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Abstract 

This study aims to significantly improve air quality monitoring through the innovative application of Artificial Intelligence 

(AI). Introducing the Artificial Intelligence Kualitas Udara (AIKU) model, this research offers a novel approach by 

integrating advanced machine learning algorithms with environmental sensors to predict air quality in real-time more 

accurately than traditional methods. The novelty of the AIKU model lies in its sophisticated data analytics framework, 

which processes high-frequency environmental data to assess air quality changes dynamically. The technique employs 

calibrating and deploying the AIKU model across various urban and suburban settings and analyzing its performance 

against conventional monitoring systems such as the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). The 

results demonstrate that AIKU significantly outperforms these traditional systems in both accuracy and speed of response, 

highlighting its effectiveness in real-time environmental monitoring. Furthermore, the AIKU model's scalability and 

adaptability are tested, showing promising potential for application in densely populated urban areas and less populated 

rural settings. This research contributes to environmental monitoring by demonstrating how AI can transform traditional 

methodologies into more effective, scalable, and intelligent ecological management systems. This research provides 

substantial evidence that the AIKU model can serve as a powerful tool for sustainable and smart development worldwide, 

enhancing the ability of governments and organizations to respond to environmental challenges promptly and effectively. 
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1. Introduction 

The sustainable growth of our world hinges on a multitude of pivotal factors, among which the environment stands 

as a cornerstone. Air pollution, in particular, is an escalating global concern with far-reaching impacts on human health 

and the ecological balance. Deteriorating air quality, especially in densely populated urban centers, calls for urgent and 

substantial improvements to safeguard public health and the environment. Figure 1 casts a stark light on this pressing 

issue, ranking air pollution as the third leading risk factor for death globally in 2019. The gravity of this issue is especially 

pronounced in Indonesia, where rapid growth and dense urbanization in cities like Jakarta lead to severe air pollution 

problems. Despite Indonesia’s ongoing environmental efforts since the 1980s, substantial challenges remain, although 
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initiatives such as the ADIPURA program signal progress toward cleaner, greener cities, in line with the European 

Union's vision of 'intelligent cities. Building on these initiatives, our research adopts adaptive environmental 

management and predictive analytics paradigms to enhance air quality monitoring [1, 2]. In expanding our theoretical 

approach, this research draws upon the paradigms of adaptive environmental management and predictive analytics in air 

quality monitoring. Recognizing the complex and dynamic nature of urban pollution, the AIKU model incorporates a 

multifaceted theoretical framework that leverages both real-time data and historical trends to predict air quality levels. 

The model integrates principles from systems theory and machine learning to create a robust predictive tool that can 

adjust to changing environmental conditions without human intervention [3, 4]. This approach is underpinned by the 

theory of intelligent systems, which posits that integrating learning algorithms within environmental monitoring tools 

can significantly enhance their predictive accuracy and operational efficiency. By adopting this advanced theoretical 

framework, AIKU aims to not only monitor but also predict and manage air quality in real time, reflecting a shift from 

reactive to proactive environmental management. 

 

Figure 1. Global ranking of risk factors by total deaths from all causes in 2019* 

 
* Source: https://www.statista.com/statistics/1169367/worldwide-number-deaths-risk-factor/ 

https://www.statista.com/statistics/1169367/worldwide-number-deaths-risk-factor/
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While extensive efforts have been made globally to monitor and mitigate air pollution, significant gaps remain in the 

ability to monitor air quality in real-time with high accuracy and predict future conditions effectively. Traditional air 

quality monitoring systems often rely on static, periodic measurements that fail to capture rapid changes in environmental 

conditions, leading to delays in data processing and response. The primary goal of this research is to address these critical 

gaps by developing the Artificial Intelligence Kualitas Udara (AIKU) model. This model leverages advanced machine 

learning algorithms to enhance the precision and timeliness of air quality monitoring. The AIKU model aims to provide 

real-time, predictive insights into air quality that can inform more effective environmental management strategies. 

Specifically, this research seeks to: 1) Demonstrate the superiority of AI-driven systems over traditional monitoring 

methods in terms of response speed and data accuracy; 2) Explore the model's effectiveness across different 

environmental settings, including urban and rural areas; and 3) Evaluate the potential of AI-enhanced monitoring systems 

to contribute to sustainable urban development and public health. 

Underpinning this research are four pivotal contributions that encapsulate its significance: (i) the critical role of 

optimal middleware implementation in enhancing the performance and efficiency of the AIKU framework, (ii) the 

groundbreaking introduction of the AIRXR algorithm, representing a substantial leap forward in air quality prediction, 

showcasing impressive results with promising high accuracy, (iii) the advancement in prediction speed within the AIKU 

framework, enabling swift responses to address air pollution, and (iv) the innovation embedded in the AIKU framework, 

promising significant societal benefits by proficient monitoring and predicting air quality within an intelligent 

environment, showcasing extraordinary performance. This research represents a technological advancement and 

demonstrates the potential for practical applications to improve people’s health and well-being. 

The structure of this paper unfolds as follows: Section 2 meticulously presents an in-depth literature review on 

Artificial Intelligence-based air quality monitoring, elucidating its role in heightening environmental awareness. Section 

3 introduces the AIKU framework, AIRXR Algorithm, and AIKU Middleware. In Section 4, we show-case the 

implementation of the AIRXR algorithm in the context of the AI integration development problem, diminishing reliance 

on third parties refining the employed methodology and providing valuable insights and implications for the algorithm’s 

effectiveness. Lastly, Section 5 integrates conclusions, a comprehensive discussion of the findings, and identifies 

research limitations as potential directions for future work. 

2. Literature Review 

Air quality stands as a crucial determinant of environmental well-being, exerting a direct influence on both human 

health and ecosystems. Unfortunately, conventional monitoring systems frequently prove inadequate in delivering up-

to-the-minute and thorough data, thus impeding effective environmental management. The infusion of AI into air quality 

monitoring frameworks emerges as a beacon of hope, poised to overcome these limitations and empower more informed 

and timely decision-making in the pursuit of environmentally conscious development. 

2.1. Advancements in Air Quality Monitoring Framework 

Air quality has emerged as a critical human survival issue. Various approaches have been undertaken to address this 

concern, ranging from the traditional method of employing static sensors and manual data collection, which has inherent 

spatial limitations and results in delayed insights. Air quality frameworks have recently been developed to incorporate 

amperometric sensors to meet the demand for lower-cost solutions [5]. However, these frameworks have limitations, as 

inexpensive gas sensors may struggle to detect deficient gas concentrations crucial for monitoring air pollutants within 

safe levels. The shortcomings of conventional air quality monitoring, characterized by static sensors and manual data 

collection methods, have prompted the need for a revolutionary shift [6, 7]. Our innovative framework aims to overcome 

these limitations by integrating AI-driven sensors and advanced data analysis techniques [8]. This integration represents 

a paradigm shift towards continuous and dynamic monitoring, providing a comprehensive understanding of air quality 

fluctuations on a broader scale. 

In contrast to traditional static monitoring systems, which often fail to capture the intricate dynamics of air quality 

variations, our research seeks to transcend these limitations through the progressive evolution of the framework. This 

evolution is driven by incorporating AI-driven sensors and a commitment to continuous monitoring. The ultimate 

objective is to present a holistic panorama of air quality dynamics, fostering a more enlightened and comprehensive 

understanding of environmental nuances. This forward-looking approach is poised to revolutionize the field, ensuring 

more timely and accurate insights into the ever-changing air quality landscape. 

2.2. Artificial Intelligence Empowering Air Quality Monitoring 

With recent strides in science and technology, particularly in machine learning, endeavours to innovate air quality 

monitoring have emerged, capitalizing on integrating the IoT and WSNs [9, 10]. These cutting-edge technologies have 

transformed the landscape of data collection and analysis of air pollution. Nevertheless, amid these advancements, certain 

limitations warrant attention [11]. A noteworthy constraint lies in the coverage and density of sensor networks, as some 
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areas may suffer from inadequate monitoring nodes, resulting in data collection gaps. Furthermore, the reliability of 

sensor data and the imperative for continuous calibration present ongoing challenges [12] that impede the precision of 

air quality assessments. So, this study aims to address these challenges by steering efforts towards formulating a 

comprehensive framework. The primary focus is the strategic infusion of AI to augment the existing monitoring 

infrastructure. Integrating AI technologies aims to elevate data analysis, interpretation, and decision-making process 

proficiency. AI is poised to be pivotal in refining sensor data accuracy, automating calibration procedures, and bridging 

data voids through predictive modelling. Moreover, incorporating machine learning algorithms promises to intelligently 

manage sensor networks, optimize their deployment, and ensure efficient coverage [13, 14]. 

The envisioned framework is more than merely geared toward surmounting existing limitations. It aspires to build 

an adaptive and self-enhancing air quality monitoring system. This forward-looking approach marks a significant stride 

in leveraging the potential of AI to establish a resilient and responsive infrastructure for monitoring and managing air 

quality, thereby fostering healthier and more sustainable urban environments. 

2.3. Environmental Consciousness 

Emphasizing environmentally conscious development is in harmony with the over-arching objectives of sustainable 

practices [15]. This research strives to provide decision-makers with prompt and precise information to facilitate well-

informed policy formulation by incorporating an AI-enhanced air quality monitoring framework [16]. Doing so 

contributes to advancing sustainable development principles that place a premium on environmental preservation and 

enhancing public well-being. Integrating an environmentally conscious approach into this research’s air quality 

monitoring framework resonates with global endeavours aimed at sustainable development [17]. By furnishing decision-

makers with accurate and timely information, the research actively supports formulating policies prioritizing 

environmental preservation, fostering a delicate balance between developmental goals and ecological sustainability. 

From the collection of related work above, air quality monitoring needs new innovation to answer the challenge. The 

research aims to bridge the gaps in air quality monitoring, promoting a transition from traditional, static systems to 

dynamic and AI-driven frameworks. This transition is crucial for addressing the complexities of modern environmental 

challenges. The proposed enhancements advance the technical aspects of monitoring and align with the broader societal 

goal of achieving sustainable and environmentally conscious development. This section will be strengthened by 

collecting relevant research related to the application of AI for air quality monitoring in Table 1. 

Table 1. Literature Review 

Title Novelty Method Limitation 

An IoT Middleware for Air 

Pollution Monitoring in Smart 

Cities: A Situation 

Recognition Model [18] 

A new middleware infrastructure that uses 

machine learning technology for pollution 

monitoring in South Africa. 

The research investigates multiple pollutants, 

including Ozone, Particulate Matter, Carbon 

Monoxide, Sulfur Dioxide, and Nitrogen 

Dioxide. 

Supervised learning algorithms to model the data: 

Quadratic Discriminant Analysis algorithm, K-Nearest 

Neighbor using Euclidean distances and Naive Bayes 

classifier. The method involves a distributed 

middleware and underlying model principles presented 

in detail, including a four-layer architecture comprising 

sensoring, networking, middleware, and application 

layers. 

Real-time data processing and the high 

computing time required for algorithms 

such as K-Nearest Neighbor (KNN) can 

take up to 40 minutes to compute. 

Artificial Intelligence Enabled 

Middleware for Distributed 

Cyberattacks Detection in IoT-

based Smart Environments 

[19] 

Development of an AI-enabled middleware 

framework to detect cyber-attacks in IoT-based 

smart cities. It uses a structured methodology 

that includes data collection and preprocessing, 

deployment of machine learning models, and 

rigorous performance testing in realistic testbeds 

of IoT scenarios. 

Application of machine learning models to IoT devices 

including deep neural networks (DNN), support vector 

machines (SVM), random forests (RF), decision trees 

(DT), gradient boosting (GB), and Naive Bayes (NB) 

Few public data sets, 

IoT Device heterogeneity leads to 

inconsistent data samples, as well as 

poorly trained ML.  

An Application of IoT and 

Machine Learning to Air 

Pollution Monitoring in Smart 

Cities [20] 

Cloud-centric IoT middleware architecture, 

Artificial Neural Network (ANN) was used to 

predict SO2 and PM2.5 levels using data from the 

Environmental Protection Department of the 

Government of Punjab. 
 

Cloud-centric IoT middleware and Artificial Neural 

Network (ANN) 

Potential for overfitting due to dataset size 

and number of neurons used in ANN 

models, sensor networks, and government-

provided data, as well as the need for 

clarity on how these systems perform in 

different urban topographies or weather 

conditions. 

An innovative decision-

making method for air quality 

monitoring based on big data-

assisted artificial intelligence 

technique [21] 

Innovative combined Machine Learning and 

Neural Network models are used for air quality 

forecasting, particularly ICEEMDAN-WOA-

ELM (Enhanced Complete Ensemble Empirical 

Mode Decomposition with Adaptive Whale 

Noise Optimization Algorithm-Extreme 

Learning Machine) and TSTM (Space-Time 

Type Meteorological model). 

This method involves the application of big data and AI 

in environmental protection monitoring. The 

ICEEMDAN-WOA-ELM model significantly 

outperformed the single AI model in air quality 

estimation. It uses ensemble empirical mode 

decomposition with adaptive noise to optimize 

prediction accuracy. The TSTM model combines 

feature engineering, forecasting, and performance 

evaluation, using deep learning to analyze and predict 

air quality based on atmospheric knowledge and 

various meteorological factors. 

This research is limited to air quality 

monitoring in a few cities in Shaanxi 

Province, and there is a need to expand the 

study to include data from more areas, 

such as the Beijing-Tianjin-Hebei region, 

to verify the broader applicability of the 

model. 
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Developing reliable air quality 

monitoring devices with low-

cost sensors: Method and 

lessons learned [22] 

This paper presents the development of a highly 

reliable, portable air quality device capable of 

monitoring particulate matter, differential 

pressure, and outdoor emissions (CO, CO2, O3, 

and VOC) with high reliability and high 

temporal and spatial resolution, overcoming the 

limitations of current-scale monitoring networks 

extensive and expensive. 

This approach includes creating flexible, modular 

hardware platforms, delay- and error-resistant 

middleware components, and data-centric cloud 

services. These elements ensure the reliability of 

sensor, device/edge, and cloud levels. Additionally, the 

device is designed to be remotely configurable to 

reduce maintenance burden. 

Limitations are not stated explicitly in the 

abstract or objectives. However, as with 

any new technology, there may be 

concerns regarding the reliability and 

accuracy of low-cost sensors for scientific 

and policy purposes. 

Framework of Air Pollution 

Assessment in Smart Cities 

using IoT with Machine 

Learning Approach [23] 

The novelty of this research lies in integrating 

IoT with machine learning approaches, 

explicitly using Artificial Neural Networks 

(ANNs), to assess air pollution in smart cities. It 

proposes a cloud-centric IoT middleware 

architecture aggregating data from current air 

pollution and weather sensors to improve 

reliability and reduce costs. 

This method involves deploying a wireless sensor 

network that collects data on various pollutants and 

meteorological indicators. This data is then processed 

using ANN to predict levels of Sulfur Dioxide (SO2) 

and Particulate Matter (PM2.5), and a Pearson 

correlation test is carried out to assess the relationship 

between pollutants and meteorological indicators. 

This method involves deploying a wireless 

sensor network that collects data on 

various pollutants and meteorological 

indicators. This data is then processed 

using ANN to predict levels of Sulfur 

Dioxide (SO2) and Particulate Matter 

(PM2.5), and a Pearson correlation test is 

carried out to assess the relationship 

between pollutants and meteorological 

indicators. 

IoT Ecosystem: A Survey on 

Devices, Gateways, Operating 

Systems, Middleware and 

Communication [24] 

This method involves deploying a wireless 

sensor network that collects data on various 

pollutants and meteorological indicators. This 

data is then processed using ANN to predict 

levels of Sulfur Dioxide (SO2) and Particulate 

Matter (PM2.5), and a Pearson correlation test is 

carried out to assess the relationship between 

pollutants and meteorological indicators. 

The methodological approach of this paper is a survey 

and analysis of various components of the IoT 

ecosystem, including middleware. This paper discusses 

how middleware contributes to managing complex 

computing requirements and security issues in IoT 

networks. 

Although this paper does not explicitly list 

limitations, it discusses broad challenges 

and critical research areas arising from 

advances in the networking and 

communications sector, such as device 

integration, increased data traffic, storage 

and processing requirements, and privacy 

and security issues. 

Implementation of 

Microservice Architectures 

on SEMAR Extension for Air 

Quality Monitoring [25] 

They are implementing a microservice 

architecture in cloud computing, integrated with 

a mobile sensor-based air quality monitoring 

system. SEMAR (Smart Environment 

Monitoring and Analytical in Real-time), 

connected to a vehicle-based mobile sensor 

network (VaaMSN) to detect air quality. 

Experimental results show that this architecture 

achieves real-time data transmission with an 

average delay of only 40 microseconds. 

Microservices architecture in the SEMAR system for 

air quality monitoring optimization, with a focus on 

communication and big data analysis for real-time 

visualization 

Microservices are complicated to set up 

and require a robust infrastructure. 

Handling big data in real-time requires 

significant storage and processing 

capabilities depending on the continuous 

availability of cloud services. 

Artificial intelligence-assisted 

air quality monitoring for 

smart city management [26] 

Application of an air quality intelligence 

platform to monitor and regulate using machine 

learning models to predict air quality for smart 

cities. 

This method involves developing an end-to-end 

predictive model for smart city applications using a 

combination of 4 machine learning techniques and two 

deep learning techniques: Ada Boost, SVR, RF, KNN, 

MLP regressor, and LSTM. This study considers 

various pollution markers and meteorological data, 

aiming to improve predictions of PM2.5 and other 

pollutants by reducing dimensionality and eliminating 

irrelevant features. 

The complexity of linking multiple 

pollutant markers and the impact of 

population growth on PM2.5 concentration 

assessments suggests challenges in fully 

capturing urban air quality dynamics. 

 

Combines smart lighting with air quality 

monitoring and ventilation systems. 

Introducing an IoT-based embedded system that 

uses the HTTP protocol. 

Publication of its operational code is ready for 

use as open-source software. 
 

Combination of hardware components such as Arduino 

Mega 2560 Rev3, WiFi Module ESP8266, GSM 

Module SIM900A, various sensors (PIR, DHT11, MQ-

135), and actuators to create an IoT aware system. 

The software architecture involved programming in 

C++ using the Arduino IDE, setting up web pages for 

data visualization, and configuring cloud storage for 

data logging. 

These systems are limited by the sensor 

range and reliability of the wireless 

communication module in different 

environments. 

3. Material and Methods 

This section delves into the methodological intricacies of the AIKU framework. During this study, our data collection 

methodology for air quality images involved meticulously curating over 3000 data points, tested across diverse locations. 

Active collaboration was fostered with participants from the academic field, developers, and environmentally conscious 

community members. The selection process for air quality data was conducted autonomously by AI through the 

implementation of Imagga, as illustrated in Figure 2. The AI undertook this task by leveraging a comprehensive training 

dataset derived from 3000 data points. Subsequently, the framework will be meticulously crafted, incorporating various 

algorithmic functions as detailed in Section 3.4. The narrative in Section 3.4 provides insight into the algorithmic 

functions and elucidates the material requisites for the framework’s development. Importantly, an innovative approach 

to minimize bias in our research drove the air quality data selection process. The involvement of diverse stakeholders 

from academia, development, and environmental communities ensured a multifaceted perspective. By entrusting the data 

selection directly to the AI, we mitigated potential human biases, allowing for a more objective and inclusive 

representation of air quality conditions across different locations. This approach contributes to the overall robustness 

and reliability of our research findings. 
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Figure 2. Flow Diagram AIKU 

3.1. Comprehensive Data Collection Strategy  

The research adopted a meticulous data collection methodology, utilizing cutting-edge air quality monitoring 

equipment and sensors. These advanced instruments were strategically placed in critical locations within the designated 

area, ensuring the generation of a thorough and diverse dataset [27]. These tools were selected based on their capacity 

to deliver accurate, real-time insights into air pollutants. As a result, the Imagga method was seamlessly integrated into 

our approach. These tools were selected based on their ability to provide precise, real-time information on air pollutants. 

Consequently, we implemented the Imagga method. 

AIKU employs a sophisticated process for air quality monitoring by utilizing the Imagga platform, as depicted in 

Figure 2. This platform is a pivotal component in the system’s functionality, allowing Artificial Intelligence to scrutinize 

uploaded photos meticulously. In seamless collaboration with the Imagga cloud, AIKU efficiently transmits visual data 

obtained from the field for detailed analysis in the cloud environment [28]. The Imagga-based image analysis within 

AIKU is critical in identifying crucial variables associated with air quality. This involves profoundly examining 

environmental images to discern patterns and characteristics indicative of various pollutants. The outcomes of this 

identification process serve as foundational elements for enhancing analyses and formulating strategies aimed at more 

effective environmental quality maintenance and management. 

Notably, the system achieved an impressive accuracy rate of 87% by employing a deep convolutional network for 

identifying photos, specifically those depicting clouds and their surroundings. This high level of accuracy ensures the 

reliability of the data used in subsequent analyses. The findings derived from the image examination are further processed 

into raw data by OpenWeatherMap, adding an additional layer of refinement to the information gathered. Furthermore, 

AIKU leverages the user’s location through IQAir in its analysis, contributing to an elevated precision level. This 

geographical context enhances the relevance of the air quality assessments by considering the specific environmental 

conditions of a given location. OpenWeatherMap adheres to standards set by the WHO and various health platforms in 

its data management. This ensures the responsible and ethical use of photo and location data, aligning with global health 

and environmental guidelines. 

In essence, the integration of Imagga within AIKU’s air quality monitoring system represents a cutting-edge approach 

that enhances accuracy and ensures a thorough and ethical visual data analysis. This innovative utilization of technology 

allows for a more comprehensive understanding of environmental conditions, ultimately contributing to more effective 

strategies for maintaining and managing environmental quality. 

The Computer Vision-based air quality detection method proposed in this research involves a series of seven steps 

as follows: 

• Image Data Collection: The first stage is collecting aerial image data. This aerial image data can be obtained from 

various sources, including but not limited to terrestrial cameras, drones, or satellite imagery [29, 30]. High image 

quality and resolution are the primary preferences to ensure the accuracy of feature extraction [31]. 

• Image PreProcessing: After the data is collected, image preprocessing is next. This preprocessing involves image 

quality enhancement, normalization, and adjustments to prepare the image for feature extraction [32]. 

• Feature Extraction: In this stage, essential features are extracted from the processed image. In computer vision, 

these features include texture, shape, and colour [33]. Advanced feature extraction techniques such as histogram 

of oriented gradients (HOG) [34], scale-invariant feature transformation (SIFT), or deep learning can be used for 

more complex and informative feature extraction [35]. 
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• AI Model Training: Once these features are extracted, the AI model is trained using machine learning algorithms, 

such as CNN [36], which have been proven effective in pattern recognition tasks in visual data. The goal is to 

create a model to predict air quality based on the extracted visual features. 

• Testing and Validation: Once the model is trained, it is tested and validated using a separate data set not used 

during training [37]. This ensures that the model can predict air quality accurately and consistently. 

• Implementation: If the model has been tested and validated successfully, the next step is implementing this model 

in the air quality monitoring system [38]. This model can warn about declining air quality early or assist in 

environmental planning and decision-making. 

• Monitoring and Updates: Once a model is implemented, monitoring its performance and updating it as needed is 

essential [39]. This can involve collecting and analyzing new image data, adjusting model parameters, or retraining 

the model with new data. 

By using this method, we can develop an air quality detection system that is accurate and efficient and can be adapted 

to improve environmental quality by utilizing the power of computer vision technology. 

3.2. Middleware for Seamless Integration  

The research integrated AIKU into the existing infrastructure by incorporating a middleware layer. This middleware 

acted as a communication bridge, ensuring a smooth connection between diverse air quality monitoring equipment and 

the AI algorithms. Its pivotal role included facilitating seamless data flow and compatibility. Additionally, the 

middleware played a crucial role in data preprocessing, optimizing data for efficient analysis by the AI algorithms. 

Implementing the AIR XR middleware accelerated the air quality calculation, resulting in more optimal outcomes. This 

integrated middleware, AIR XR, enhances the efficiency and speed of information exchange and communication 

between components (see Figure 3). 

In the described air quality monitoring, three critical layers define the architecture: backend, middleware, and 

frontend. In the first layer of the backend, six core components, including the weather prediction server, machine 

learning, geolocation, computer vision, central database, and main server, must operate flawlessly, as indicated by the 

status “Value True.” Moving to the middleware layer, the REST API manages communication between the back and 

frontend [40, 41] serving as a connector that operates only if all backend components function correctly. Two security 

components at this layer prioritize data security [42, 43], ensuring the integrity and confidentiality of information. 

Finally, the resulting air quality prediction (AQ(x)) is presented to the user at the front-end layer through the AIKU 

platform [44, 45]. The “DisplayedIn(z)” component signifies the final stage, where the data is prepared for presentation 

to the user. This architecture systematically processes and displays air quality data, emphasizing data integrity, security, 

and user experience. Each layer is crucial in ensuring accurate and timely predictions, with adequate redundancy and 

protection to guarantee system reliability and integrity. 

 

Figure 3. How the AIR XR Middleware Formula works 

3.3. Middleware for Seamless Integration  

AI emerges as a linchpin in our research, integral to advanced data processing. The study harnesses the immense 

capabilities of meticulously crafted and trained machine learning algorithms designed to analyze extensive datasets 
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sourced from monitoring equipment. These sophisticated algorithms are engineered to discern patterns [46], anomalies, 

and trends in air quality, markedly elevating the precision and efficiency of our assessments [47, 48]. Central to this 

investigative endeavour is deploying the AIKU framework, which seamlessly integrates AI into the existing air quality 

monitoring framework. The choice of the integration AI in AIKU stems from its exceptional adaptability, scalability, 

and seamless integration of machine learning algorithms into the data processing pipeline.  

Figure 4 depicts the processes and components involved in the AIKU through 4 phases. The AIKU framework is a 

central orchestrator, utilizing AI algorithms and technologies to analyze the data collected during the initial phases. The 

AIKU framework employs AI-driven components such as “AI Computer Vision,” “Numerical Weather Prediction,” and 

“Machine Learning” to extract meaningful insights from the collected data [49-52].  

• AI Computer Vision: This component employs advanced AI algorithms to analyze visual data, such as photos 

provided by users in the “User Attributes” phase. Through image recognition and analysis, AI Computer Vision aids 

in identifying and quantifying pollutants, contributing to a more comprehensive assessment of air quality [53]. 

• Numerical Weather Prediction (NWP): AI-driven NWP enhances the understanding of how meteorological 

conditions influence air quality. By utilizing historical weather data and employing machine learning techniques, 

the AIKU system can predict how changes in weather patterns may impact the dispersion rates of pollutants, 

providing a dynamic and real-time assessment [54]. Feature Extraction: In this stage, essential features are extracted 

from the processed image. In computer vision, these features include texture, shape, and colour [33]. Advanced 

feature extraction techniques such as histogram of oriented gradients (HOG) [34], scale-invariant feature 

transformation (SIFT), or deep learning can be used for more complex and informative feature extraction [35]. 

• Machine Learning: The integration of machine learning algorithms allows the AIKU to learn and adapt to emerging 

trends in air quality continuously. Machine learning models can identify patterns, anomalies, and correlations within 

the data, improving the accuracy of air quality predictions over time [55]. 

The “Monitoring” phase of the AIKU showcases the dynamic engagement of AI technologies. Users have the 

flexibility to monitor air quality through various means, such as photo analysis and geographical location tracking. The 

AI-driven middleware ensures a robust and efficient process, enabling users to access accurate and up-to-date 

information about their ambient air conditions [56]. In addition to the functional aspects, AI also plays a crucial role in 

ensuring the reliability and security of the AIKU. The rigorous testing regimen, including “Integration Testing,” 

“Automatic Testing,” and “Penetration Testing,” is augmented by AI-driven testing tools. These tools can identify 

vulnerabilities, validate the seamless interaction of system components [43, 57], and ensure the precision of process 

automation, ultimately contributing to the robustness and integrity of the AIKU. 

 

Figure 4. Framework AIKU 
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Integrating AI into the fundamental structure of the AIKU marks a revolutionary advancement, significantly 

enhancing its capabilities in essential areas such as real-time data analysis, predictive modelling, and user interaction. 

By utilizing the AI algorithm’s cognitive prowess, the system not only elevates its analytical capacities but also facilitates 

a more nuanced interpretation of extensive real-time datasets related to air quality. This infusion of AI further fine-tunes 

its predictive acumen, delivering more precise and timely insights into the ever-changing dynamics of atmospheric 

conditions. 

Implementing AI in air quality monitoring amplifies the system’s ability to analyze real-time data and enhances its 

predictive modelling capabilities. By leveraging the cognitive strengths of AI algorithms, the system gains a heightened 

analytical capacity, enabling a more sophisticated interpretation of the vast real-time datasets associated with air quality. 

This integration refines the system’s predictive acumen, resulting in more accurate and timely insights into the dynamic 

nature of atmospheric conditions. The transformative leap forward provided by AI empowers AIKU to deliver a 

comprehensive and advanced solution for real time air quality monitoring. 

3.4. Algorithm Design 

With the AIKU algorithm approach, users can quickly get an overview of air quality based on the visual analysis that 

the model has processed. This information helps users decide on outdoor activities or formulate strategies to improve 

the air quality in their environment. 

Algorithm 1. Pseudocode Input Air Quality Detection data 

FUNCTION retrieveUserInput() -> (user_photo: Image, user_location: String): 

    user_photo = request.FILES.GET("photo") 

    user_location = request.FORM.GET("location") 

    RETURN user_photo, user_location 

 

FUNCTION preProcessImage(user_photo: Image) -> ProcessedImage: 

    processed_image = ImageProcessingLibrary.APPLY_TRANSFORMATIONS(user_photo) 

    RETURN processed_image 

 

FUNCTION analyzeImageWithAI(processed_image: ProcessedImage) -> List[String]: 

    ai_tags = AdvancedImageRecognitionModel.PREDICT_TAGS(processed_image) 

    RETURN ai_tags 

 

FUNCTION fetchAndPreprocessWeatherData(user_location: String) -> ProcessedWeatherData: 

    raw_weather_data = NumericalWeatherPrediction.PROCESS(user_location) 

    processed_weather_data = WeatherDataProcessingLibrary.TRANSFORM(raw_weather_data) 

    RETURN processed_weather_data 
 

The retrieveUserInput() function is designed to collect input from users in the form of photos and locations, followed 

by the preprocessing() function to process the image obtained from the user. With the help of ImageProcessingLibrary, 

the image is transformed to prepare it for analysis [58]. The function then returns the results of the image transformation 

process. After the picture is processed, the analyzeImageWithAI() function analyzes the image with the help of Artificial 

Intelligence. The model used, AdvancedImageRecognitionModel, predicts the tags associated with the picture. The 

results of these predictions, in the form of a list of tags, are then returned by the function to provide information about 

the image. Finally, the fetchAndPreprocessWeatherData() function plays a role in fetching and processing weather data. 

Using the location provided by the user, raw weather data is retrieved and then further processed with the 

WeatherDataProcessingLibrary library. The processed weather data is then returned for use in further analysis or 

presenting information to users. This research explores novelty by updating and improving essential functions 

(Koutroumanis et al., 2021). The `preprocessing ()` function is enhanced by using the latest transformation algorithm 

from ImageProcessingLibrary, aiming to improve the quality of image analysis. 

Meanwhile, the `analyzeImageWithAI()` function implements the AdvancedImageRecognitionModel for image tag 

prediction to increase the accuracy of prediction results. The `fetchAndPreprocessWeatherData()` function is focused 

on retrieving and processing user location-based weather data. Updates here include the development of Numerical 

Weather Prediction methods and integration with the WeatherDataProcessingLibrary for more complex processing of 

weather information. Increased system security is also realized by integrating the latest security technology. In summary, 

algorithm 1 achieves recency by updating image and weather analysis functions and applying the latest technology to 

improve system effectiveness. 



HighTech and Innovation Journal         Vol. 5, No. 3, September, 2024 

803 

 

Algorithm 2. Air Quality Prediction Algorithm 

FUNCTION trainAndTuneAirQualityModel(ai_tags: List[String], processed_weather_data: 

ProcessedWeatherData) -> TrainedModel: 

    training_dataset = DatasetGenerator.CREATE_FROM(ai_tags, processed_weather_data) 

    model = AirQualityMLModel.INITIALIZE() 

    model.TRAIN(training_dataset) 

    model.TUNE_AND_OPTIMIZE() 

    RETURN model 

FUNCTION predictAirQuality(model: TrainedModel, ai_tags: List[String], processed_weather_data: 

ProcessedWeatherData) -> Dict: 

    prediction_input = DataMerger.MERGE(ai_tags, processed_weather_data) 

    air_quality_prediction = model.PREDICT(prediction_input) 

    RETURN air_quality_prediction 

FUNCTION displayAirQualityInformation(air_quality_prediction: Dict): 

    PRINT("Here is the air quality information around you based on AI analysis:") 

    for key in air_quality_prediction: 

        IF key EXISTS IN ["particulate_matter_2_5", "particulate_matter_10", "sulfur_dioxide", 

"nitrogen_dioxide", "ozone", "carbon_monoxide", "ammonia", "nitric_oxide"]: 

            PRINT(FORMAT_AQI_INFORMATION(key, air_quality_prediction[key], 

air_quality_prediction_units[key])) 

        ELSE: 

            PRINT(FORMAT_GENERAL_INFORMATION(key, air_quality_prediction[key], 

air_quality_prediction_units[key])) 

In Algorithm 2, the trainAndTuneAirQualityModel() function starts the process of training and tuning the air quality 
model. Based on tags from image analysis (AI tags) and processed weather data, a training dataset is generated using 
DatasetGenerator.CREATE_FROM(). Once the dataset is ready, the AIKU model for air quality prediction is initialized 

using AirQualityMLModel.INITIALIZE(). The AIKU model is trained with the prepared dataset, tuned, and optimized 
for the best performance. Once complete, the trained and tuned model is returned by this function. The predicted air 
quality () function predicts air quality based on the trained model and the given data. Tags from image analysis and 
processed weather data are combined into a single prediction input using DataMerger.MERGE(). The trained model is 
used for air quality predictions based on these inputs. This function then returns the prediction results as a dictionary 
(dictionary). The third function, displayAirQualityInformation(), presents predicted air quality information to the user. 

This function starts by announcing that air quality information based on AI analysis will be displayed. Then, for each 
key in the air quality prediction, this function checks whether the key belongs to a specific list of air pollutants (such as 
"particulate_matter_2_5", "sulfur_dioxide," etc.). If so, air quality information specific to that pollutant is presented in 
a special format. Otherwise, general information is presented in a different format. This presentation format is based on 
the FORMAT_AQI_INFORMATION and FORMAT_GENERAL_INFORMATION functions, each providing the 
appropriate output format based on the type of air pollutant substance and its unit of measurement. 

The novelty in algorithm 2 lies in effectively integrating image analysis and weather data to predict air quality. The 
`trainAndTuneAirQualityModel ()` function involves not only model training but also tuning and optimization, 
reflecting a focus on improving model performance. Utilizing AI tags and weather data in the `predictAirQuality ()` 
function creates more contextual predictions, increasing accuracy. The `displayAirQualityInformation ()` function 
provides structured and easy-to-understand information, highlighting the adaptability of the algorithm in presenting 
output according to the type of air pollutant, increasing the usability of the information conveyed. The novelty lies in 

optimizing the model, improving the contextuality of predictions, and presenting clear and structured information to 
users. 

Algorithm 3. Air Quality Results 

FUNCTION main(): 

    user_photo, user_location = retrieveUserInput() 
     

    processed_image = preProcessImage(user_photo) 

    ai_tags = analyzeImageWithAI(processed_image) 

    IF NOT ai_tags: 

        PRINT("Sorry, the image you submitted cannot be processed by our AI model. Please try 

again.") 

        RETURN 

    processed_weather_data = fetchAndPreprocessWeatherData(user_location) 

    IF NOT processed_weather_data: 

        PRINT("Sorry, your location not valid or weather data for your location is unavailable") 

        RETURN 

    model = trainAndTuneAirQualityModel(ai_tags, processed_weather_data) 

    air_quality_prediction = predictAirQuality(model, ai_tags, processed_weather_data) 
     

    displayAirQualityInformation(air_quality_prediction) 
 

main()  
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In the primary () function in algorithm 3, the process begins by calling the retrieveUserInput() function, which 

collects photos and locations from the user. The results of this function, an image and a place, are stored in the variables 

user_photo and user_location. Next, the picture the user provides is processed with the preProcessImage() function. The 

result of this function, namely the image that has been processed, is then analyzed with the analyzeImageWithAI() 

function. Suppose the analysis results do not produce any tags (or are empty). In that case, the program will print an 

error message stating that the AI model cannot process the image provided by the user, and the process will be 

terminated. 

If the image analysis is successful, the process continues to fetch and process weather data based on the user's location 

with the fetchAndPreprocessWeatherData() function. If weather data for a given area is unavailable or the location is 

invalid, an error message will be printed, and the process will end. After getting tags from image analysis and processed 

weather data, these two pieces of information are used to train and tune an air quality model with the 

trainAndTuneAirQualityModel() function. The model that has been prepared and tuned is then used to predict air quality 

based on tags and weather data that have been processed with the predict air quality () function. The results of the air 

quality predictions are then displayed to the user with the displayAirQualityInformation() function. The process will be 

complete after all functions are executed in the primary () function order. At the end of the pseudocode, main() is called, 

which means when this code is executed, the primary () function and the entire process defined in it will be completed. 

The novelty of this algorithm lies in its responsive and structured workflow. The `main()` function first collects user 

input, namely photos and location. The received images are processed and analyzed. If the analysis results do not produce 

a tag, an error message is printed, and the process is terminated. If successful, weather data is obtained based on the 

user's location. If the location is invalid or weather data is unavailable, an error message is printed, and the process is 

terminated. 

The algorithm above showcases a resilient and well-organized workflow to deliver precise air quality predictions by 

leveraging user-inputted images and location data. The initial phase involves a meticulous analysis of the images, 

coupled with the retrieval and processing of pertinent weather data. Notably, the algorithm's adaptability shines through 

as it manages potential errors, such as dealing with invalid locations or the absence of weather data. In alignment with 

the principles of smart environment and Environmentally Conscious Development, the algorithm incorporates modular 

functions like train AndTuneAirQualityModel() and predictAirQuality(). This deliberate choice enhances the system's 

flexibility and simplifies maintenance processes, fostering a sustainable and adaptable framework. By seamlessly 

integrating these components, the algorithm addresses immediate user needs and contributes to the broader objective of 

fostering environmentally conscious practices. The ingenuity of the algorithm lies in its streamlined fusion of image 

analysis, weather data processing, and air quality prediction. This synergy results in an innovative solution catering to 

user’s real-time air quality information demands. Solutions like these are pivotal in promoting sustainable practices and 

creating a healthier, more informed community as we navigate toward smart environments and environmentally 

conscious development. 

4. Implementation 

To offer comprehensive insight into AIKU’s performance, we conducted an exhaustive performance evaluation. This 

evaluation goes beyond merely gauging the system’s effectiveness across diverse conditions; it extends to a comparative 

analysis with traditional air quality monitoring methods such as the Indeks Standard Pencemar Udara (ISPU). Employing 

a range of metrics tailored to measure accuracy, response speed, and data processing efficiency, we present results from 

a series of tests spanning various scenarios, from stable environmental conditions to dynamic and unpredictable 

situations. The generated data from AIKU is meticulously juxtaposed with data from the ISPU system to affirm the 

reliability and accuracy of the measurements. This comparative analysis serves as a robust validation of AIKU’s 

capabilities in delivering precise and trustworthy air quality information. Meanwhile, transitioning to another context, 

the implementation of the URI formula, encapsulated by. 

URI_GET="{protocol}://{domain}/{api}/{request}/{secretkey}" 

URI_POST="{protocol}://{domain}/{api}/{secretkey}" 

Validation is meticulously executed by scrutinizing the syntax rules associated with each URI component. Notably, 

the protocol must adhere to established standards such as “HTTP” or “HTTPS,” the domain name must be valid and 

properly registered, the “API” component must point to a clearly defined path or endpoint, and the “request” parameters 

must align with the server’s specified format. Public and secret keys also undergo authentication processes in compliance 

with applicable security policies. Beyond validation, an equally vital evaluation phase is implemented to assess the 

functionality and performance of the URI formula. Functional testing ensures that the URI formula behaves as 

anticipated across a spectrum of scenarios, including testing with both valid and invalid values for each component. 

Integration testing guarantees seamless interaction with applications and other infrastructure components, emphasizing 

synergy and consistency. Moreover, performance testing becomes paramount to measure the speed, availability, and 

scalability of requests facilitated by these URI formulas. In essence, in the context of the AIKU and the URI formula, 

our rigorous evaluation processes are pillars in substantiating the reliability, accuracy, and robustness of these 

technological solutions. 
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Algorithm 4. Request URI using GET method 

Metode: GET 

URL: "https://aiku.com/api/request123/publickey/secretkey." 

The utilization of the GET method for data retrieval from the server is evident within the aforementioned request 

algorithm. The transmitted URL encompasses essential components derived from the URI formula: protocol: HTTPS, 

domain: example.com, API:/api, request: request123, public Key: publickey, secret Key: secretkey. The distinguishing 

feature of innovation within this URI request system lies in strategically incorporating public and secret key elements. 

In a security context, the public key functions as a discernible identity that the server can authenticate. In contrast, the 

secret key is a confidential code known exclusively to authorized entities. This dual key mechanism represents a pivotal 

measure to fortify the security of data exchange. Importantly, these keys are accessible only to legitimate users, and the 

system is configured to regenerate them automatically every 24 hours. The periodic regeneration policy serves a dual 

purpose: first, it acts as a deterrent to unauthorized access, and second, it guarantees that the used keys remain exclusive 

and secure. Consequently, this systematic and automated critical regeneration process becomes an additional layer of 

defence in maintaining the system’s overall security. It thwarts potential security risks from disseminating unauthorized 

keys, ensuring the integrity and confidentiality of the data exchange. 

Algorithm 5. URI response with the GET method results in Success 

AIRXR Middleware 

Status: 200 OK 

Content-Type: application/json 

 

{ 

  "status": "success", 

  "message": "Air quality data successfully retrieved", 

  "data": { 

    "location": "Jakarta", 

    "timestamp": "2023-06-19T12:00:00", 

    "pollutants": { 

      "pm25": { 

        "value": 23.4, 

        "unit": "µg/m³", 

        "index": "Good" 

      } 

    } 

  } 

} 

The provided response signifies an unsuccessful execution of the requested action attributed to using an invalid key. 

Delivered in JSON format, the response is characterized by a status code of 401 Unauthorized. The “Content-Type” 

header indicates that the type of content sent is application/json, indicating the presence of data structured in JSON 

format within the response. The methodical approach to validation and evaluation comprises a well-defined 

methodology. This includes the development of test cases, extensive functional testing, ongoing performance 

monitoring, and thorough analysis of obtained results. The process is fortified by integrating pertinent tools, such as 

automated testing software, network monitoring utilities, and performance analysis tools. These tools play a pivotal role 

in providing users with a profound understanding of the URI formula’s performance dynamics and identifying potential 

issues that may arise in its implementation. This multifaceted validation and evaluation strategy ensure the accuracy and 

security of the URI formula and a proactive approach to mitigating potential challenges in real-world scenarios. 

Algorithm 6. If the GET Method Response Fails 

AIRXR Middleware Response 

Status: 401 Unauthorized 

Content-Type: application/json 

 

{ 

  "status": "error", 

  "message": "The key used is not valid", 

  "error_code": 401 

} 

The provided response communicates the unsuccessful execution of the requested action attributed to using an invalid 

key. Delivered in JSON format, the response is characterized by a status code of 401 Unauthorized. Notably, the 

“Content-Type” header indicates that the type of content sent is application/json, indicating that the response 
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encapsulates data in JSON format. The applied validation and evaluation methodology follow a robust process 

encompassing the development of comprehensive test cases, meticulous functional testing, continuous performance 

monitoring, and thorough analysis of results. This method is fortified by integrating suitable tools, including automated 

testing software, network monitoring solutions, and performance analysis tools. These tools collectively empower users 

to gain a nuanced understanding of the URI formula’s performance dynamics and proactively identify potential issues 

that may surface in its real-world implementation. This comprehensive validation and evaluation strategy ensure the 

accuracy and security of the URI formula and provides valuable insights into its operational efficiency and resilience 

against various scenarios. 

Figure 5 the comprehensive air quality assessment process, measuring various parameters such as P M2.5 particle, 

ozone, nitrogen dioxide, sulphur dioxide, and carbon monoxide. The intricate analysis is facilitated by the integration of 

AI within the AIKU, particularly in the training and interpretation of air quality image results. The AI-driven process 

involves meticulously examining the measured parameters, which are then translated into the Air Quality Index (AQI). 

This numerical representation consists of five levels [59]: good, moderate, unhealthy for sensitive groups, unhealthy, 

and hazardous. The AQI is a crucial metric the government utilizes to communicate information regarding air quality 

levels within a specific area [60]. Emphasizing the imperative for ongoing enhancements in accuracy and efficiency 

within air quality assessment, the integration of AI within the system emerges as a crucial factor. Incorporating AI in 

interpreting air quality images significantly contributes to refining the precision of the assessment, guaranteeing more 

dependable and precise results. This innovative technological application enhances accuracy and gives decision-makers 

a more nuanced comprehension of environmental conditions. Beyond merely improving precision, utilizing AI adds a 

layer of sophistication to the analysis. This advanced technology enables a comprehensive examination of the measured 

parameters, unravelling intricate patterns and correlations that might elude traditional assessment methods. 

Consequently, decision-makers have a more holistic understanding of the dynamic factors influencing air quality, 

facilitating more informed and strategic interventions. 

 

Figure 5. Air Quality Result 

Moreover, the analysis outcomes provide valuable insights into the current air quality levels, shedding light on 

potential areas of concern. The detailed distribution of AQI levels detected at specific locations aids in pinpointing 

localized issues, allowing for targeted interventions. This granular information is instrumental in formulating effective 

policies and measures to address specific air quality challenges in different regions. In summary, integrating AI elevates 

the precision of air quality assessment and adds layers of sophistication and granularity to the analysis, providing 

decision-makers with a comprehensive and nuanced understanding of environmental conditions. This, in turn, empowers 

them to implement targeted and effective strategies for addressing air quality concerns and fostering a healthier, more 

sustainable environment. 

Figure 6 the AIKU is showcased in action, delivering comprehensive insights into the parameter values that impact 

air quality. This visual representation presents the raw data and includes status indications, succinctly conveying whether 

these parameters fall within safe limits. Alongside these status indicators, the figure provides numerical values derived 

from the air quality detection process, offering a detailed and informative perspective on the current state of each 

parameter. This user-friendly presentation ensures that stakeholders, whether government officials or the general public, 

can quickly grasp the air quality status and make informed decisions based on the detailed information provided by the 

AIKU. 
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Figure 6. Air Quality Parameter Value Information 

4.1. Experimental Configuration 

The Experimental Configuration comprehensively evaluated AIKU’s performance with air-quality images. As 

outlined in Table 2, the test dataset comprises ten unique images (Image 1 to Image 10), each differing in size and 

content—the deliberate design of this dataset aimed to assess the system’s responsiveness across a spectrum of scenarios. 

In our analysis, we considered several critical metrics about the processing of each image. These metrics, elucidated in 

the table, encompass the size of the image in kilobytes, request processing time (ms) indicating the duration for the 

system to receive and process the image request, analysis process time (ms) representing the time allocated to the image 

analysis phase, total time (ms) reflecting the overall pro-cessing time. Average time (ms) provides the mean processing 

time across the dataset. We implemented rigorous measures to minimize bias and errors in the experimental design. In 

the experimental design, we carefully considered and controlled for various variables that could impact the AIKU 

framework’s performance. Our meticulous analysis revealed that AIKU exhibited remarkable efficiency, particularly in 

swiftly processing real-time data. The system demonstrated unparalleled speed in receiving and analyzing air-quality 

images, as evidenced by significantly low request processing time and analysis process time. This outcome underscores 

AIKU’s capacity to handle diverse image sizes and contents expeditiously, positioning it as a frontrunner in real-time 

air quality monitoring. 

Table 2. Air Quality Quality Test Dataset 

No. Document Name Size 
Request Processing 

Time (ms) 
Analysis Process 

Time (ms) 
Total Time 

 (ms) 
Average Time  

(ms) 

1 Image #1 812 KB 4372 377.85 4749.85 4844.286 

2 Image #2 731 KB 3273 237.54 3510.54 4844.286 

3 Image #3 513 KB 5273 243.39 5516.39 4844.286 

4 Image #4 876 KB 6382 280.04 6662.04 4844.286 

5 Image #5 467 KB 1110 1180 2290 4844.286 

6 Image #6 961 KB 12770 1700 14470 4844.286 

7 Image #7 523 KB 2273 275.5 2548.5 4844.286 

8 Image #8 659 KB 3216 609.96 3825.96 4844.286 

9 Image #9 891 KB 2231 1083.83 3314.83 4844.286 

10 Image #10 814 KB 1232 322.75 1554.75 4844.286 
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The outcomes in Table 2 not only unveil the system’s adeptness in managing diverse image sizes and complexities 

but also emphasize the unwavering performance of the AIKU performance, as highlighted by the average time metric, 

across the entire spectrum of images. This accentuates its dependability in delivering timely and accurate air quality 

assessments. Concurrently, in implementing URI, rigorous validation is executed to safeguard the integrity and 

uniformity of components, mitigating input errors that may pose security vulnerabilities or jeopardize data compliance. 

The validation process meticulously scrutinizes the syntax accuracy of URI components, demanding adherence to 

standards such as “HTTP” or “HTTPS” for protocol selection and proper domain validation. Alignment of the “API” 

and “request” components with server-specified endpoints and formats is ensured while keys undergo authentication to 

maintain consistency with security policies. 

At an advanced evaluation stage, the focus extends to examining the functionality and performance of the URI. This 

encompasses verifying URI behaviour under diverse conditions, conducting integration tests with other applications, 

and analyzing the speed and scalability of requests based on the API Endpoint. Simultaneously, by employing the Rest 

API method with the Postman application, our study provides a comprehensive panorama of the varied response times 

witnessed while processing ten distinct images. This dataset unravels a significant variance in both request and analysis 

processing times, underscoring the pivotal importance of our findings in comprehending the system’s performance 

dynamics across diverse scenarios. 

In a recent investigative study, a comprehensive test was orchestrated to quantify the efficacy of the request and 

analysis processes based on ten distinct sky photo samples. The unveiled data delineates a noteworthy spectrum of 

response times corresponding to each image. Specifically, Figure 7 in image 10 stands out as the most efficiently 

processed, demanding a mere 1554.75 milliseconds. On the other hand, Figure 7 recorded the most extended duration 

with 14470 milliseconds. Collating all tested samples, the average processing time converges at 4844.286 milliseconds. 

From this nuanced analysis, a resounding conclusion emerges: the AirXr Algorithm exhibits remarkable efficiency in 

data processing. This advantageous trait holds profound implications for the community, granting them access to 

accurate, swift, and precise information regarding air quality. Moreover, this information is poised to elevate public 

consciousness about the critical importance of vigilant air quality monitoring in their immediate surroundings. 

 

Figure 7. Graph of Analysis & Request time results on AIKU 

The algorithm above showcases a resilient and well-organized workflow to deliver precise air quality predictions by 

leveraging user-inputted images and location data. The initial phase involves a meticulous analysis of the images, 

coupled with the retrieval and processing of pertinent weather data. Notably, the algorithm's adaptability shines through 

as it manages potential errors, such as dealing with invalid locations or the absence of weather data. In alignment with 

the principles of smart environment and Environmentally Conscious Development, the algorithm incorporates modular 

functions like train AndTuneAirQualityModel() and predictAirQuality(). This deliberate choice enhances the system's 

flexibility and simplifies maintenance processes, fostering a sustainable and adaptable framework. By seamlessly 

integrating these components, the algorithm addresses immediate user needs and contributes to the broader objective of 

fostering environmentally conscious practices. The ingenuity of the algorithm lies in its streamlined fusion of image 

analysis, weather data processing, and air quality prediction. This synergy results in an innovative solution catering to 

the user's real-time air quality information demands. Solutions like these are pivotal in promoting sustainable practices 

and creating a healthier, more informed community as we navigate toward smart environments and environmentally 

conscious development. 
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4.2. Performance with ISPU 

ISPU monitors air quality at specific intervals, typically 15 minutes to 1 hour. In this context, ISPU provides reports 

on air quality based on data collected during these intervals [5]. However, it should be noted that this relatively long-

time interval may result in delays in providing real-time information. This becomes critical, especially when a quick 

response to changes in air quality is required. 

The AIKU model, developed in this study, has demonstrated significant advancements in the accuracy and 

timeliness of air quality monitoring. The model effectively integrates machine learning algorithms with real -time 

data analytics to predict air quality indices dynamically, allowing for a more responsive system capable of adjusting 

to sudden changes in air quality, which is crucial for urban environmental management. In a recent and thorough 

investigation, an intricate analysis was conducted to compare the air quality analysis performance of  the AIKU and 

ISPU methods. The graphical representations (Figure 8) vividly portray that the average analysis time of AIKU 

demonstrates remarkably efficient performance, requiring a mere 4.286 seconds. In stark contrast, the average 

analysis time of ISPU takes considerably longer, totaling 909 seconds. This difference indicates that the development 

of the AIKU method can deliver analysis results with significantly higher performance speed, 212 times faster. This 

conclusion highlights the potential superiority and efficiency of AIKU in providing quick responses, a critical aspect 

of delivering real-time information. 

 

Figure 8. Comparison of AIKU Performance with ISPU 

When compared to traditional air quality monitoring systems, such as those relying solely on IoT and WSNs, AIKU 

has shown a marked improvement in both predictive accuracy and operational efficiency. Studies prior to this, like [61], 

have emphasized the potential of IoT but did not integrate machine learning to enhance predictive capabilities. The 

AIKU model's use of AI surpasses these systems by providing not only continuous data monitoring but also predictive 

insights that are crucial for proactive environmental management. The findings that integrating AI into environmental 

monitoring systems can significantly transform how cities manage air quality. With the AIKU model, urban planners 

and environmental policymakers can access real-time data and predictions, allowing for faster and more effective 

responses to air quality deterioration. This capability is vital for maintaining urban health standards and complying with 

international environmental protection guidelines. 

Consequently, this research contributes valuable theoretical insights to air quality monitoring through AI. Firstly, 

the development of the AIRXR algorithm stands out as a groundbreaking achievement, enabling more accurate and 

expeditious data processing in air quality monitoring. Secondly, integrating middleware in the monitoring system 

offers fresh perspectives on how middleware can be strategically applied in intelligent environments. Lastly, the 

symbiotic collaboration between AI and middleware, as exemplified in this study, sheds light on how technology can 

mitigate information latency, elevate public awareness of air pollution,  and bolster judicious decision-making by 

governments. These contributions advance our comprehension of AI technology in environmental monitoring and 

provide innovative perspectives for practical applications in policymaking and cultivating more sustainabl e 

environments.  

One of the main strengths of this study is the innovative use of advanced AI in a real-world application for 

environmental monitoring, which has shown substantial improvements over existing methods. However, the study has 

limitations. The AIKU model requires a continuous and reliable data stream, which can be challenging in regions with 

poor technological infrastructure. Additionally, the AIKU model faces limitations due to its dependency on high-quality, 

continuous data streams, which are essential for the accuracy of AI predictions. In regions with limited technological 
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infrastructure, such as remote or underdeveloped areas, collecting consistent and reliable data can be challenging, 

potentially limiting the model’s utility in these contexts. Furthermore, the AIKU model requires substantial 

computational power and sophisticated hardware, which may not be feasible in settings with constrained resources. 

While the model performs well in urban settings, its applicability in rural or less technologically advanced areas remains 

to be tested. Future research should focus on enhancing the model's robustness in various environmental settings and 

exploring its scalability across different geographic locations. This comprehensive discussion ensures all elements of 

your revision points are addressed, structuring the explanation scientifically and clearly delineating the discussion as 

requested. 

5. Conclusion 

This study significantly advances air quality monitoring by introducing the AIKU model, an innovative AI-driven 

framework that integrates artificial intelligence to effectively enhance real-time air quality assessment. Our findings 

underscore the effectiveness of AIKU in accurately predicting air quality fluctuations, which facilitates more informed 

decision-making for urban environmental management. This advancement contributes substantially to ecological 

monitoring, demonstrating the transformative potential of AI to refine traditional methodologies and provide practical 

solutions to the challenges faced in managing air quality. 

Furthermore, our study introduces novel theoretical contributions by elucidating the intricate interplay between AI 

technology and environmental science. By showcasing the AIKU model's capacity to augment traditional monitoring 

approaches, we provide a nuanced understanding of how AI-driven frameworks can revolutionize ecological 

management strategies. However, it's imperative to acknowledge the limitations inherent in our study. While the AIKU 

model demonstrates promise in urban settings, its effectiveness in rural or less densely populated areas still needs to be 

explored. Future research endeavors should address this gap by extending the model's applicability and evaluating its 

performance across diverse environmental contexts. Additionally, integrating alternative data sources like satellite 

imagery could enhance the model's predictive capabilities. In summary, the AIKU model represents a significant 

advancement in air quality monitoring, offering a potent tool for real-time assessment and decision-making in urban 

environments. Its successful implementation underscores the transformative potential of AI in addressing pressing 

environmental challenges, ultimately contributing to more sustainable and resilient cities. This research expands the 

theoretical understanding of AI's role in environmental science and provides practical insights into leveraging AI 

technologies for effective environmental management. By showcasing the AIKU model's efficacy and identifying 

avenues for future research, our study contributes to the growing body of knowledge aimed at harnessing AI for 

sustainable urban development. 
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