A {(i,j)} Box set 

Formulate 3D Bin-packing 

problem based on inputs such 
as purchase order, box type, 

weight, and container size 

Construct the algorithm 

of the genetic algorithm 

(GA) for solving the 

problem 

Develop stacking 

boxes into a 
container procedure 

Run the experiments 

with input extracted 

data from the textile 

company 

Evaluate the 

model 
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Table 2. Parameters 

Index Description 

𝑙𝑖 Length of box i 

𝑤𝑖 Width of box i 

ℎ𝑖 Height of the box i 

𝐿𝑘 Length of container k 

𝑊𝑘 Width of container k 

𝐻𝑘 Height of container k 

𝑞𝑖 Weight of box i 

𝑄𝑘 Max weight of container K 

Table 3. Variables 

Index Description 

𝑎𝑖𝑗𝑘 Binary variable. If product i is placed to the left of product j in container k. 

𝑏𝑖𝑗𝑘 Binary variable. If product i is placed behind product j in container k. 

𝑐𝑖𝑗𝑘 Binary variable. If product i is placed below product j in container k. 

(𝑥𝑖𝑘, 𝑦𝑖𝑘, 𝑧𝑖𝑘) Continuous variable. The coordinates of box i in container k according to the FLB method. 

𝛾𝑘 Binary variable. If container k is used. 

𝛽𝑖𝑘 Binary variable. If box i is packed into container k. 

𝛿1𝑖, 𝛿2𝑖, 𝛿3𝑖, 𝛿4𝑖, 𝛿5𝑖, 𝛿6𝑖 Binary variable. Rotations of box i. 

Objective function: Minimize the number of containers used. 

MIN (∑ 𝛾𝑘𝑘∈𝑉 ) 

Constraints: 

* Packing: 

𝛽𝑖𝑘 ≤ 𝛾𝑘 , ∀ i ∈ A, ∀ k ∈ V (1) 

∑ 𝛽𝑖𝑘𝑘=1  = 1 , ∀ i ∈ A, ∀ k ∈ V (2) 

𝑎𝑖𝑗𝑘  + 𝑏𝑖𝑗𝑘  + 𝑐𝑖𝑗𝑘  = 1, ∀ i, j ∈ A, ∀ k ∈ V (3) 

𝛿1𝑖 + 𝛿2𝑖 + 𝛿3𝑖 + 𝛿4𝑖 + 𝛿5𝑖 + 𝛿6𝑖 = 1 , ∀ i ∈ A (4) 

* Dimensions: 

𝑙′𝑖  = 𝛿1𝑖. 𝑙𝑖 + 𝛿2𝑖, 𝑙𝑖 + 𝛿3𝑖. 𝑤𝑖  + 𝛿4𝑖, 𝑤𝑖  + 𝛿5𝑖. ℎ𝑖 + 𝛿6𝑖. ℎ𝑖 , ∀ i ∈ A (5) 

𝑤′𝑖  = 𝛿1𝑖. 𝑤𝑖  + 𝛿2𝑖 , ℎ𝑖 + 𝛿3𝑖. 𝑙𝑖 + 𝛿4𝑖, ℎ𝑖 + 𝛿5𝑖. 𝑙𝑖 + 𝛿6𝑖. 𝑤𝑖 , ∀ i ∈ A (6) 

ℎ′𝑖  = 𝛿1𝑖. ℎ𝑖 + 𝛿2𝑖, 𝑤𝑖  + 𝛿3𝑖. ℎ𝑖 + 𝛿4𝑖, 𝑙𝑖 + 𝛿5𝑖. 𝑤𝑖  + 𝛿6𝑖. 𝑙𝑖, ∀ i ∈ A (7) 

* Container dimension: 

𝑥𝑖𝑘 - 𝑥𝑗𝑘 + 𝐿𝑘. 𝑎𝑖𝑗𝑘 ≤ 𝐿𝑘 - 𝑙′𝑖  , ∀ i, j ∈ A, ∀ k ∈ V (8) 

𝑦𝑖𝑘 - 𝑦𝑗𝑘 + 𝑊𝑘. 𝑏𝑖𝑗𝑘  ≤ 𝑊𝑘 - 𝑤′𝑖, ∀ i, j ∈ A, ∀ k ∈ V (9) 

𝑧𝑖𝑘 - 𝑧𝑗𝑘 + 𝐻𝑘. 𝑐𝑖𝑗𝑘  ≤ 𝐻𝑘 - ℎ′𝑖 , ∀ i, j ∈ A,∀ k ∈ (10) 

0 ≤ 𝑥𝑖𝑘 ≤ 𝐿𝑘 - 𝑙′𝑖  , ∀ i ∈ A, ∀ k ∈ V (11) 

0 ≤ 𝑦𝑖𝑘  ≤ 𝑊𝑘 - 𝑤′𝑖  , ∀ i,∈ A, ∀ k ∈ V (12) 

0 ≤ 𝑧𝑖𝑘 ≤ 𝐻𝑘 - ℎ′𝑖 , ∀ i ∈ A, ∀ k ∈ V (13) 

* Weight: 

∑ 𝛽𝑖𝑘𝑖=1 *𝑞𝑖  ≤  𝑄𝑘*𝛾𝑘, ∀ i ∈ A, ∀ k ∈ V (14) 
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* Variables: 

𝑥𝑖𝑘, 𝑦𝑖𝑘, 𝑧𝑖𝑘 ∈ N, ∀ i ∈ A, ∀ k ∈ V (15) 

𝛿1𝑖, 𝛿2𝑖, 𝛿3𝑖, 𝛿4𝑖, 𝛿5𝑖, 𝛿6𝑖  ∈ {0,1}, ∀ i ∈ A (16) 

𝛾𝑘 ∈ {0,1} , ∀ k ∈ V (17) 

𝛽𝑖𝑘 ∈ {0,1} , ∀ i ∈ A, ∀ k ∈ V (18) 

𝑎𝑖𝑗𝑘  , 𝑏𝑖𝑗𝑘  , 𝑐𝑖𝑗𝑘 ∈ {0,1} , ∀ i, j ∈ A, ∀ k ∈ V (19) 

Equation 1: Box i is placed into container k if and only if container k is used. Equation 2: Box i is only allowed to be 

placed into one container, k. Equation 3: Product i can only have one relative position with respect to product j. Equation 

4: Product i can only be packed into container k in one way. Equations 5 to 7: The actual dimensions of product i depend 

on its packing orientation. Equations 8 to 10: Represent the relationship and relative positions of products i, j packed 

into container k, as shown in Figure 3. Equations 11 to 13: The size of box i must not exceed the size of container k. 

Equation 14: The total weight of all boxes i must not exceed the weight capacity of container k. Equations 15 to 19: 

Ensure binary variables and non-negativity. Figure 3 illustrates the stacking in the case of multiple boxes. 

 

Figure 3. Coordination of each carton box 

3.2. The Solution Using the Genetic Algorithm (GA) to Solve the Problem 

Steps of the Genetic Algorithm: 

Begin: 

t = 0; 

Initialize the initial generation P(t); 

Evaluate the fitness of individuals in P(t); 

Repeat: 

t = t + 1; 

Generate a new generation P(t) from generation P(t-1) by: 

(i) Selection; 

(ii) Crossover; 

(iii) Mutation; 

Evaluate population P(t) (according to fitness function); 

Termination condition; 

End. 
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Figure 4. Structure of GA for solving problem 

Considering the structure of the genetic algorithm (Figure 4), we have three main steps: decoding, packing algorithm, 

and fitness computation. In this genetic algorithm, a solution (also known as a "chromosome") is encoded as an array 

generated from 2n genes containing genetic information about "Item order" and "Box orientation." The first half of the 

array consists of n genes, representing the order in which items are packed into the container. Each gene in this part is a 

real number with a value from 0 to 1. The second half of the chromosome consists of n genes, each with a value from 1 

to 6, indicating the orientation of the boxes. The actual dimensions (𝑙′𝑖 , 𝑤′𝑖 , ℎ′𝑖) of the items along the x, y, and z axes 

corresponding to the boxes’ orientations have been explained above. 

Before constructing any solution, the chromosome must be decoded into the packing order and orientation of the 

boxes so that the algorithm can convert them into packing positions of the items and compute the box sizes. The decoded 

genes are represented as two vectors: a vector of Box sequence, VBS, and a vector of Box orientation, VBO. This vector 

can be obtained by copying the second half of the encoded chromosome: VBOi = Genen+i , ∀i = 1...n. 

The wall-building packing algorithm is highly suitable for the packing needs of the textile and garment industries. 

With various types of purchase orders (PO), diverse designs, and colors, there is a high potential for confusion during 

the packing and unpacking process, leading to time and cost inefficiencies for businesses. The wall-building method can 

differentiate between POs using separate rows (layers), making management easier. Figure 5 shows the process of 

stacking cartons into containers. 

 

Figure 5. General stacking procedure 

In the process of stacking cartons into containers using the wall-building method, the goods are arranged and selected 

based on the following criteria: Priority 1: Choose boxes with a larger base area (i.e., length and width); Priority 2: 

Choose boxes with a larger base area; Priority 3: Choose boxes with a larger length; Priority 4: Choose boxes with a 

larger width; Priority 5: Choose boxes with a larger height. 

These criteria establish a hierarchical order for selecting boxes during the packing process. The algorithm prioritizes 

boxes with larger dimensions, or base areas, according to the specified hierarchy. These criteria are used to prioritize 
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box selection; therefore, boxes with a larger base area, i.e., length and width, are selected first and packed in a lower 

position. Since this process stacks boxes in sequence, the boxes at the bottom should have a larger base area to ensure 

stability. Boxes can be rotated in different directions. In addition to the size criteria, due to the nature of textile and 

garment goods, priority is given to stacking products of the same color and size together. Then, suitable spaces for 

stacking cartons are considered by comparing the dimensions of the boxes with those of the empty spaces. The following 

criteria rank suitable spaces by examining their reference points, with higher priority given to spaces inside, as follows: 

Priority 1: Choose the space with the smallest x-coordinate of its reference point; Priority 2: Choose the space with the 

smallest y-coordinate of its reference point; Priority 3: Choose the space with the smallest z-coordinate of its reference 

point. The following process (Figure 6) will clarify how stacking is performed using the wall-building method: 

 

Figure 6. The stacking procedure follows the wall–building 

4. Experiment and Results 

To analyze and evaluate the 3D pin-packing model along with its variants as described in the mathematical model 

section, this study employs a comparative approach by comparing the results with the simulation cargo stacking software 

“Easy Cargo” [33] that Erbayrak et al. [34] used in the stacking container. The input data utilizes two different scenarios 

for comparison. 

4.1. Scenario 1 

Based on the algorithm published above, the research team collected actual data from a garment company. To ensure 

security, the quantity of goods will be marked separately. Below is a data table (Table 4) that has collected the packaging 

parameters of products that can be produced by the company. Table 4 displays the input data for the model, detailing 

specifications of multiple products, including size, color codes, and stacking prioritized by purchase order to meet the 

requirement of convenient unloading at the destination. The parameters of the orders to be stacked onto containers 

include information about the purchase order (PO), dimensions, and specifications. The objective is to select the 

container size (20 ft, 40 ft) to maximize the fill rate and minimize the number of containers used. 

Table 4. Input data in scenario 1 

Production 

code 

Purchase 

order 
Size 

Color 

code 

Specification 
Quantity 

(boxes) Length 

(L) (cm) 

Width 

(W) (cm) 

High 

(H) (cm) 

Weight 

(Kg) 

ABC1 
PO01 

S C01 40 30 40 6 135 

M C02 40 45 50 10 200 

L C01 40 40 30 8 90 

ABC2 XL C01 40 45 50 10 160 

ABC2 PO02 

S C01 40 30 40 5,5 105 

M C01 40 30 40 6,5 300 

L C02 40 40 30 7,5 270 

ABC3 

PO03 

S C01 40 30 40 4 120 

M C01 40 30 40 5,5 150 

ABC1 
L C02 40 45 50 5,5 80 

XL C02 40 45 50 7 100 

Total        1710 
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Below are the specifications of 20- and 40-feet containers commonly used in the process of transporting garments 

(Table 5). 

Table 5. Container specification 

Type of container Specification 

20 feet 

Length 6 m 

Width 2,4 m 

High 2,4 m 

Capacity 28280 kg 

40 feet 

Length 12m 

Width 2,4 m 

High 2,4 m 

Capacity 26750 kg 

* Normalize the input data 

Due to the relatively large number of data inputs, the research team decided to normalize the data before running the 

algorithm, which will help reduce processing time and increase the quality of the solution. Previously, for items that 

could be defaulted, they were usually light items; therefore, the team would standardize carton types and the specific 

weight of each carton based on the 𝛽 coefficient (calculated by Equation 20). The method employed in this study involves 

standardizing the data to automatically select the appropriate container size, either 20- or 40-feet. 

𝛽 = 
𝑇ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑎𝑟𝑡𝑜𝑛 𝑖

𝑇ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑎𝑟𝑡𝑜𝑛 𝑖
 (20) 

Based on Equation 20, with n cartons i that need to be packed into a 20- or 40-feet container, we have: 

∑ 𝜷𝒄𝒂𝒓𝒕𝒐𝒏 𝒊
𝒏
𝒊=𝟏

𝒏
 < 𝛽40 𝑓𝑒𝑒𝑡  < 𝛽20 𝑓𝑒𝑒𝑡   (21) 

Therefore, when loading boxes into containers, we will pay attention to the volume of the boxes because the average 

coefficient 𝛽𝑐𝑎𝑟𝑡𝑜𝑛 𝑖 compared to 20- and 40-feet containers is small. Furthermore, in order to expedite problem-solving, 

especially with large-scale problems, this study utilizes a method of converting from boxes to pallets when loading boxes 

with dimensions (𝑙𝑖, 𝑤𝑖 , ℎ𝑖). For cartons with dimensions of 40×30×40 (cm), they will be stacked into one block 

consisting of 3×3×3 (27 boxes) on pallet 1, which has dimensions of 120×90×120 cm. Similarly, boxes measuring 

40×45×50 (cm), stacked in a configuration of 3×3×2 (18 boxes), will be converted into pallet 2, with dimensions of 

120×135×100 (cm). Additionally, boxes sized 40×40×30 cm, stacked in a configuration of 3×3×2 (18 boxes), will be 

converted into pallet 3, measuring 120×120×60 (cm). The conversion method is described in Table 6 as follows: 

Table 6. Convert the number of boxes into pallets 

Box dimension 
Number of stacking boxes 

per pallet 

Convert to the Pallet 

dimension 
Pallet type 

40×30×40 (cm) 3×3×3 = 27 boxes 120×90×120 (cm) Pallet 1 

40×45×50 (cm) 3×3×2 = 18 boxes 120×135×100 (cm) Pallet 2 

40×40×30 (cm) 3×3×2 = 18 boxes 120×120×60 (cm) Pallet 3 

From the data in Table 1, boxes with the same box size will be converted into pallets while still maintaining the order 

sequence according to each purchase order (PO). This process results in the data shown in Table 7. Below is a table 

(Table 7) that normalizes the number of cartons based on the original data: 

Table 7. Standardize the number of boxes in scenario 1 

Purchase 

order 

Carton 

box code 

Carton specifications 
Quantity 

(box) 

Number of 

boxes/pallet 

Quantity of the 

standardized pallet Length 

(L) (cm) 

Width 

(W) (cm) 

High 

(H) (cm) 

PO01 

B01 40 30 40 135 27 5 pallet 1 

B02 40 45 50 360 18 20 pallet 2 

B03 40 40 30 90 18 5 pallet 3 

PO02 
B01 40 30 40 405 27 15 pallet 1 

B03 40 40 30 270 18 15 pallet 3 

PO03 
B01 40 30 40 270 27 10 pallet 1 

B02 40 45 50 180 18 10 pallet 2 

Total     1710  80 
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From the data in Table 5, the normalized data in Table 7 is obtained to reduce the problem size, thereby helping the 

program run faster. The principle of solving GA and wall-building problems is to stack the goods sequentially, employing 

a trial-and-error approach. With large-scale problem sizes like the input data, the program runs slowly. To expedite the 

solution process and ensure that similar types of boxes are stacked closely together according to the purchase order, 

boxes are converted into pallets for stacking onto the container. For instance, 1710 boxes are standardized to 80 pallets. 

This approach accelerates problem-solving and maintains the criteria of stacking similar items together and following 

the purchase order. Standardized pallet quantity in scenario 1 (Table 8). 

Table 8. Standardized pallet quantity in scenario 1 

The type of pallet 
Pallet 1 

(120×90×120) cm 

Pallet 2 

(120×135×100) cm 

Pallet 3 

(120×120×60) cm 

Quantity 30 30 20 

For garments, the carton is only allowed to rotate facing up. Table 9 is a matrix of feasible cases when rotating the 

carton, where 1 is feasible and 0 is not feasible. 

Table 9. Matrix of rotation direction 

Direction allowance 𝛿1𝑖 𝛿2𝑖 𝛿3𝑖 𝛿4𝑖 𝛿5𝑖 𝛿6𝑖 

Relevant/ Irrelevant 1 0 0 0 1 0 

4.2. Using GA to Solve Scenario 1 

After solving the bin packing problem with the input data above, the result is to use two 40-feet containers to transport 

all the boxes of three POs. Each standard pallet will be represented as reference coordinates (x, y, z), and the method of 

stacking (rotation direction) is shown in Tables 10 and 11 and demonstrated in Figure 7: 

Table 10. Container 1 results in scenario 1 

Type of bin x y z Direction Type of bin x y z Direction 

B02 – PO01 0 0 0 𝛿5𝑖 B01 – PO01 63 12 12 𝛿5𝑖 

B02 – PO01 0 12 0 𝛿5𝑖 B01 – PO01 72 12 0 𝛿5𝑖 

B02 – PO01 0 0 10 𝛿5𝑖 B01 – PO01 67,5 0 0 𝛿5𝑖 

B02 – PO01 0 12 10 𝛿5𝑖 B01 – PO01 67,5 0 10 𝛿5𝑖 

B02 – PO01 13,5 0 0 𝛿5𝑖 B03 – PO01 81 0 0 𝛿5𝑖 

B02 – PO01 13,5 12 0 𝛿5𝑖 B03 – PO01 81 12 0 𝛿5𝑖 

B02 – PO01 13,5 0 10 𝛿5𝑖 B03 – PO01 81 0 8 𝛿5𝑖 

B02 – PO01 13,5 12 10 𝛿5𝑖 B03 – PO01 81 12 8 𝛿5𝑖 

B02 – PO01 27 0 0 𝛿5𝑖 B03 – PO01 81 0 16 𝛿5𝑖 

B02 – PO01 27 12 0 𝛿5𝑖 B01 – PO03 90 0 0 𝛿5𝑖 

B02 – PO01 27 0 10 𝛿5𝑖 B01 – PO03 90 12 0 𝛿5𝑖 

B02 – PO01 27 12 10 𝛿5𝑖 B01 – PO03 90 0 12 𝛿5𝑖 

B02 – PO01 40,5 0 0 𝛿5𝑖 B01 – PO03 90 12 12 𝛿5𝑖 

B02 – PO01 40,5 12 0 𝛿5𝑖 B01 – PO03 99 0 0 𝛿5𝑖 

B02 – PO01 40,5 0 10 𝛿5𝑖 B01 – PO03 99 12 0 𝛿5𝑖 

B02 – PO01 40,5 12 10 𝛿5𝑖 B01 – PO03 99 0 12 𝛿5𝑖 

B02 – PO01 54 0 0 𝛿5𝑖 B01 – PO03 99 12 12 𝛿5𝑖 

B02 – PO01 54 12 10 𝛿5𝑖 B02 – PO03 108 0 0 𝛿1𝑖 

B02 – PO01 54 12 0 𝛿5𝑖 B01 – PO03 108 13,5 0 𝛿1𝑖 

B02 – PO01 54 12 12 𝛿5𝑖 B02 – PO03 108 0 10 𝛿1𝑖 

B01 – PO01 63 12 0 𝛿5𝑖 B01 – PO03 108 13,5 12 𝛿1𝑖 
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Table 11. The container 2 results in scenario 1 

Type of bin x y z Direction Type of bin x y z Direction 

B01 – PO02 0 0 0 𝛿5𝑖 B03 – PO02 36 0 16 𝛿5𝑖 

B01 – PO02 0 12 0 𝛿5𝑖 B03 – PO02 36 12 16 𝛿5𝑖 

B01 – PO02 0 0 12 𝛿5𝑖 B03 – PO02 45 0 0 𝛿5𝑖 

B01 – PO02 0 12 12 𝛿5𝑖 B03 – PO02 45 12 0 𝛿5𝑖 

B01 – PO02 9 0 0 𝛿5𝑖 B03 – PO02 45 0 8 𝛿5𝑖 

B01 – PO02 9 12 0 𝛿5𝑖 B03 – PO02 45 12 8 𝛿5𝑖 

B01 – PO02 9 0 12 𝛿5𝑖 B03 – PO02 45 0 16 𝛿5𝑖 

B01 – PO02 9 12 12 𝛿5𝑖 B03 – PO02 45 12 16 𝛿5𝑖 

B01 – PO02 18 0 0 𝛿5𝑖 B03 – PO02 54 0 0 𝛿5𝑖 

B01 – PO02 18 12 0 𝛿5𝑖 B03 – PO02 54 0 8 𝛿5𝑖 

B01 – PO02 18 0 12 𝛿5𝑖 B03 – PO02 54 0 16 𝛿5𝑖 

B01 – PO02 18 12 12 𝛿5𝑖 B02 – PO03 63 0 0 𝛿5𝑖 

B01 – PO02 27 0 0 𝛿5𝑖 B02 – PO03 63 12 0 𝛿5𝑖 

B01 – PO02 27 12 0 𝛿5𝑖 B02 – PO03 63 0 10 𝛿5𝑖 

B01 – PO02 27 0 12 𝛿5𝑖 B02 – PO03 63 12 10 𝛿5𝑖 

B03 – PO02 36 0 0 𝛿5𝑖 B02 – PO03 76,5 0 0 𝛿5𝑖 

B03 – PO02 36 12 0 𝛿5𝑖 B02 – PO03 76,5 12 0 𝛿5𝑖 

B03 – PO02 36 0 8 𝛿5𝑖 B02 – PO03 76,5 0 10 𝛿5𝑖 

B03 – PO02 36 12 8 𝛿5𝑖 B02 – PO03 76,5 12 10 𝛿5𝑖 

 

  
(a) (b) 

Figure 7. (a) Container 1 results in scenario 1; (b) Container 2 results in scenario 1 

Based on the running results of the algorithm, the fill rate of each container k is calculated according to the following 

formula: 

∆𝑘 = 
∑ 𝑙𝑖𝑤𝑖ℎ𝑖

𝑛
𝑖=1

𝐿𝑘𝑊𝑘𝐻𝑘
 (22) 

In this study, we conduct a comparative analysis of the fill rates obtained from the genetic algorithm (GA) model 

utilized herein and those acquired from Easy Cargo. This comparison aims to elucidate the feasibility and efficacy of 

our research. By juxtaposing the results from Easy Cargo with those of the GA model, we demonstrate the performance 

and validity of our approach. 

Table 12. Comparison of research result and Easy cargo 

Bin packing is solved by GA model of the study Simulated by Easy cargo 

The fill rate of container 1: 85,94 % The fill rate of container 1: 83,125% 

The fill rate of container 2: 65,63% The fill rate of container 2: 68,43% 

Average fill rate: 75,79% Average fill rate: 75,78% 
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Table 12 provides a comparison between the results obtained from the bin packing problem solved by the genetic 

algorithm (GA) model used in the study and the results simulated by the Easy Cargo software. The fill rate of container 

1 achieved through the GA model is 85.94%, whereas Easy Cargo achieves a fill rate of 83.125% for the same container. 

For container 2, the fill rate obtained through the GA model is 65.63%, whereas Easy Cargo achieves a slightly higher 

fill rate of 68.43%. The average fill rate across both containers is 75.79% when using the GA model, whereas Easy 

Cargo achieves a very similar average fill rate of 75.78%. 

Overall, the results demonstrate that the GA model used in the study performs comparably with Easy Cargo in terms 

of average fill rate. However, there are slight differences in the fill rates for individual containers, with the GA model 

outperforming Easy Cargo for container 1 but underperforming for container 2. These differences may be attributed to 

the specific algorithms and optimization techniques employed by each method, and variations in the input parameters 

and constraints considered. When the amount of cargo stacked into containers is less than the total capacity of the 

container, the average fill rate may not clearly reflect the results of this research when solved using GA. However, the 

algorithm used in this study will address the stacking problem with constraints related to purchase orders, whereas Easy 

Cargo currently cannot meet this requirement. 

4.3. Scenario 2 

The input data in Scenario 2 are presented in Table 13. 

Table 13. Input data in scenario 2 

Production 

code 

Purchase 

order 
Size Color code 

Specification 
Quantity 

(boxes) Length 

(L) (cm) 

Width 

(W) (cm) 

High 

(H) (cm) 

Weight 

(Kg) 

ABC1 
PO01 

S C01 30 40 40 6 216 

M C02 50 30 30 8 320 

L C01 50 40 40 10 135 

ABC2 M C01 50 30 30 10 160 

ABC2 PO02 

S C01 30 40 40 6,5 216 

M C01 50 30 30 11 160 

L C02 50 40 40 7,5 270 

ABC3 

PO03 

S C01 30 40 40 4 108 

M C01 50 30 30 5,5 160 

ABC1 
L C02 50 30 30 5,5 160 

XL C02 50 40 40 7 270 

Total        2175 

For cartons with dimensions of 50×40×40 cm, they will be stacked into one block consisting of 3×3×3 (27 boxes) on 

pallet 1, which has dimensions of 150×120×120 cm. Similarly, boxes measuring 50×30×30 (cm), stacked in a 

configuration of 2×4×4 (32 boxes), will be converted into pallet 2, with dimensions of 100×120×120 (cm). Additionally, 

boxes sized 30×40×30 cm, stacked in a configuration of 3×3×2 (18 boxes), will be converted into pallet 3, measuring 

90×120×60 (cm). The conversion method is described in Table 14 as follows: 

Table 14. Convert the number of boxes into pallets 

Box dimension 
Numbers of stacking box 

per pallet 

Convert to Pallet 

dimension 

50×40×40 (cm) 3×3×3 = 27 boxes 150×120×120 (cm) 

50×30×30 (cm) 2×4×4 = 32 boxes 100×120×120 (cm) 

30×40×30 (cm) 3×3×2 = 18 boxes 90×120×60 (cm) 

Table 15 normalizes the number of cartons based on the original data table: 
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Table 15. Standardize the number of boxes in scenario 2 

Purchase 

order 

Carton box 

code 

Carton specifications 
Quantity 

(box) 

Number of 

boxes per pallet 

Quantity of the 

standardized pallet Length 

(L) (cm) 

Width 

(W) (cm) 

High 

(H) (cm) 

PO01 

B01 50 30 30 135 27 5 pallet 1 

B02 50 40 40 480 32 15 pallet 2 

B03 30 40 40 216 18 12 pallet 3 

PO02 

B01 50 30 30 270 27 10 pallet 1 

B02 50 40 40 160 32 5 pallet 2 

B03 30 40 40 216 18 12 pallet 3 

PO03 

B01 50 30 30 270 27 10 pallet 1 

B02 50 40 40 320 32 10 pallet 2 

B03 30 40 40 108 18 6 pallet 3 

Total     2175  85 

The standardized pallet quantity is presented in Table 16: 

Table 16. Standardized pallet quantity in scenario 2 

Type of pallet 
Pallet 1 

(100×120×120) cm 

Pallet 2 

(150×120×120) cm 

Pallet 3 

(90×120×80) cm 
Total 

Number 25 30 30 85 

4.4. Using GA to Solve Scenario 2 

After solving the bin packing problem with the input data above, the result is to use two 40-feet containers to transport 

all the boxes of three POs. Each standard pallet will be represented as reference coordinates (x, y, z), and the method of 

stacking (rotation direction) is shown in Tables 17 and 18 and Figure 8: 

Table 17. Container 1 results in scenario 2 

Type of bin x y z Direction Type of bin x y z Direction 

B03 – PO1 0 0 0 𝛿1𝑖 B02 – PO1 48 0 0 𝛿1𝑖 

B03 – PO1 0 12 0 𝛿1𝑖 B02 – PO1 48 12 0 𝛿1𝑖 

B03 – PO1 0 0 8 𝛿1𝑖 B02 – PO1 48 0 12 𝛿1𝑖 

B03 – PO1 0 12 8 𝛿1𝑖 B02 – PO1 48 12 12 𝛿1𝑖 

B03 – PO1 0 0 16 𝛿1𝑖 B02–PO1 63 0 0 𝛿1𝑖 

B03 – PO1 0 12 16 𝛿1𝑖 B02–PO1 63 12 0 𝛿1𝑖 

B03 – PO1 9 0 0 𝛿1𝑖 B02–PO1 63 0 12 𝛿1𝑖 

B03 – PO1 9 12 0 𝛿1𝑖 B01–PO1 63 12 12 𝛿1𝑖 

B03 – PO1 9 0 8 𝛿1𝑖 B01–PO1 78 0 0 𝛿1𝑖 

B03 – PO1 9 12 8 𝛿1𝑖 B01–PO1 78 12 0 𝛿1𝑖 

B03 – PO1 9 0 16 𝛿1𝑖 B01–PO1 73 12 12 𝛿1𝑖 

B03 – PO1 9 12 16 𝛿1𝑖 B01 – PO1 78 0 12 𝛿1𝑖 

B02 – PO1 18 0 0 𝛿1𝑖 B02 – PO03 88 0 0 𝛿1𝑖 

B02 – PO1 18 12 0 𝛿1𝑖 B02 – PO03 88 12 0 𝛿1𝑖 

B02 – PO1 18 0 12 𝛿1𝑖 B02 – PO03 88 0 12 𝛿1𝑖 

B02 – PO1 18 12 12 𝛿1𝑖 B02 – PO03 88 12 12 𝛿1𝑖 

B02 – PO1 33 0 0 𝛿1𝑖 B02 – PO03 103 0 0 𝛿1𝑖 

B02 – PO1 33 12 0 𝛿1𝑖 B02 – PO03 103 12 0 𝛿1𝑖 

B02 – PO1 33 0 12 𝛿1𝑖 B02 – PO03 103 0 12 𝛿1𝑖 

B02 – PO1 33 12 12 𝛿1𝑖 B02 – PO03 103 12 12 𝛿1𝑖 
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Table 18. Container 2 results in scenario 2 

Type of bin x y z Direction Type of bin x y z Direction 

B01 – PO02 0 0 0 𝛿1𝑖 B02 – PO02 50 12 0 𝛿1𝑖 

B01 – PO02 0 12 0 𝛿1𝑖 B03 – PO02 57 0 0 𝛿1𝑖 

B01 – PO02 0 0 12 𝛿1𝑖 B03 – PO02 57 0 8 𝛿1𝑖 

B01 – PO02 0 12 12 𝛿1𝑖 B03 – PO02 57 0 16 𝛿1𝑖 

B01 – PO02 10 0 0 𝛿1𝑖 B03 – PO03 66 0 0 𝛿1𝑖 

B01 – PO02 10 12 0 𝛿1𝑖 B03 – PO03 66 12 0 𝛿1𝑖 

B01 – PO02 10 0 12 𝛿1𝑖 B03 – PO03 66 0 8 𝛿1𝑖 

B01 – PO02 10 12 12 𝛿1𝑖 B03 – PO03 66 12 8 𝛿1𝑖 

B01 – PO02 20 0 0 𝛿1𝑖 B03 – PO03 66 0 16 𝛿1𝑖 

B02 – PO02 20 12 0 𝛿1𝑖 B03 – PO03 66 12 16 𝛿1𝑖 

B01 – PO02 20 0 12 𝛿1𝑖 B01 – PO03 75 0 0 𝛿1𝑖 

B02 – PO02 20 12 12 𝛿1𝑖 B01 – PO03 75 12 0 𝛿1𝑖 

B03 – PO02 30 0 0 𝛿1𝑖 B01 – PO03 75 0 12 𝛿1𝑖 

B03 – PO02 30 0 8 𝛿1𝑖 B01 – PO03 75 12 12 𝛿1𝑖 

B03 – PO02 30 0 16 𝛿1𝑖 B01 – PO03 94 0 0 𝛿1𝑖 

B02 – PO02 35 12 0 𝛿1𝑖 B01 – PO03 94 12 0 𝛿1𝑖 

B02 – PO02 35 12 12 𝛿1𝑖 B01 – PO03 94 0 12 𝛿1𝑖 

B03 – PO02 39 0 0 𝛿1𝑖 B01 – PO03 94 12 12 𝛿1𝑖 

B03 – PO02 39 0 8 𝛿1𝑖 B02 – PO03 104 0 0 𝛿1𝑖 

B03 – PO02 39 0 16 𝛿1𝑖 B02 – PO03 104 12 0 𝛿1𝑖 

B03 – PO02 48 0 0 𝛿1𝑖 B01 – PO03 104 0 12 𝛿1𝑖 

B03 – PO02 48 0 8 𝛿1𝑖 B01 – PO03 104 12 12 𝛿1𝑖 

B03 – PO02 48 0 16 𝛿1𝑖      

 

  
(a) (b) 

Figure 8. (a) Container 1 results in scenario 2; (b) Container 2 results in scenario 2 

Table 19. Comparison of research results and Easy cargo for scenario 2 

Bin packing is solved by the GA model of the study Simulated by Easy cargo 

The fill rate of container 1 (40 feet): 97,3% The fill rate of container 1 (40 feet): 72,29% 

The fill rate of container 2 (40 feet): 86% The fill rate of container 2 (40 feet): 96,45% 

 The fill rate of container 3 (20 feet): 37,5% 

Average fill rate: 91,67% Average fill rate: 68,74% 

From Table 19, the average fill rate across all containers when using the GA model is significantly higher than that 

achieved by Easy Cargo. These results suggest that the GA model used in the study outperforms Easy Cargo in terms of 

the overall container fill rate, with particularly notable differences observed in the fill rates of containers 1 and 2. In 

Scenario 2, the solution provided by Easy Cargo requires the use of two 40-ft containers and one 20-ft container, with 

an average fill rate of 68.74%. In contrast, the optimal solution from the algorithm requires only two 40-ft containers, 

achieving an average fill rate of 91.67%. This highlights the superiority of the proposed algorithm in providing accurate 

solutions. Through comparison with the Easy Cargo stacking method, it can be observed that as the quantity of goods 
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stacked into the container approaches the capacity of the container, the results of this research demonstrate a significant 

improvement in the fill rate and the number of containers used. 

Through the two scenarios above, it can be observed that with different box data, the algorithm can help determine 

the optimal arrangement to achieve the highest container packing ratio. This method can assist the export department in 

calculating the minimum number of containers needed to transport goods to international destinations. When compared 

to Easy Cargo, the algorithm developed by the research team automatically selects containers without the need for 

manual selection of each container. When stacking goods using the method of categorizing merchandise, the research 

algorithm can stack each purchase order separately, with separators if needed. However, the Easy Cargo software still 

stacks products from different purchase orders together. 

5. Conclusion 

The study analyzed the challenges encountered within shortage containers recently, which lead to high transportation 

costs for export and import volumes. Optimizing the bin packing problem for the garment and textile industry is a 

significant issue to maximize container capacity. In a complex problem like bin packing, which involves multiple 

constraints such as various box sizes with weight and container size restrictions, this study introduces the additional 

constraint of prioritizing stacking according to purchase orders (PO), which is a practical consideration in the garment 

and textile industry to meet the requirement for convenient unloading. In addition to synthesizing fundamental theories 

and variations of the bin packing problem, this study proposes the use of approximate algorithms. This study 

demonstrated the effectiveness of applying genetic algorithms and wall-building algorithms to address the complex 

practical constraints of the textile industry in solving the bin packing problem. Genetic algorithms were found to exhibit 

optimal performance in solving large-scale optimization problems within stipulated timeframes, yielding high-quality 

results. Furthermore, the research developed a loading method tailored to meet the specific requirements of the textile 

industry, accommodating various types of orders, diverse designs, and multiple colors and sizes. 

This research has demonstrated that employing optimal construction methods and using approximate algorithms can 

effectively address complex problems such as the bin packing problem, which involves multiple box sizes, various 

container sizes, diverse product categories, and different purchase orders. What sets this study apart from previous 

research is the incorporation of additional constraints related to purchase orders. These constraints are commonly 

encountered in real-world scenarios within the garment exporting industry, thereby enhancing the problem's complexity 

compared to previous studies. 

The outcomes of this research indicate that the proposed approach can optimize the container fill rate up to 91.67%, 

significantly surpassing the fill rate achieved using the Easy Cargo stacking method. Presently, forwarder companies 

utilize EasyCargo3D software for cargo stacking checks. However, this software lacks functionality for sorting by 

purchase order, calculating fill rates, checking by container type, or providing solutions for stacking multiple containers 

simultaneously or automatically selecting container sizes from the available container pool. This indicates that the 

algorithm can efficiently optimize the number of containers required to the lowest level, thereby minimizing 

transportation costs in situations of empty container shortages and high international shipping costs. In practice, manually 

arranging boxes into containers is not optimized and is often time-consuming. Therefore, with the model and solving 

method proposed in this study, the task of packing cargo into containers will be optimized, thereby reducing the time 

required for arranging. 

Despite its positive contributions, the research has certain limitations, such as addressing less than container load 

(LCL) scenarios where boxes are stacked with other types of goods, introducing additional complexities related to 

separating different types of goods during stacking. For future research endeavors, integrating the bin-packing problem 

with the vehicle routing problem could optimize the transportation process throughout the entire supply chain, from its 

inception to its culmination. Proposal to combine the bin packing problem with the vehicle routing problem to optimize 

the transportation process from the beginning to the end of the supply chain. 

6. Declarations  

6.1. Data Availability Statement 

The data presented in this study are available in the article. 

6.2. Funding 

This research was funded by the Hanoi University of Science and Technology (HUST) under project number T2022-

PC-078. 

6.3. Institutional Review Board Statement 

Not applicable.   



HighTech and Innovation Journal         Vol. 5, No. 2, June, 2024 

477 

 

6.4. Informed Consent Statement 

Not applicable.  

6.5. Declaration of Competing Interest 

The author declares that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

7. References 

[1] Kuehne-Nagel. (2021). Why does the current container shortage happen? Kuehne + Nagel International AG, Feusisberg, 

Switzerland. Available online: https://home.kuehne-nagel.com/-/knowledge/market-insights/container-shortage (accessed on 

March 2023). 

[2] Freightos. (2023). Shipping & Freight Cost Increases, Current Shipping Issues, and Shipping Container Shortage. Freightos, 

Ramallah, Israel. Available online: https://www.freightos.com/freight-blog/shipping-delays-and-cost-increases/ (accessed on 

March 2023). 

[3] Kunz, G. I., Karpova, E., & Garner, M. B. (2021). Textile and Apparel Trade: Barriers, Regulations, and Politics. (2021). Going 

Global, 107–132. doi:10.5040/9781501338700.ch-005. 

[4] WTO. (2023). World trade statistical review 2023. World Trade Organization, Geneva, Switzerland. Available online: 

https://www.wto.org/english/res_e/publications_e/wtsr_2023_e.htm (accessed on March 2023). 

[5] Zhu, W., Chen, S., Dai, M., & Tao, J. (2024). Solving a 3D bin packing problem with stacking constraints. Computers and 

Industrial Engineering, 188, 109814. doi:10.1016/j.cie.2023.109814. 

[6] Cai, S., Deng, J., Lee, L. H., Chew, E. P., & Li, H. (2023). Heuristics for the two-dimensional irregular bin packing problem with 

limited rotations. Computers and Operations Research, 160, 106398. doi:10.1016/j.cor.2023.106398. 

[7] Deplano, I., Lersteau, C., & Nguyen, T. T. (2021). A mixed-integer linear model for the multiple heterogeneous knapsack problem 

with realistic container loading constraints and bins’ priority. International Transactions in Operational Research, 28(6), 3244–

3275. doi:10.1111/itor.12740. 

[8] Olsson, J., Larsson, T., & Quttineh, N. H. (2020). Automating the planning of container loading for Atlas Copco: Coping with 

real-life stacking and stability constraints. European Journal of Operational Research, 280(3), 1018–1034. 

doi:10.1016/j.ejor.2019.07.057. 

[9] Cid-Garcia, N. M., & Rios-Solis, Y. A. (2020). Positions and covering: A two-stage methodology to obtain optimal solutions for 

the 2d-bin packing problem. PLoS ONE, 15(4), 229358. doi:10.1371/journal.pone.0229358. 

[10] Huan, P. T., Canh, H. T., Thai, V. D., & Tuan, B. N. 2D bin packing problem and application in maritime transportation. TNU 

Journal of Science and Technology, 226(07), 226–234. 

[11] Kundu, O., Dutta, S., & Kumar, S. (2019). Deep-Pack: A Vision-Based 2D Online Bin Packing Algorithm with Deep 

Reinforcement Learning. 2019 28th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 

2019, 1–7. doi:10.1109/RO-MAN46459.2019.8956393. 

[12] Ramos, A. G., Silva, E., & Oliveira, J. F. (2018). A new load balance methodology for container loading problem in road 

transportation. European Journal of Operational Research, 266(3), 1140–1152. doi:10.1016/j.ejor.2017.10.050. 

[13] Gzara, F., Elhedhli, S., & Yildiz, B. C. (2020). The Pallet Loading Problem: Three-dimensional bin packing with practical 

constraints. European Journal of Operational Research, 287(3), 1062–1074. doi:10.1016/j.ejor.2020.04.053. 

[14] Lemechshenko, O., Nakipova, G., & Akhmet, G. (2022). Improving the Program-Targeted Management Methodology and Its 

Practical Application for the Sustained and Environment Development of Agro-Industrial Complex. Journal of Environmental 

Management and Tourism, 13(3), 769. doi:10.14505/jemt.v13.3(59).16. 

[15] Nishiyama, S., Lee, C., & Mashita, T. (2020). Designing a flexible evaluation of container loading using physics simulation. In 

Communications in Computer and Information Science: Vol. 1173 CCIS, Springer International Publishing, 255–268. 

doi:10.1007/978-3-030-41913-4_21. 

[16] Paquay, C., Schyns, M., & Limbourg, S. (2016). A mixed integer programming formulation for the three-dimensional bin packing 

problem deriving from an air cargo application. International Transactions in Operational Research, 23(1–2), 187–213. 

doi:10.1111/itor.12111. 

[17] Sheng, L., Xiuqin, S., Changjian, C., Hongxia, Z., Dayong, S., & Feiyue, W. (2017). Heuristic algorithm for the container loading 

problem with multiple constraints. Computers and Industrial Engineering, 108, 149–164. doi:10.1016/j.cie.2017.04.021. 

https://home.kuehne-nagel.com/-/knowledge/market-insights/container-shortage
https://www.freightos.com/freight-blog/shipping-delays-and-cost-increases/
https://www.google.com/search?client=firefox-b-e&sca_esv=9808eceaba48aaa9&sca_upv=1&sxsrf=ADLYWIKpgWe7NQQN70rPuBq09w2hgciJ4g:1718711213158&q=Geneva&si=ACC90nyvvWro6QmnyY1IfSdgk5wwjB1r8BGd_IWRjXqmKPQqm2PqOa0IuxFWwYvJaVIPJzuO76vKfcUs8OaJnbnG6cdW5K51xXt14okswEEit6RNS91Fw6fuB4TjXPXcAsC63RwUzOoAiSBb7AcLGoA5SytTd8KrCtl0iddxUVAiC7VWWaBOcr7Crk-hPTVeANkqwItU0BaO&sa=X&ved=2ahUKEwieqNOaiuWGAxVE_7sIHbGFB6IQmxMoAHoECDgQAg
https://www.wto.org/english/res_e/publications_e/wtsr_2023_e.htm


HighTech and Innovation Journal         Vol. 5, No. 2, June, 2024 

478 

 

[18] Kurpel, D. V., Scarpin, C. T., Pécora Junior, J. E., Schenekemberg, C. M., & Coelho, L. C. (2020). The exact solutions of several 

types of container loading problems. European Journal of Operational Research, 284(1), 87–107. doi:10.1016/j.ejor.2019.12.012. 

[19] Mahvash, B., Awasthi, A., & Chauhan, S. (2018). A column generation-based heuristic for the three-dimensional bin packing 

problem with rotation. Journal of the Operational Research Society, 69(1), 78–90. doi:10.1057/s41274-017-0186-7. 

[20] Sharma, E. (2021). Harmonic Algorithms for Packing d-Dimensional Cuboids into Bins. Leibniz International Proceedings in 

Informatics, LIPIcs, 213, 1–22. doi:10.4230/LIPIcs.FSTTCS.2021.32. 

[21] Oliveira, L. de A., de Lima, V. L., de Queiroz, T. A., & Miyazawa, F. K. (2020). The container loading problem with cargo 

stability: a study on support factors, mechanical equilibrium and grids. Engineering Optimization, 53(7), 1–20. 

doi:10.1080/0305215X.2020.1779250. 

[22] Zhou, Q., & Liu, X. (2017). A swarm optimization algorithm for practical container loading problem. Proceedings IECON 43rd 

Annual Conference of the IEEE Industrial Electronics Society, 2017-January, 5690–5695. doi:10.1109/IECON.2017.8216987. 

[23] Moura, A., & Bortfeldt, A. (2017). A two-stage packing problem procedure. International Transactions in Operational Research, 

24(1–2), 43–58. doi:10.1111/itor.12251. 

[24] Gajda, M., Trivella, A., Mansini, R., & Pisinger, D. (2021). An Optimization Approach for a Complex Real-Life Container 

Loading Problem. SSRN Electronic Journal, 1-34. doi:10.2139/ssrn.3740046. 

[25] Otelbaev, M., Durmagambetov, A. A., & Seitkulov, Y. N. (2008). Conditions for the existence of a global strong solution to a 

class of nonlinear evolution equations in a Hilbert space. Proceedings of the Steklov Institute of Mathematics, 260(1), 194–203. 

doi:10.1134/S0081543808010148. 

[26] Ocloo, V., & Fügenschuh, A. (2020). A New Mathematical Model for a 3D Container Packing Problem on Modelling of 3D-

Container Packing Problem. Brandenburg University of Technology, Cottbus, Germany. doi:10.26127/BTUOpen-5088. 

[27] Nascimento, O. X. do, Alves de Queiroz, T., & Junqueira, L. (2021). Practical constraints in the container loading problem: 

Comprehensive formulations and exact algorithm. Computers and Operations Research, 128, 105186. 

doi:10.1016/j.cor.2020.105186. 

[28] Tole, K., Moqa, R., Zheng, J., & He, K. (2023). A Simulated Annealing approach for the Circle Bin Packing Problem with 

Rectangular Items. Computers and Industrial Engineering, 176, 109004. doi:10.1016/j.cie.2023.109004. 

[29] Xiang, X., Yu, C., Xu, H., & Zhu, S. X. (2018). Optimization of heterogeneous container loading problem with adaptive genetic 

algorithm. Complexity, 2018, 1–12. doi:10.1155/2018/2024184. 

[30] Tsao, Y. C., Tai, J. Y., Vu, T. L., & Chen, T. H. (2024). Multiple bin-size bin packing problem considering incompatible product 

categories. Expert Systems with Applications, 247, 123340. doi:10.1016/j.eswa.2024.123340. 

[31] Ananno, A. A., & Ribeiro, L. (2024). A Multi-Heuristic Algorithm for Multi-Container 3-D Bin Packing Problem Optimization 

Using Real World Constraints. IEEE Access, 12, 42105–42130. doi:10.1109/ACCESS.2024.3378063. 

[32] Yang, Y., Wu, Z., Hao, X., Liu, H., & Qi, M. (2023). Two-layer heuristic for the three-dimensional bin design and packing 

problem. Engineering Optimization, 1–38. doi:10.1080/0305215X.2023.2269868. 

[33] EasyCargo. (2021). Container and truck loading software EasyCargo. EasyCargo, Liben, Czech Republic. Available online: 

https://www.easycargo3d.com/ (accessed on March 2024). 

[34] Erbayrak, S., Özkır, V., & Mahir Yıldırım, U. (2021). Multi-objective 3D bin packing problem with load balance and product 

family concerns. Computers and Industrial Engineering, 159, 107518. doi:10.1016/j.cie.2021.107518. 

https://www.easycargo3d.com/

