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Abstract 

The relevance of the study is due to the need to improve electric drive systems operated in harsh conditions. The goal of 

the study is to create a model for assessing the state of stability of the electric drive of an ore mill using machine learning 

capabilities, which will provide high performance and the ability to work consistently in different systems. Various 

sustainability assessment models have been developed based on 6 machine learning algorithms. The study and comparison 

of models built using artificial neural networks (ANN) of different architectures was carried out using various learning 

methods. The expediency of using the Tree and ANN algorithms to develop a model for assessing electric drive stability 

is substantiated. The novelty of the results obtained lies in the fact that the model has high accuracy, high speed, and the 

ability to detect instability in uncertain operating modes of the electric motor of an electric drive, as well as the possibility 

of coordinated operation with various systems. The practical value is that the model allows, at an intellectual level, to 

provide effective control and fault diagnosis of complex electric drive systems, which cannot be achieved using the known 

methods. 

Keywords: Machine Learning; Neural Network; Ore Mill; Electric Drive; Intelligent Model Discipline. 

1. Introduction 

The correct organization of technological processes at manufacturing enterprises is mainly due to the smooth 

operation and efficient operation of electric drive systems that ensure the operation of the technological mechanisms [1–

5]. An electric drive system is a complex system operating under load, the mechanical and electrical parts of which are 

in constant interaction. The electrical part of the system consists of an energy accumulator and a converter connected by 

an electric and magnetic connection. The mechanical part is an inertial mass connected by elastic mechanical joints [6, 

7]. During operation, the elastic links in the mechanical part of the electric drive system are subjected to mechanical 

shocks, which change with a certain frequency and lead to an increase in the wear rate of the structural components of 

the system and prevent the stable operation of the system. They are especially undesirable for systems operating with 

variable loads [8, 9]. Such is the electric drive system that ensures the operation of the ore mill; it is energy-intensive 

and operated in difficult conditions. 

Studies show that ore mills used in various technological processes operate with an arbitrarily varying load [5, 10–

12]. The random nature of the load change is due to the qualitative characteristics of the ore, the degree of filling of the 

crushing drum, and the degree of wear of the lining protecting the walls. The ore grinding mill is mainly started without 

loading the ore into the mill, which makes it possible to facilitate the operation of the electric drive system to some 
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extent. Meanwhile, during operation, flickering occurs in the elastic links of the electric drive system due to the dynamic 

parameters of the mechanical transmission system and random changes in the torque of resistance created by the mill. 

Flickering in the mechanical part of the system eventually leads to the wear and deformation of mechanical components, 

which leads to an emergency or system failure. This leads to a decrease in the efficiency of subsequent processes and 

unnecessary losses of electricity [13]. Due to an increase in the intensity and amplitude of elastic flickers that occur in 

the mechanical part of the mill's electric drive system during operation, the system may be in an unstable state, which 

increases the likelihood of its being in an emergency state. 

Considering the above, as well as the fact that the grinding process is the main production stage for obtaining ore 

concentrate and various building materials [5, 14], an assessment of the stability state aimed at improving the efficiency 

of its electric drive system is a task of scientific and technical interest. There are various approaches and 

recommendations aimed at improving the efficiency of the electric drive system of the ore mill. Sapsalev et al. [15] 

proposed a new approach to ensuring the stability of a two-mass electromechanical system with a magnetic coupling. 

To linearize the system, a transfer function is obtained between the electromagnetic torque of the motor and the angular 

velocity of the second mass. The stability of a linearized electromechanical system was considered using the Hurwitz 

criterion. The results obtained make it possible to analyze transients in linear and nonlinear systems in the MATLAB 

Simulink environment. To improve the efficiency of the mill, it was proposed to optimize its electric drive system [16]. 

Two variants of the electric drive system were studied:  

• With a low-speed synchronous motor without a gearbox;  

• With an asynchronous motor and a gearbox.  

The analysis shows that the most energy-efficient system is one with an electric drive without a gearbox and a low-

speed synchronous motor, while a smooth start is provided by a system with an asynchronous motor thanks to a hydraulic 

clutch [16]. Machine learning capabilities have been successfully applied to increase mill productivity and save the 

electricity consumed by the electric drive [17]. A simulation model was proposed to control the stability of a multistage 

electric drive system [18]. The results of testing the model show that the proposed control algorithm has the best 

capabilities for tracking commands, the best protection against interference, and higher performance than a traditional 

PID regulator. Compared with the traditional mathematical model, the proposed simulation model is closer to real 

working conditions. This makes it possible to take the non-linear factors into account and solve the problem of 

inconsistency identified during control [18]. 

The studies devoted to the development of control technologies for electric drive systems and their application are 

also of interest [19, 20]. Blagodarov et al. [20] have developed recommendations for developers of electric drive systems 

based on artificial intelligence. Various approaches to reducing the intensity of fluctuations occurring in the system and 

improving the accuracy of dynamic positioning are presented. The proposed approaches are applicable to cases where 

the mechanical system is flexible. A method is proposed for determining the parameters of a model of a two-mass 

electromechanical system based on oscillograms obtained in operating and emergency modes [21]. The technique is 

universal and includes the calculation of the moments of inertia of rotating masses, the coefficients of elastic rigidity 

and vibration damping, as well as the time constants of the motor air gap torque control circuit. 

In a number of studies, an attempt has been made to develop intelligent electric drive control systems that prevent 

possible malfunctions [22–24], which, however, cannot be applied for the comprehensive solution of the problems that 

arise during the ore crushing process. Baghdasaryan & Avetisyan [25] discussed the issues of the stability of the motion 

of the "electric motor – technological load" system. It is confirmed that the stability margin can change during the 

operation of the system by changing the tensile torque. It is shown that a change in the stiffness of the connection of the 

motion transmission link causes a change in the frequency of flickering of mechanical links, which provides information 

on the state of the system. This article also presents a stability control algorithm, but it is not recommended to use it in 

systems with varying loads. 

Ren & Qingzhen [26] investigated the dynamic characteristics and stability of a permanent magnet synchronous 

motor (PMSM). Using the Ruth-Hurwitz criterion, stability conditions and bifurcation conditions for equilibrium points 

were obtained. It is confirmed that to ensure the stable operation of the motor, its own parameters must be calculated in 

an area in which there is only one stable equilibrium. Even though the dynamics of PMSM behavior have been studied 

with and without external load, the proposed model does not consider the operating modes of the motor. In addition, the 

results obtained only record the conditions for stable operation of the motor and cannot be widely used for solving 

control and diagnostic problems. 

Kodkin et al. [27] present the well-known Popov stability criterion for nonlinear systems based on nonlinear 

frequency characteristics. It is shown that, in comparison with traditional methods, the proposed method makes it 

possible to design the structure of the electric drive system more efficiently. The results obtained can be used to 

determine the stability conditions and develop methods of regulation for tracking electric drives. At the same time, it is 

important to note that this work does not take into account the influence of the elastic links on stability. The importance 

of this factor is taken into account in article [28]. In this case, the dynamic stability of the system is assessed for operating 
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modes with sudden steps in supply voltage. It should be noted that, however, the models developed by Kodkin et al. 

[27] and Kulakovskiy & Aristov [28] do not take into account the dynamics of load changes and also cannot work 

consistently at the intellectual level. 

Ibrahim et al. [29] analyzed the influence of magnetic saturation and rotor position on transient processes and the 

stability limits of a synchronous reluctance motor. It has been confirmed that magnetic saturation increases the stability 

limit and torque of a synchronous reluctance motor. On the other hand, changing the q-axis flux linkage has a great 

impact on motor performance and its stability limits. The analysis carried out does not give a complete picture of the 

state of stability of a synchronous electric drive since it does not take into account the characteristic parameters of the 

transmission links. 

The analysis shows that some studies are best suited to increase the productivity of the grinding process and decrease 

energy consumption. Another group of works considers the increase in efficiency of the process from the point of view 

of researching and evaluating the operating characteristics of the mechanical part of the electric drive system that drives 

the mechanism. Various approaches have been proposed to control fluctuations occurring in the elastic links of the 

electric drive system, as well as to prevent their harmful effects using regulators. Undoubtedly, important results have 

been obtained that are applicable to improving the efficiency of the electric drive system of the ore mill. However, in 

these studies, information about the state of stability of the system is incomplete since the possibility of providing a 

synchronous motor in asynchronous modes is not considered. The transients caused by this can make the system 

unstable, which eventually leads to deformation of the elastic links. Neglecting the stability conditions during transients 

can lead to an inadequate use of control capabilities. It can be stated that the considered approaches cannot be integrated 

into the industrial challenges of the 4th generation. 

Our research shows that there is significant potential to improve the efficiency of the ore mill. This is due to the 

development of an intelligent model that comprehensively takes into account the transient phenomena of the electric 

drive system, evaluates its stability, and is integrated into the control system. The following circumstances serve as the 

basis for the above: 

• Insufficient application of the methods and tools for assessing the stability of the control systems, diagnostics, 

and monitoring of the electric drive of ore mills; 

• The lack of methods that ensure high performance and accuracy in assessing the stability of the system with a 

random change in load; 

• Insufficient use of intelligent solutions to assess the stability of the system; 

• Insufficient assessment of the operating modes of the synchronous motor. The use of models that do not take into 

account the possibility of their operation in asynchronous mode for a certain period of time. 

Based on the importance of having accurate information about the stability of the system to improve the efficiency 

of the ore mill electric drive system, as well as the effectiveness of using intelligent approaches to synthesize a stability 

assessment model, the purpose of this paper and the tasks to be solved for its implementation are formulated. The aim 

of the paper is to develop a model for assessing the stability of the mechanical part of the mill's electric drive system 

using machine learning capabilities, which will ensure high productivity and the possibility of coordinated operation in 

various systems. 

The structure of the paper is as follows: Section one presents the status of the issue being considered in the study. 

The papers of interest for improving the efficiency of the ore mill and its electric drive systems are analyzed. The 

necessity and purpose of applying a new approach to assessing the instability of the electric drive system of the ore mill 

are substantiated. Section 2 provides the methodology and algorithm for solving the main tasks for assessing the state 

of instability of the system. Section 3 presents the results obtained to assess the state of stability using various machine 

learning methods as well as various neural network architectures and learning algorithms. Section 4 provides comments 

and recommendations on the results of the study. 

2. Material and Methods 

Due to its high efficiency and power factor, the synchronous motor has been widely used for crushing ore at 

production plants [5, 30, 31]. For this reason, stability assessment is carried out for a synchronous electric drive system, 

the mechanical part of which consists of an ore mill, a synchronous electric drive motor, and a clutch (Figure 1). During 

operation, the synchronous motor may briefly switch to an asynchronous mode. This differs from the usual mode in that 

the motor operates with a slip other than zero for a certain time interval [32]. Considering that the asynchronous mode 

can also be caused by an emergency decrease in the motor supply voltage and an increase in the torque of resistance 

created by the mill, this circumstance is taken into account when forming the database. To assess the stability of the 

electric drive system of the ore mill, the fact that the electric drive system can be in three different states is taken into 

account: 
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• Unstable; 

• Stable without stock; 

• Stable with stock. 

To assess the stability of the system, 2 types of models are considered, namely: 

• Two-state alarm. The output signal of the model indicates a stable or unstable state of the system, 

• Three-state alarm. The output signal of the model signals are: an unstable, stable without stock and stable with 

stock state of the system. 

 
          (a)                                               (b) 

Figure 1. The physical model of the electric drive of the ore mill, (a) block diagram, (b) kinematic diagram of the connection 

between the motor and the ore mill. 

Using the capabilities of machine learning to assess the stability of the electric drive system, the following tasks are 

solved: 

• Database acquisition;  

• Assessment of the impact of the database input data on the state of stability; 

• Assessment and comparative analysis of the stability of the system using neural networks trained using various 

architectures and methods; 

• Assessment and comparative analysis of the state of the system's stability using various intelligent algorithms 

used in classification problems; 

• Development of recommendations for the use of a model for assessing the state of stability in the control system 

of an ore mill. 

The flowchart of the algorithm for this workflow is presented in Figure 2. 

 
Figure 2. The flowchart of the algorithm of the workflow  
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2.1. Creating a Database 

To train intelligent model data, you must have a database. To create the base, the stability conditions obtained for the 

mechanical part of the synchronous electric drive system that ensures the operation of the ore mill were used [33]. 

Taking into account that the reasons for the occurrence of non-standard operating modes of a synchronous motor in an 

electric drive and their manifestations are numerous and can disrupt the normal flow of the technological process, under 

stable conditions, the possibility of the motor appearing in various operating modes is taken into account. Details of the 

database generation algorithm are described below (Figure 3). 

 
Figure 3. The block diagram of the database creation 

The boundary values of the input data are entered, with the help of which the database is formed. The input data 

of the system is randomly generated. The following input data are used: the electromagnetic torque of the motor 

(𝑇), the torque of resistance (𝑇𝑐) created by the ore mill, the displacement angles of the motor shaft and the mill 

(𝜑1, 𝜑2) and the angular velocities of rotation (𝜔1, 𝜔2), the moment of inertia of the mill (𝐽2), the stiffness of the 

connection of the mechanical part (𝑐). For stable data, their stability margin is checked. The results are recorded in 

the database. 

To determine the stability conditions, the following differential equation was used to describe the dynamics of the 

electric drive system with discrete masses. 

{
𝑇 − 𝑇12 = 𝐽1

𝑑2𝜑1

𝑑𝑡2
,,,,𝑇12 − 𝑇𝑐 =, 𝐽2

𝑑2𝜑2

𝑑𝑡2

𝑑𝑇12

𝑑𝑡
= 𝑐(𝜔1 − 𝜔2), 𝑇 = 𝑇𝑠 − 𝑇𝑎𝑠,,,,,,,,,,

  (1)        

where 𝜔1 =
𝑑𝜙1

𝑑𝑡
;𝜔2 =

𝑑𝜙2

𝑑𝑡
; 𝐽1 is the moment of inertia of the rotor of the motor; 𝑇12 is the elastic torque. 

The torque 𝑇,of the synchronous electric drive motor is represented by synchronous 𝑇𝑠 and asynchronous 𝑇𝑎𝑠 
components. In the system of Equations 1, the following expression was used to determine the torque of resistance 

created by the ore mill [34]. 

𝑇𝑐 = 𝑚𝑜 +𝑚1𝜙2 −𝑚2(𝜙2)
3, (2) 

where 𝑚𝑜, 𝑚1, 𝑚2 are the coefficients. 

The stability conditions were obtained on the basis of Lyapunov's stability theory by qualitative study of Equation 1. 

A database containing more than 500,000 data has been created, consisting of 8 inputs and one output, which has two 

or three signal response capabilities. 

To improve the efficiency of the database, the impact of the input data on stability conditions is evaluated. 

The effects on the output signals of the system of angular displacements of the electric drive motor and mechanism 

(Figure 4) and speeds (Figure 5), joint stiffness and the moment of inertia of the mill (Figure 6), the influence of the 

torque of resistance created by the ore mill and the electromagnetic torque of the motor (Figure 7) are studied. The 

studies were carried out in relative units. 
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Figure 4. The influence of the displacement angles of the 

electric drive motor and the ore mill on the stability of the 
system. 

 

Figure 5. The influence of the rotation angles of the electric 

drive motor and the ore mill on the stability of the system. 
 

2.2. Methods Used to Synthesize the Stability Assessment Model 

To assess the stability of the system, 6 algorithms are considered that are widely used to solve classification problems 

(Tree, Discriminant, KNN, SVM, Logistic Regression, and Naive Bayes) [35–40], available in the Classification Learner 

Toolbox environment of the MATLAB software package. At the same time, the possibilities of using an artificial neural 

network with different architectures and learning algorithms are considered. 

3. Results and Discussion 

Based on the described method, tests were carried out on the electric drive system of a drum mill type 2700×3600mm 

used in the production of ore concentration. Table 1 shows the data of the ore mill and the electric drive motor. 

Table 1. Data of the system under test 

            Model (D×L) 2700 × 3600 (mm) Motor power 380 (kW) 

Rotation speed of cylinder 20.7 (r/min) Rotation speed 187.0 (r/min) 

Useful power 328 (kW) The flywheel torque of the rotor 9.0 (t m2) 

Loading of ball 26 (t) coefficient of efficiency 88.4 (%) 

3.1. Results of the Application of Machine Learning Algorithms 

To develop a model for assessing the stability of the mill's electric drive system, the database created using the 

algorithms shown in Figure 3 is considered for signaling two and three states, respectively (Tables 2 and 3). To assess 

the effectiveness of the model, the characteristics of speed and accuracy, as well as the memory capacity, are considered. 

The results show that the models developed using Discriminant, Linear SVM, Efficient Linear SVM, Naive Bayes, 

Efficient Logistic Regression algorithms have a rather low (less than 82.02%) accuracy. The accuracy of the models 

 

Figure 6. The effect of bond stiffness and the moment of 

inertia of the mill on the stability of the system. 

 

 

Figure 7. The influence of the torque of resistance created 

by the ore mill and the electromagnetic torque of the 
motor on the stability of the system. 
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developed using the KNN and Tree algorithms exceeds 90% (Figures 9 and 11). At the same time, the accuracy of 

models signaling two states running on CNN and Tree algorithms is higher and approaching 100% (Figure 11). The 

KNN algorithm, which showed the highest accuracy, has a longer learning time and a lower prediction speed than the 

Tree algorithm (Figures 8, 10). In addition, the memory size of the model with the Tree algorithm is small. Of the 

considered options, the worst parameters of prediction speed, occupied volume, and training time are provided by the 

model developed on the basis of a discriminant algorithm, whose accuracy does not exceed 56.57 (Figure 11). 

Table 2. Characteristic parameters of the model signaling instability, stability with a stock and stability without a stock for 

various algorithms 

Algorithm Model Type 
Prediction speed 

(obs/sec) 

Model size 

(Mb) 

Training tine 

(sec) 

Accuracy 

(%) 

Tree 

Fine Tree 1236000 0.031 7.47 96.9531 

Medium Tree 1344100 0.009 6 94.2069 

Coarse Tree 2106000 0.006 4.3 92.5609 

Discriminant 
Linear Discriminant 1404700 0.007 3.85 50.41 

Quadratic Discriminant 1200000 0.009 4.5 50.4 

K-Nearest Neighbors 

(KNN) 

Fine KNN 112450 59.94 11.55 99.9018 

Medium KNN 46603 59.94 20.6 99.9018 

Cosine KNN 1187.9 46.94 436.7 99.9017 

Cubic KNN 28455 59.94 32.4 99.9017 

Weighted KNN 47311 59.94 34.86 99.9017 

Coarse KNN 8704 59.944 68.5 80.6553 

Support Vector 

Machines (SVM) 

Efficient Linear SVM 806020 0.039 36.3 64.0386 

Linear SVM 357510 0.019 25446.8 59.4517 

SVM Kernel 30511 0.810 454.7 94.2961 

Logistic Regression 
Logistic Regression Kernel 29435 0.810 213.6 91.1817 

Efficient Logistic Regression 598470 0.039 39.6 64.0381 

Naive Bayes Gaussian Naive Bayes 812910 0.009 9.4 30.8886 
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Figure 8. The learning time of the model signaling instability, with and without a stock of stability, as well as the prediction 

speed for various machine learning algorithms 
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Figure 9. Accuracy and volume of the model signaling instability, stability with and without a stock for various machine 

learning algorithms 

Table 3. Characteristic parameters of the model signaling instability and stability for various algorithms 

Algorithm Model Type 
Prediction speed 

(obs/sec) 

Model size 

(Mb) 

Training tine 

(sec) 

Accuracy 

(%) 

Tree 

Fine Tree 795930 0.02808 12.05 99.75 

Medium Tree 1023000 0.00875 10.8 99.37 

Coarse Tree 1067700 0.00516 9.83 97.71 

Discriminant 
Linear Discriminant 1150200 0.00634 4.08 56.57 

Quadratic Discriminant 1296900 0.00739 2.53 56.57 

K-Nearest Neighbors 

(KNN) 

Fine KNN 144560 61.2471 6050 100 

Medium KNN 41702 61.2471 6078 100 

Cosine KNN 931 61.2471 6680 100 

Cubic KNN 25148 48.1393 6082 100 

Weighted KNN 45558 61.2471 6100 100 

Coarse KNN 6466 61.2471 6110 83.19 

Support Vector 

Machines (SVM) 

Efficient Linear SVM 1381800 0.0117 18.1 70.05 

Linear SVM 914 40.880 13329 56.57 

SVM Kernel 56054 0.0129 6292 82.02 

Logistic Regression 
Logistic Regression Kernel 52290 0.0129 6220 75.6 

Efficient Logistic Regression 1166400 0.0118 3.9 70.05 

Naive Bayes Gaussian Naive Bayes 758700 0.0071 7.45 56.57 
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Figure 10. Training time and prediction speed of the model signaling instability and stability for various machine learning algorithms 
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Figure 11. Accuracy and volume of the model signaling instability and stability for various machine learning algorithms 

3.2. Results Obtained Using an Artificial Neural Network 

There are no clear rules for choosing the architecture, training method, and activation function of an artificial neural 

network [41–43]. For this reason, to synthesize a model for assessing the state of system stability, models with different 

architectures, activation functions, and learning algorithms that are used in them are studied. Considering this, two types 

of classification are used: Binary Classification (signaling about instability and stability) and Multi-Class classification 

(signaling about instability, stability with a stock, and stability without a stock); therefore, the activation function on the 

output layer is selected based on the conditions of the problem. In the case of Binary Classification, the activation 

function at the output level is Sigmoid, and in the case of Multi-Class Classification, it is SoftMax. Selected activation 

functions in hidden layers are shown in the table. 

After choosing the architecture of the neural network, the weighting coefficients that minimize the error are 

determined. Various optimization algorithms can be used for this purpose. Bearing in mind that the learning algorithm 

has different parameters and settings, in order to properly control them, it is necessary to understand the impact of the 
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optimization method used on the system's performance. A neural network model for assessing the stability of the electric 

drive system of an ore mill was considered for 9 different architectures and 5 different gradient optimization methods 

used for training [44, 45] (Tables 4 and 5). 

From the results obtained, it is clear that the use of an artificial neural network for signaling three states of stability 

does not give the desired results for solving this problem (Table 4). The study of the created database shows that the 

data on stability without reserve makes up only 9.2% of the database, which reduces the accuracy and increases the 

training time. The use of a neural network in the instability and stability signaling model increases the accuracy and 

reduces the training time (Table 5). At the same time, it is noteworthy that with the same architecture, the accuracy of 

the model with the activation function and the duration of training are significantly influenced by the training method. 

Dependencies characterizing the effectiveness of gradient optimization methods Adam, RMSprop, SGD, AdaDelta, and 

Nadam are shown in Figures 12 to 18. 

Table 4. Characteristic parameters of the model signaling instability, stability with and without a stock, created on the basis 

of neural networks of various architectures 

Optimization 
method 

Neurons in 
the first 

hidden layer 

Neurons in 
the second 

hidden layer 

Prediction 
speed (оbs/s) 

Model size (Mb) Training time (sec) Accuracy (%) 

Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU 

Adam 

10 - 

29.47  0.025  90.92  58.0  

RMSprop 29.43  0.021  88.29  57.6  

SGD 29.84  0.021  88.52  53.4  

AdaDelta 29.83  0.025  89.60  51.8  

Nadam 29.49  0.025  94.47  57.6  

Adam 

20 - 

29.74 29.61 0.026 0.026 93.26 90.72 57.7 59.8 

RMSprop 29.59 29.95 0.022 0.022 89.64 88.37 53.4 60.3 

SGD 29.85 29.71 0.022 0.022 88.48 86.80 51.3 55.4 

AdaDelta 29.87 29.91 0.026 0.026 91.55 89.63 57.8 53.1 

Nadam 29.64 30.23 0.026 0.026 94.29 93.17 57.9 60.8 

Adam 

30 - 

29.67  0.028  95.03  57.8  

RMSprop 29.68  0.022  92.54  58.0  

SGD 26.25  0.022  95.21  53.5  

AdaDelta 29.89  0.028  97.97  51.8  

Nadam 26.74  0.028  99.62  57.9  

Adam 

20 10 

28.50  0.034  103.93  59.2  

RMSprop 28.80  0.027  107.05  58.3  

SGD 29.29  0.027  103.98  51.8  

AdaDelta 26.24  0.034  102.54  52  

Nadam 26.89  0.034  115.88  59.3  

Adam 

30 20 

29.58 29.56 0.041 0.041 99.82 100.1 59.4 61.0 

RMSprop 29.85 29.87 0.031 0.031 97.28 94.0 58.9 55.6 

SGD 29.75 28.96 0.031 0.031 95.26 92.19 51.9 54.4 

AdaDelta 29.56 29.89 0.041 0.041 99.99 95.84 51.9 61.4 

Nadam 29.83 29.84 0.041 0.041 105.2 100.9 59.1 61.9 

Adam 

10 5 

28.84 29.64 0.032 0.032 98.34 96.61 58.9 60.3 

RMSprop 30.18 28.44 0.025 0.025 93.0 94.00 57.7 60.2 

SGD 31.38 27.18 0.025 0.025 90.89 92.33 51.5 55.0 

AdaDelta 30.02 29.31 0.032 0.032 95.14 95.28 51.7 50.0 

Nadam 30.57 29.80 0.032 0.032 99.67 98.61 58.2 59.7 
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Table 5. The characteristic parameters of the model signaling instability and stability, created on the basis of neural 

networks of various architectures 

Optimizatio
n method 

Neurons in 
the first 

hidden layer 

Neurons in 
the second 

hidden layer 

Prediction 
speed (оbs/s) 

Model size (Mb) Training time (sec) Accuracy (%) 

Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU 

Adam 

10 - 

24.77  0.024  75.65  93.2  

RMSprop 25.82  0.020  70.80  93.1  

SGD 25.38  0.020  70.75  77.2  

AdaDelta 24.72  0.024  73.57  77.2  

Nadam 24.74  0.024  77.59  93.1  

Adam 

20 - 

24.91 25.18 0.026 0.027 78.47 72.26 93.2 92.2 

RMSprop 25.71 25.73 0.020 0.021 72.64 73.72 92.5 92.6 

SGD 25.01 25.84 0.020 0.021 72.67 68.99 77.2 85.3 

AdaDelta 21.83 26.00 0.026 0.027 75.16 72.03 77.2 75.8 

Nadam 26.08 19.72 0.026 0.027 78.72 79.76 96.7 93.3 

Adam 

30 - 

25.41  0.029  75.38  92.3  

RMSprop 25.21  0.023  73.68  93.3  

SGD 25.66  0.023  70.84  77.2  

AdaDelta 24.94  0.029  79.47  77.2  

Nadam 25.01  0.029  78.32  92.3  

Adam 

20 10 

26.52  0.034  78.68  93.3  

RMSprop 25.21  0.027  77.76  91.7  

SGD 24.96  0.027  79.51  77.2  

AdaDelta 25.07  0.034  78.65  77.2  

Nadam 25.65  0.034  82.53  93.8  

Adam 

30 20 

25.23 24.25 0.042 0.042 84.26 79.43 93.27 94.4 

RMSprop 25.20 25.23 0.032 0.032 80.07 77.54 93.36 92.3 

SGD 25.72 25.73 0.032 0.032 82.93 74.44 77.24 87.9 

AdaDelta 25.35 25.43 0.042 0.042 81.76 76.84 77.24 76.3 

Nadam 24.99 25.87 0.042 0.042 85.27 81.13 93.59 93.2 

Adam 

10 5 

25.95 20.88 0.031 0.030 75.15 77.52 92.6 93.7 

RMSprop 26.64 25.09 0.025 0.025 74.58 77.44 92.3 93.8 

SGD 26.66 25.69 0.025 0.025 71.33 72.22 77.2 84.9 

AdaDelta 26.54 23.75 0.031 0.030 74.51 74.86 77.2 75.1 

Nadam 26.43 25.96 0.031 0.030 78.86 78.86 92.9 93.0 

 

    
(a) (b) 

Figure 12. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the Sigmoid activation 

function with one hidden layer of 10 neurons in the case of various optimization methods 
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(a) 

 
(b) 

Figure 13. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the Sigmoid activation 

function with one hidden layer of 20 neurons in the case of various optimization methods 

(a) (b) 

 Figure 14. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the Sigmoid activation 

function with one hidden layer of 30 neurons in the case of various optimization methods 

Figure 15. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the Sigmoid activation 

function with two hidden layers of 20 and 10 neurons in the case of different optimization methods 

(a) 
 

(b) 

Figure 16. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the Sigmoid activation 

function with two hidden layers of 30 and 20 neurons in the case of different optimization methods 

(a) (b) 
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(a) 

 
(b) 

Figure 17. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with the ReLU activation 

function with two hidden layers of 30 and 20 neurons in the case of different optimization methods 

 
(a) 

      
(b) 

Figure 18. Dependences on Epochs of (a) training accuracy and (b) losses of a neural model with a ReLU activation function 

with two hidden layers of 10 and 5 neurons in the case of different optimization methods 

From the above results, it can be seen that the use of AdaDelta and SGD optimization methods in this network training 

problem in the case of 100 epochs can provide a maximum of 77, 24%, and 87.9%, respectively. The highest accuracy 

can be achieved by using the Nadam method to train a network with a structure of 20 neurons in one hidden layer with 

a sigmoid activation function. In this case, the maximum accuracy of 96.65% is recorded starting from the 70th epoch. 

As a result of application in various structures, the lowest accuracy was 85.27%. 

For the studied neural network architectures, fairly stable performance is provided by the Adam and RMSprop 

optimization methods, the accuracy of which ranges from 9.7 to 94.4%. Training time, prediction speed, and the size of 

the models considered do not undergo drastic changes, unlike machine learning algorithms (Tables 4 and 5). 

The number of neurons in the hidden layer has no significant impact on the accuracy of the model (Figure 19). The 

maximum change is recorded for RMSprop optimization methods, which does not exceed 1.7%. 

 

(a) 
 

(b) 

Figure 19. Dependences of Validation and Accuracy on the number of neurons in the hidden layer (a) for the signaling 

model of three stability states, (b) for the signaling model of two stability states 

3.3. Discussion 

The analysis shows that an intelligent model for assessing the stability of the electric drive system of an ore mill can 

be synthesized both on the basis of the Tree algorithm and on the basis of an artificial neural network. In this case, the 

stability assessment model using the Tree algorithm can be used to control and monitor the electric drive system. Its use 
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for automated control purposes is not recommended because it is ineffective for sorting or grouping operations. Models 

with two-state signaling created on the basis of an artificial neural network can be successfully used in automated control 

systems for the electric drive of an ore mill, as well as monitoring and diagnostics. This statement is supported by the 

fact that the ore mill electric drive system operates under uncertain conditions due to random load changes and changes 

in synchronous motor operating conditions. A serious alternative to digital control of electric drive systems operating in 

such conditions is fuzzy logic and the introduction of neural network control systems. These intelligent systems can be 

successfully integrated with a neural network stability assessment model and provide high system performance. In 

addition, these neural network models can be built into real controllers and work consistently in the control system, 

which cannot be said about the model with the Tree algorithm. 

From the analysis of the results obtained it follows that: 

• All the input parameters used to develop the ore mill electric drive system model significantly influence the 

stability state. In the database created for training purposes, data without a stability stock does not exceed 9.1%. 

This allows to state that, depending on the requirements of the problem being solved, stability assessment models 

with signaling of two or three states can be used in practice: 

o Signaling of states of instability and stability; 

o Signaling of states of instability, stability with and without stock. 

• The use of developed models using well-known machine learning algorithms (Discriminant, Linear SVM, 

Efficient Linear SVM, Naive Bayes, and Efficient Logistic Regression) to improve the efficiency of the ore mill 

electric drive is not guaranteed due to its insufficient characteristic parameters. 

• The developed models using the KNN and Tree algorithms provide high accuracy in signaling both two and three 

states. However, their accuracy in three-state signaling models is slightly reduced. In models based on the KNN 

algorithm, this decrease ranges from 0.1 to 3.1, which is due to the fact that the method is "trained" only on new 

data without taking into account previous experience. 

• The use of neural models with three-state signaling, regardless of the architecture and training algorithm, is 

impractical due to their low accuracy (maximum 61.9%). This is explained by the fact that the neural network is 

poorly trained due to the paucity of stock data. 

• The Nadam, RMSprop, and Adam algorithms provide the lowest losses and highest accuracy in training a neural 

network model. The worst indicators are shown by the AdaDelta and SGD algorithms. 

• As a result of taking into account the possibilities of operating a synchronous motor in asynchronous mode for a 

certain period of time, it became possible to increase the reliability of the developed model. 

• The best result from the models created based on the neural network registers a variant with 20 neurons in one 

hidden layer with a Sigmoid activation function with two-state signaling. 

In this study, we proposed a new hypothesis to develop an intelligent stability assessment model for the electric drive 

system of an ore mill. Application of the obtained results to solve the problems of control, monitoring, and diagnostics 

of the ore grinding process will ensure high reliability and performance of the system, helping to improve the technical 

and economic indicators of the product. 

4. Conclusions 

When conducting this research, problems with data collection were overcome. These problems were solved using the 

model we created, which takes into account all the characteristic parameters of a synchronous electric drive operating 

with a randomly varying load as well as the possibility of a synchronous motor operating in an asynchronous mode. The 

degree of influence of a large number of parameters on the state of stability is considered. As a result of the study, 8 

characteristic factors were identified. The next difficulty was the impossibility of collecting a large amount of data for 

stability states without stock, concerning which the authors have drawn a conclusion. The possibilities of machine 

learning for a comprehensive assessment of the stability of synchronous electric drive systems with dynamic loads have 

not been used by other authors; therefore, there is no preliminary information on the preferred algorithm and method. 

For this reason, the authors conducted the research through the study and comparative analysis of a large number of 

algorithms and optimization methods. The conducted research and analysis can become the basis for the creation of 

high-performance intelligent systems for control, fault detection, and monitoring of electric drives for various purposes. 

Despite the fact that various intelligent electric drives and diagnostic systems are used in practice, they lack the 

capabilities for a comprehensive assessment of the state of stability that would work in concert with them. For this 

reason, we proposed a new approach to assess the stability states of the electric drives of ore mills, which are widely 

used in industry and operate under hard conditions. 
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As a result of the research conducted with the aim of applying intelligent models for automated control, diagnostics, 

and monitoring of mineral processing and the production of various building materials, the following conclusions were 

drawn: 

• The existing opportunities and challenges for improving the efficiency and reliability of the ore mill were 

presented. 

• Opportunities have been created for a comprehensive assessment of the stability conditions of the synchronous 

electric drive of the ore mill. This was done by taking into account the fact that a synchronous motor can be in 

different operating modes and by taking into account non-linear changes in the torque of resistance created by the 

mill. 

• It has been recorded that the prediction speed, learning time, memory capacity, and accuracy of learning stability 

assessment models developed on the basis of Tree, KNN, Discriminant, Linear SVM, Efficient Linear SVM, 

Naive Bayes, Efficient Logistic Regression machine learning algorithms undergo significant changes in cases 

with three- and two-state signaling. The only exceptions are the accuracy of the Tree and KNN algorithms, whose 

maximum changes are insignificant and amount to 5.3% and 3.1%, respectively.    

• It was registered that in order to develop a high-performance neural network model for assessing stability, it is 

necessary that its architecture, activation function, and learning algorithm be selected in a consistent manner. 

• The analysis of the base formed for training the electric drive system of the ore mill shows that the probability 

that the system may be in stability mode without stock is small, up to 9.2%. 

• To ensure efficient and reliable operation of the control system, diagnostics, and monitoring of the electric drive 

of the ore mill, it is most advisable to use the following models with two-state signaling: 

o A model based on the Tree algorithm; 

o A neural network model with the Nadam learning algorithm, a sigmoid activation function, and one hidden 

layer with 20 neurons. 

• The results obtained and the proposed intelligent models can be successfully applied to improve the efficiency 

and reliability of the ore mill, which is widely used in the ore processing and production of building materials, 

thereby contributing to the improvement of quality and economic indicators of products. 
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