
 

 

 

 

 

 

  

Available online at www.HighTechJournal.org  

HighTech and Innovation  
Journal 

Vol. 5, No. 1, March, 2024 

 

 

170 

 

ISSN: 2723-9535 

 

Innovative Label Embedding for Food Safety Comment Classification: 

Fusion of Self-Semantic and Self-Knowledge Features 

Yiming Zhang 1* , Haozheng Liu 1, Jiaming Feng 1, Xu Zhang 1 

1 Department of Computer Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.

Received 19 October 2023; Revised 01 February 2024; Accepted 08 February 2024; Published 01 March 2024 

Abstract 

Food safety comment classification represents a specialized task within the realm of text classification. The objective is to 

efficiently identify a large volume of food safety comments, aiding relevant authorities in timely food analysis and safety 

alerts. Traditional methods typically employ one-hot encoding for label processing. However, in real-world situations, 

classified labels often convey valuable semantic information and guidance. This paper introduces an innovative approach 

to enhance the classification performance of food safety comments by embedding label information. Initially, we extracted 

generic sentiment pivot words from various classification labels as label description information. Subsequently, we employ 

a joint embedding approach to integrate this label description information into the text. This process will pool the 

expressions of the pivot word into the corresponding sentiment labels in the known domains after averaging to get the 

embedded expression. This aims to acquire highly detailed self-semantic feature vectors and self-knowledge feature vectors 

that are integrated with labeled descriptive information. Then, feed the semantic representation of comments and the word-

embedded representation of labeled description information into a time-step-based multilayer Bi-LSTM and a step-based 

multilayer CNN, respectively. Ultimately, we concatenate these two feature vectors to facilitate matching, thereby fusing 

the self-semantic and self-knowledge features of labeled description information to train a classification model for food 

safety comments. Experimental results on the food safety comment dataset showcase a noteworthy improvement of 1.74% 

and 1.27% in Macro_Precision and Macro_F1 metrics, respectively, compared to BERT, BERT-RNN, and BERT-CNN. 

Through extensive ablation experiments and additional studies, our method effectively embeds labeling information, 

demonstrating a clear advantage over traditional methods in the task of classifying food safety comments. 

Keywords: BERT; Label Embedding; Siamese Network; Pre-trained Models; Short Text Classification; Food Safety Lead Discovery. 

 

1. Introduction 

Given the rapid advancement of social sciences, technology, and the economy, especially in recent years, the mobile 

internet has undergone remarkable expansion. This rapid growth has facilitated the swift emergence and widespread 

adoption of Social Media Platforms. These platforms offer individuals convenience and openness, allowing them to 

express their opinions and comments on social media at any time [1]. Within this context, a new phenomenon has 

surfaced: food safety comments [2]. This refers to internet-based food safety information originating from various 

catering industry merchants, known for its rapid dissemination and high level of attention [3]. With the internet boasting 

a broad user base and food safety being inherently tied to the country and our daily lives, the issue of food safety is 

particularly pressing and significant. 
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The objective of classifying comments on food safety is to efficiently recognize food safety concerns and offer 

analysis and early warning information to relevant regulatory authorities [4, 5]. This enables the timely resolution of 

food safety issues. Nevertheless, faced with the substantial volume of daily-generated food safety information, the 

key challenge lies in accurately classifying this information according to specific rules and assigning suitable labels 

[6, 7].  

The sentiments expressed in food safety comments are fine-grained and sentence-level, including comments on 

specific issues like bugs and cold cakes. However, the task of food safety lead discovery goes beyond simple sentiment 

analysis. For example, words like "bad" and "super bad" may convey negative sentiments in everyday language, but they 

are represented positively in food safety comment labels. This presents a unique challenge compared to classifying 

everyday sentiments [8]. Additionally, comments within the food safety domain exhibit diverse characteristics, such as 

colloquialism, the prevalent use of emotional vocabulary, relatively concise text, and direct or indirect portrayal of 

textual information. These domain-specific features pose significant challenges for the classification of comments in the 

realm of food safety. 

For example, take into account the subsequent comment sentences: "Not that flavor, not very good,", "Poor, poor, 

poor, so bad, portions are too small, too small.", "Corn and hot dogs were super bad.", "Both threw them away after one 

bite." Sentiment words such as "not good", "hard to eat" and "bad" directly express the sentimental direction of the 

overall sentence, in fact, the sentimental content is not actually related to the food safety issue. Conversely, the comment 

sentences "The flavor and portion size are very good, I was very happy to eat it yesterday, but today I woke up and 

started to have diarrhea, and I had diarrhea until I was dehydrated ......", "The ingredients are not fresh, and it tastes like 

a sour smell. ", "As soon as I opened it, I found a worm inside! Instantly feel no appetite.". In these sentences, expressions 

such as "diarrhea" indirectly point to food safety issues, while domain-specific words such as "sour smell" and "bugs" 

indirectly relate to food safety issues. (The detailed Chinese translations of the text and the corresponding pivot words 

are shown in Figure 1). Furthermore, a large number of sentences utilize the negative rule and the adverbial rule of 

degree, which invert and intensify the sentiment of the sentence. If we can link these domain-specific vocabularies with 

the corresponding labeling information, we will be better equipped to handle the intricacy of domain sentence 

vocabularies as well as the direct and indirect representation of textual information. 

The classification of food safety lead comments typically involves traditional machine learning and deep learning 

methods. Traditional machine learning methods require intricate feature engineering, such as sparse lexical features 

(e.g., bag-of-words models, N-grams) [9], and depend on large amounts of labeled data. Currently, most of the research 

on text classification has shifted towards deep learning methods, including convolutional neural networks (CNN) [10–

12] and recurrent neural networks based on long short-term memory (LSTM) [13]. These models utilize sliding 

windows to extract syntactic and semantic information from N-grams, capturing the hidden information of each token 

through autoregressive modeling. They also adjust word embedding representations based on the semantics of 

contextual words, ensuring that words have distinct embedding representations in different contexts. However, all of 

these methods achieve excellent results only in terms of feature extraction and do not consider the embedded 

representation of word meanings. 

Recently, pretrained language models (PLMs) such as BERT [14] have demonstrated remarkable performance in the 

field of lexical representation embedding. They have achieved state-of-the-art results in all 11 natural language 

processing tasks. However, these pretrained models are trained using extensive general-purpose corpora, and there is a 

significant lack of fine-grained sentiment analysis in specific food safety domains. Miyazaki et al. [15] recently employed 

various types of tweet label descriptions based on a pretrained model to enhance the fine-grained classification 

performance of tweet data. Nevertheless, task-specific label descriptions are often insufficient in real-world scenarios. 

Subsequently, Zhang et al. [16] proposed a description-enhanced label embedding comparative learning method, which 

integrates external knowledge to obtain label description information. However, they acknowledged that the introduction 

of external knowledge may lead to unexpected fine-grained noise issues and therefore designed an interaction module 

to filter out the noise. Additionally, they developed a novel self-supervised relational (R2) classification task to 

effectively represent and classify the labels. 

Although these deep learning methods have had some success in text classification performance, they tend to either 

ignore the labeled information in the text or directly use external information to represent the labeled information through 

filtering in training. This limitation makes it challenging for them to represent domain-specific vocabulary and fully 

capture sentence meaning [17]. 

Based on the aforementioned problems, this paper proposes an innovative approach based on the label information 

of known domains to extract pivot words as label information, then get the self-semantic knowledge feature expression 

of the label embedding by means of joint embedding, and enhance the performance of text classification by fusing the 

self-semantic knowledge features. And the main contributions are as follows: 



HighTech and Innovation Journal         Vol. 5, No. 1, March, 2024 

172 

 

 

Figure 1. No Food Safety Accidents and Food Safety Accidents classes 

 Proposing a method for classifying food safety comments with embedded label information. The method achieves 

text by selecting the pivot words of various kinds of labels in the text as the label description information, 

embedding the information through the joint learning method, using multilayer Bi-LSTM and multilayer CNN to 

extract the semantic features of the sentences and words, respectively, and employing feature fusion to 

concatenate the classification without losing the original information. 

 Proposing an innovative label description and feature extraction scheme that utilizes a pivot word-based approach 

to represent label information through joint learning. This involves obtaining word embedding representations by 

avg-pooling using text corresponding to pivot words of various labeling classes in known domains and utilizing 

multilayer CNN with different step sizes to extract disjoint word-level features and acquire self-knowledge 

features at the word level.  

 Introducing a novel method for fine-tuning the adaptation domain that quickly adapts to the domain and 

dynamically adjusts based on specific tasks. 

 The experimental findings demonstrate that the approach enhances the classification of food safety comments 

and yields favorable outcomes in the experiment. 

2. Related Works 

Label embedding techniques have been widely utilized in the field of natural language processing (NLP), especially 

for tasks like text classification and multi-task learning within diverse networks. These techniques capture the semantic 

features of labels in the embedding network, significantly improving prediction performance, particularly for less 

discernible classes. In computer vision, label embedding techniques have been extensively used for image classification 

[18, 19], text recognition in images [20], and multi-modal learning involving both text and images [21, 22]. They have 

shown notable successes in zero-shot learning tasks [23, 24], contributing to predicting classes that have insufficient 

training samples. 

In the domain of natural language processing (NLP), research has validated the efficacy of label embedding for tasks 

like text classification [25] and multi-task learning, particularly within the context of diverse networks. However, there 

is a gap in the literature concerning the effective implementation of label embedding and the complete utilization of label 

information to create text sequence representations that can enhance text classification performance. 

Short text classification involves assigning concise textual content to predefined classes. Traditionally, machine 

learning algorithms are utilized in short text categorization to autonomously learn text features and conduct classification. 

The origins of short text classification can be traced back to the 1960s, initially relied heavily on knowledge engineering 

and manually defined rules for classification. However, with the increase in online text volumes and the development of 

machine learning in the 1990s, researchers shifted their focus towards addressing the challenges of deep learning text 

classification [26]. 

Currently, prevalent algorithms for short text classification include CNN, recurrent neural networks (RNN) [27], and 

attention mechanisms. Among these, RNN-based models exhibit distinct advantages in NLP tasks due to their ability to 

process input vectors sequentially in time steps, resembling the way humans comprehend textual information. 

Nonetheless, when dealing with long texts, RNN may face issues such as gradient vanishing or explosion, hindering 
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their effectiveness in learning long-distance dependencies. In response to these challenges, LSTM has been introduced. 

LSTM incorporates mechanisms such as forgetting gates, memory gates, and output gates to better handle long texts, 

yielding significant results in text classification tasks. 

Nonetheless, standard models may face constraints when addressing the unique characteristics of short texts, 

including sparsity, singularity, dynamics, and crossover. The Siamese neural networks, introduced by Zagoruyko et al. 

[28], constitute an architecture consisting of two interconnected neural networks. This model is primarily employed 

within the framework of supervised learning, aimed at maximizing the differences in representation between various 

labels and minimizing the representation of the same label. In this paper, we adopt a Siamese-like network architecture, 

incorporating distinct neural network structures for different text types. This approach seeks to better capture text features 

and improve text classification performance. 

The Siamese neural network, introduced by Zagoruyko, is a connected architecture comprising two artificial neural 

networks primarily employed in supervised learning tasks. When the weights of the two networks are not shared but 

consist of two distinct neural network layers, it is referred to as a pseudo-Siamese neural network. In the case of pseudo-

Siamese neural networks, the two networks can differ, such as one being an LSTM while the other is a CNN. 

Originally primarily used in face recognition tasks for extracting facial features and determining their ownership by 

the same individual, Siamese neural networks have also been widely utilized in tracking tasks. Within the field of text 

classification tasks, Siamese neural networks are viewed as a potential solution technique. However, due to the distinct 

nature of text data, effectively adjusting and employing Siamese neural networks to tackle challenges in text 

classification remains an area deserving of exploration. 

In this paper, we employ a Siamese-like network architecture inspired by Siamese neural networks. We make specific 

adjustments to the neural network structure based on the diverse characteristics of different levels of text. For continuous 

sentence-level text, we utilize a multilayer Bi-LSTM network to extract features by considering successive time steps, 

aiming to capture complex semantic relationships and contextual information. For discontinuous word-level label 

information, we employ a CNN based on different sliding windows to effectively extract label description information. 

Subsequently, we integrate the crucial information from both labels and sentences into the classifier for prediction, 

leveraging the strengths of specific network architectures based on the nature of the text data to enhance the performance 

of our classification model. 

3. Material and Methods 

For word selection, we utilize the Weighted Log Likelihood Ratio (WLLR) metric proposed by Yu & Jiang [29] to 

judiciously select pivot words as label description information. Following that, we learn pivot word expressions in 

specific domains through joint learning: various classes of pivot words obtain embedded expressions in known domains 

and subsequently acquire high-quality induced expressions for the pivot words through avg-pooling lexicalization 

concepts. In the context of neural network models, this paper adopts a fusion model that integrates label embedding 

techniques and Siamese-like network tuning techniques to improve the accuracy of text classification. Specifically, we 

adopt a fusion model with a three-layer, two-class structure, including a text Look-up layer, a label Look-up layer, a text 

Learning layer, a label Learning layer, and a Fusion layers and Classifiers. Figure 2 illustrates the architecture of the 

model. Below is an explanation of every layer: 

In the text Look-up layer, we analyze sentence-level text, denoted as 𝑋(𝑘) = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑇} as input to the BERT 

encoder. This encoder has been fine-tuned to extract detailed feature information, resulting in excellent representations 

of text word embeddings. 

In the label Look-up layer, adopting an embedding learning approach to represent pivot words 𝑌𝑝𝑜𝑠_𝑗/𝑛𝑒𝑔_𝑗
(𝑘)

=
{𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑇}. We extracted the representations of the embedded pivot words in the known domain text. 

Subsequently, we employed word-level avg-pooling to generate a high-dimensional spatial representation for each pivot 

word. 

In the text Learning layer, the word embedding representation from the encoder is input into a multilayer Bi-LSTM. 

This network captures intricate time-step-based feature information, and the resulting output is utilized to concatenate 

the vector sequences of the final layer of the forward and the initial layer of the reverse, yielding a deep-level semantic 

feature vector encompassing both the forward and reverse information of the entire sequence. 

In the label Learning layer, convolutional layers with varying step sizes are utilized to extract features for positive 

and negative label description information. Subsequently, max-pooling is applied to obtain the feature vectors of fused 

labeled information knowledge. In order to address the potential negative effects that may be associated with the quality 

of the selected pivot words, we included a word-level attention layer in order to filter out the noise. 

In the Fusion layers and Classifiers, fixed-length vectors (representations of sentence text, label description 

information) are concatenated and fused in the last dimension. These vectors are fed into the classifier to obtain the 

classification probability of the embedded labeling information through the Softmax activation function. 
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Figure 2. Fusion model 

3.1. Look-up Layer 

In the domain of text classification tasks, the intermediate step of text representation is of utmost importance. When 

compared to the original Word2Vec [30] and GloVe [31] word-embedding models, the BERT model, pre-trained on a 

large amount of open corpus., excels at extracting relational features among words in sentences. It captures these 

relational features at multiple levels, offering a more comprehensive reflection of sentence semantics. It is important to 

note that in the BERT-Base-Chinese model, Chinese text is segmented at the character level, diverging from traditional 

Chinese segmentation practices. To address this, we adopt the Chinese-BERT-WWM model, as proposed by the Harbin 

Institute of Technology (HIT) [32]. This model incorporates the Whole Word Masking (WWM) technique during 

training, utilizing Chinese Wikipedia data (both Simplified and Traditional Chinese). 

The WWM technique offers an advantage by masking an entire word's composition with all the characters that make 

up that word. This compensates for the partial use of WordPiece tokenization in the pre-trained BERT model. Utilizing 

these benefits, we opt for the BERT pre-trained model as our encoder. In relation to pivot word expressions, we employ 

a word embedding approach. This involves obtaining sentence embedding expressions corresponding to pivot words 

with known domain label polarity and extracting the word embeddings of the pivot words to create the embedding 

expressions by avg-pooling. Equations 1 to 3 clarify the operations of the Look-up layer: 

X1
(k)

= BERT_encoder(X(k)) (1) 

Ypos_j1
(k)

= AvgPooling(BERT_encoder(Ypos_j
(k)

)) (2) 

Yneg_j1
(k)

= AvgPooling(BERT_encoder(Yneg_j
(k)

)) (3) 

Here, 𝑋1
(𝑘)

 represents the embedding result of the sentence, where we make use of BERT's “Last_Hidden_State” as 

the representation of the text. Additionally, 𝑌𝑝𝑜𝑠_𝑗1
(𝑘)

 and 𝑌𝑛𝑒𝑔_𝑗1
(𝑘)

 denote the encoded representations of positive and 

negative generic pivot words, respectively. It is important to note that a single pivot word may have different 

representations in the training set. To ensure a consistent representation of a single keyword, we utilize a pooling layer. 

After conducting a series of experimental validations, we have opted for avg-pooling as the pooling operation due to its 

superior performance in the comparison between avg-pooling, max-pooling and so on. 

3.2. Learning Layer 

For different types of text, we employ diverse feature extraction strategies. At the sentence level, our main focus is 
to extract text information to create an overall semantic representation. A robust semantic representation offers potential 
advantages in the fusion learning of neural networks. Due to the long-term dependency challenges and susceptibility to 
gradient vanishing in traditional RNN models when dealing with lengthy sequences, we have chosen to use a model 
based on LSTM. LSTM excels at capturing long-term dependencies in sequential data through cellular states and gating 

mechanisms, making it well-suited for learning patterns and features in time-series data. As a result, we have 
implemented a multilayer Bi-LSTM model, processing both forward and reverse sequences and combining the 
information. This approach preserves the original feature information while obtaining an excellent semantic 
representation. 
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At the word level, discontinuous label description information like pivot words often lacks correlation between words. 

Methods for extracting continuous features may not be effective in such cases. On the other hand, Multilayer 

CNN(MCNN) tend to be more effective in processing word-level text by using various sizes of convolutional kernels to 

capture different aspect features. To address this, we introduce multiple convolutional layers, each using a different 

convolutional kernel size. Then, we apply the Tanh activation function and a max-pooling layer to obtain a 

comprehensive word-level representation. After this, we calculate "Label Attention" where in Label Attention weights 

𝐴𝑝𝑜𝑠/𝑛𝑒𝑔 and label attention vectors 𝑌𝑝𝑜𝑠_𝑗3/𝑛𝑒𝑔_𝑗3 are are determined. Experimental results indicate that CNN outperform 

LSTM in extracting word-level features. The operations in the Learning layer are represented by the following Equations 

4 to 7: 

X2
(k)

= BiLSTM(X1
(k)

) (4) 

Ypos_j2/neg_j2
(k)

=Max-pooling(MCNN(Ypos_j1/neg_j1
(k)

))   (5) 

Apos/neg = Softmax(H′ReLu(HYpos_j2/neg_j2
(k)

))   (6) 

Ypos_j3/neg_j3
(k)

= ∑ Apos/neg ∙ Ypos_j2/neg_j2
(k)D

d=1   (7) 

Here, X2
(k)

 represents the semantic meaning representation of the embedded text. Additionally, Ypos_j2
(k)

 and 

Yneg_j2
(k)

denote the combined information representation of positive and negative general pivot words. H′ ∈ ℝ24×1 and 

H ∈  ℝdm×24 signifies a fully-connected layer of the combined information representation of labeled attention. 

𝐷 ∈ ℝ𝑑𝑚 , ⋅ represents dot product. The features of these pivot words are extracted using different step-size MCNN 

based on varying step sizes combined with different sizes of convolutional kernels. Subsequently, the Tanh activation 

function is applied, followed by a max-pooling layer to obtain this composite information representation. The feature 

vectors of weighted labeled attention are then acquired using dot-products. 

3.3. Fusion Layers and Classifiers 

In the fusion layer, we utilize a concatenation strategy to maximize the utilization of information from both the text 
and label description representations while preserving the integrity of the original information. Specifically, we extract 
information from the overall semantic representation of the text and the self-semantic representations of label 
information. These are combined to form a joint representation through a concatenation operation on their last dimension. 

Subsequently, we input this joint representation into the classifier to obtain scores for the positive and negative labeling 
categories. The mathematical representation of the fusion layer operation is depicted in Equations 8 and 9: 

Sj
(k)

= σ(MP3m×1(X2
(k)

⊕ Ypos_j3
(k)

) ⊕ MN3m×1(X2
(k)

⊕ Yneg_j3
(k)

))                         (8) 

L(k) = − ∑ ŷj
(k)n

j=1 log(Sj
(k)

)                   (9) 

The symbols used here are as follows: σ denotes the Softmax activation function, ⊕denotes the concatenation of 

vectors, 𝑀𝑃3𝑚×1 ∈  ℝ3∗𝑑𝑚 ×1 and 𝑀𝑁3𝑚×1 ∈  ℝ3∗𝑑𝑚 ×1 denote the linear layers, 𝑆𝑗
(𝑘)

denotes the probability of positive 

and negative classes, and 𝑦̂𝑗
(𝑘)

 is the one-hot encoding of the true labels corresponding to 𝑋(𝑘). The overall training 

objective is to minimize the weighted linear combinations from all classes. 

4. Experimentation 

4.1. Data Set 

The experimental dataset originates from a real dataset in O2O Food-Safety-Review-master (CCF Big Data & 

Computing Intelligence Contest, https://www.datafountain.cn/competitions/370/datasets), encompassing a diverse 

collection of food safety comments. Our evaluation aims to examine the performance and robustness of our approach 

within the food safety domain. These food safety comments we divide them into two classes: "No FSA" (No Food Safety 

Accidents) and "FSA" (Food Safety Accidents), as illustrated in Table 1. 

Table 1. Food Safety Review dataset   

 Food Safety Review No FSA FSA 

Train 10000 8346 1654 

Test 2000 1563 437 

4.2. Evaluation Metrics 

In this study, due to the limited size of the dataset, we opted for a k-fold experiment rather than a random split. We 

utilized k-fold cross-validation to evaluate the model's performance, as illustrated in Table 2. The dataset was divided 



HighTech and Innovation Journal         Vol. 5, No. 1, March, 2024 

176 

 

into 10 subsets, and a cyclic approach was used for model training and evaluation. Within each iteration, 9 subsets were 

dedicated to training and 1 subset for testing. This process was repeated 10 times, and the aggregated results were used 

to calculate the final performance metric by taking the mean value. We selected k=10 based on its suitability for our 

dataset in prior studies. Accuracy, precision, recall, and F1 score were employed as essential metrics for assessing the 

model's performance. Equations 10 to 13 outline the formulas for these metrics. 

Table 2. Statistics   

Fold 1..3 4..7 8..10 

Train Set Size 10800 10800 10800 

Test Set Size 1200 1200 1200 

  

Accuracy =
TP+TN

TP+FP+TN+FN
  (10) 

Precision =
TP

TP+FP
  (11) 

Recall =
TP

FP+FN
  (12) 

F1 =
2×Precision×Recall

Precision+Recall
  (13) 

In these equations, TP (true positive) represents the count of positive classes correctly predicted as positive, FN (false 

negative) indicates the count of positive classes predicted as negative, FP (false positive) denotes the count of negative 

classes predicted as positive, and TN (true negative) signifies the count of negative classes correctly predicted as 

negative. The sum of these values provides the total number of tested samples. 

Furthermore, we utilize macro-averages and weighted averages as evaluation metrics. Equations 14 to 16 outline the 

formulas for these metrics. 

Macro_ Precision =
1

n
∑ Pi

n
i=1   (14) 

Macro_ Recall =
1

n
∑ Ri

n
i=1   (15) 

Macro_ F1 =
1

n
∑ F1i

n
i=1   (16) 

Here, n represents the number of classes. These metrics provide a broader perspective on the model's overall 

performance across different classes. 

4.3. Use of Pre-trained Models 

This paper utilizes the pre-trained word vector model from the Chinese-BERT-WWM, developed by HIT, for all 

experiments involving neural network models aimed at constructing input word embeddings. The model assigns a word 

vector to each individual word and is trained on Chinese Wikipedia, encompassing both Simplified and Traditional 

Chinese. It features a 12-layer, 768 hidden state Transformer model with 12 attentions and a vocabulary size of 21,128 

words. Additionally, the pre-trained word vectors are continually learned and updated during the training process of the 

neural network model. 

4.4. Baseline Model 

To evaluate the effectiveness of our model, we executed a series of comparative analyses to assess its performance 

against various standard text classification models. Our objective is to thoroughly evaluate the performance and 

robustness of our model through comparisons with other established models. We selected a group of widely utilized text 

classification models and subjected them to testing on the same dataset. Subsequently, we utilized metrics like accuracy, 

precision, recall, and F1 score to comprehensively evaluate the performance of these models. 

 BERT: BERT (Bidirectional Encoder Representations from Transformers) is a groundbreaking pre-training 

model in the field of NLP, attracting significant attention. What sets BERT apart is its unique ability to understand 

linguistic context bidirectionally, leading to exceptional performance across a variety of NLP tasks. The model 

takes character-level raw word vectors as input and produces a word vector representation as output, 

encapsulating the entire semantic information of the text. This showcasing BERT's ability to capture nuanced 

contextual relationships within language. In this study, we employ a fine-tuned BERT-WWM based on HIT. 

 BERT-CNN: The collaborative BERT-CNN model seamlessly integrates the semantic understanding capabilities 

of BERT with the precise local feature extraction abilities of CNN, enhancing text classification performance. 

BERT grasps the semantics of the entire text, while CNN processes each text segment for more detailed semantic 
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features. This approach achieves a comprehensive understanding of textual information by combining effective 

semantic understanding with precise local feature extraction. 

 BERT-RNN: The BERT-RNN model, similar to BERT-CNN, leverages the advantages of BERT but differs by 

integrating RNN instead of CNN. The inclusion of the RNN module aims to capture semantic information within 

the text over longer distances. Unlike CNN, which is proficient in local feature extraction, the recurrent nature of 

RNN enables it to grasp long-term dependencies in sequential data, making it suitable for tasks that require 

understanding across broader contexts. Consequently, BERT-RNN combines the global context comprehension 

of BERT with RNN's ability to capture semantic subtleties across extensive portions of the text. 

 TEXT-RNN: The TEXT-RNN model standardizes all sentences to a uniform length, using pre-trained word 

vectors or random reordering of the vectors. Word2Vec is utilized for pre-training. In the standard configuration, 

the hidden states of forward/backward LSTM are obtained and concatenated at the final time step. A Softmax 

layer with Softmax activation function is then used for multi-class classification. An alternative method involves 

obtaining the hidden states of the forward/backward LSTM at each time step, concatenating them, and then 

averaging the concatenated hidden states across all time steps. This is followed by a Softmax layer to obtain the 

final classification result. The TEXT-RNN model aims to efficiently handle sentences of varying lengths for 

multi-class classification tasks. 

 TEXT-CNN: This model is similar to the aforementioned TEXT-RNN, but the difference lies in replacing RNN 

with CNN. TEXT-CNN excels in tasks such as text classification and sentiment analysis (SA), especially in 

handling shorter and more succinct texts efficiently. It improves model training efficiency and semantic 

understanding, enabling it to excel in various NLP tasks. 

 ERNIE: ERNIE (Enhanced Representation through Knowledge Integration) [33] model is firmly rooted in the 

continuous learning semantic understanding framework ERNIE and its corresponding pre-trained ERNIE model, 

which is established on the PaddlePaddle open-source platform. Remarkably, ERNIE outperforms BERT in 

performance across a total of 16 Chinese and English tasks, achieving State-of-the-Art results. Unlike BERT, 

ERNIE goes beyond mere semantic understanding; it explores the lexical structure, syntactic structure, and 

semantic information present in the training data. This synthesis approach substantially enhances the model's 

ability to generate general semantic representations. ERNIE proves to be a formidable pre-trained model for 

Chinese NLP, with robust text classification capabilities. In this study, we directly use open corpus pre-trained 

ERNIE. 

4.5. Hyper-parameterization 

For deep learning models, our method initializes word embeddings and label embeddings with 768-dimensional 

BERT word embeddings. These embeddings are derived through fine-tuning the BERT-WWM from HIT. Furthermore, 

the baseline model uses the same approach. Training involves utilizing the Adam Optimizer [34], with an initial learning 

rate set to 1e-5 and a mini-batch size of 64. The model is implemented using PyTorch and trained on an NVIDIA GPU 

3060Ti. Table 3 presents the parameters for each network layer. 

Table 3. Parameters 

Parameters Setting 

optimizer Adam 

Learning_rate 1e-5 

Num_layer 2 

Hidden_size 256 

Convolutional filtering window size k 1,2,3 

4.6. Analysis of Experimental Results 

In this sub-section, we focus on validating the following inquiries:  

 Is the superiority of fusion models over traditional text classification models significant? 

 Does the fusion model demonstrate an edge over the transformer-based variations of the approach, which have 

recently delivered noteworthy outcomes? 

 Can our model demonstrate the capacity for effective domain adaptation? 

To validate our approach, we conducted a comparative analysis employing four metrics against various baseline 

models. The results represented reflect the average value over 10 iterations. The outcomes are depicted in Table 4 and 

Figure 3. 
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Table 4. Classification results of the existing model and fusion model 

 Accuracy Precision Recall F1 

BERT 0.9306 0.9695 0.9476 0.9584 

BERT-RNN 0.9306 0.9674 0.9494 0.9583 

BERT-CNN 0.9314 0.9685 0.9495 0.9589 

TEXT-RNN 0.9167 0.9759 0.9256 0.9500 

TEXT-CNN 0.9142 0.9648 0.9329 0.9486 

ERNIE 0.9262 0.9632 0.9482 0.9556 

Fusion model 0.9366 0.9695 0.9545 0.9619 

Table 5. Macro averages of existing model and fusion model 

 Macor_Precision Macro_Recall Macro_F1 

BERT 0.8579 0.8928 0.8739 

BERT-RNN 0.8618 0.8900 0.8750 

BERT-CNN 0.8623 0.8923 0.8763 

TEXT-RNN 0.8090 0.8896 0.8415 

TEXT-CNN 0.8241 0.8713 0.8449 

ERNIE 0.8572 0.8800 0.8680 

Fusion model 0.8753 0.8993 0.8866 

 

Figure 3. Macro_Precision, Macro_recall, Macro_F1 for the respective models 

1. Is the advantage of fusion models over traditional text classification models significant? 

Although traditional TEXT_RNN and TEXT_CNN exhibit commendable results, there is a noticeable gap when 

compared to other deep learning models. The fusion model demonstrates superior and more effective performance 

compared to traditional text classification models, which can be observed from the following two aspects.  

Firstly, as shown in Table 4, the traditional TEXT-RNN and TEXT-CNN have an accuracy of 91.67% and 91.42%, 

respectively, while the fusion model achieves 93.66%. Clearly, the accuracy is approximately 2% higher. The accuracy 

directly validates that the fusion model is more effective than traditional methods. Additionally, from Table 1, it is 

evident that there is a large volume of No FSA, which indirectly reflects the model's accuracy in identifying No FSA. 

This greatly enhances our confidence in the effectiveness of classifying real food safety comments. 

Secondly, based on Table 5, Macro_F1 which measures the combined model precision and recall, reached 84.15% 

and 84.49% for the traditional classification methods TEXT-RNN and TEXT-CNN, and 88.66% for the fusion model, 

which is also higher than about 2%. The macro average clearly reflects that the fusion model is superior compared to the 

traditional methods. 



HighTech and Innovation Journal         Vol. 5, No. 1, March, 2024 

179 

 

2. Does the fusion model have an advantage over the transformer-based variants of the approach that have recently 

achieved impressive results?  

The fusion model demonstrates continued effectiveness despite the recent success of transformer-based 

approaches. On the one hand, upon analyzing Table 4, it is evident that BERT, based on a 12-layer transformer 

encoder architecture, has shown impressive results across all 11 NLP tasks. Additionally, BERT-RNN and BERT-

CNN, which incorporate extracted features using networks of RNN and CNN, still demonstrate have a 0.6% 

improvement in accuracy in recognizing No FSA. However, although not great news, it is important to note that 

despite the relatively high accuracy of BERT in the SA tasks, further improvements for BERT and its superior 

variants are challenging to achieve.  

On the other hand, an analysis of Table 5 reveals a substantial 1.74% improvement in Macro_F1 of the fusion model 

compared to BERT, as well as BERT-RNN and BERT-CNN. Macro_F1 serves as a crucial metric for the SA task, and 

while the improvement in accuracy of the fusion model may not be substantial, Macro_F1 reflects the robustness and 

effectiveness of the model. This underscores the effectiveness of our work. 

3. Can our model possess the capability of effective domain adaptation? 

Involving the domain adaptation problem, we train the Chinese NLP pre-trained model ERNIE without fine-tuning 

by utilizing various heterogeneous corpora, including dialogue data, news data, Wikipedia data, and other general-

purpose corpora. As demonstrated in Table 4 and Table 5, its accuracy and Macro_F1 are 92.62% and 86.80%, 

respectively. The fusion model shows an average improvement of 1.5% on both metrics. However, considering that this 

is not enough to reflect the fine-grained problem of domain adaptation. Therefore, the subsequent case studies in Section 

4.7 will further delve into this issue. 

4.7. Case Study 

To further illustrate the effectiveness of our models and the ability of domain adaptation to facilitate fine-grained 

identification, we present the prediction results for four test cases involving different models, as depicted in Table 6.  For 

example (a), both BERT and ERNIE gave an incorrect sentiment prediction. For example (b), all three models predicted 

the correct sentiment. For example (c), BERT predicts correct sentiment, whereas ERNIE predicts NEG sentiment. For 

example (d), all models predicted correctly. In conclusion, the fine-tuned BERT accurately identified most sentiment 

labels. However, in cases where the sentiment was ambiguous, BERT was unable to determine whether the comment 

was POS or NEG. ERNIE, although not fine-tuned with information from the food safety domain, consistently predicted 

NEG sentiment in all four test cases, possibly due to the limitation of generalized corpora to express specific words. The 

fusion model precisely identified sentiment in all four test cases, and accurately recognized positive sentiment tendencies 

based on BERT, demonstrating its effective domain adaptation capabilities. 

Table 6. Predictions of different methods on four test samples. POS and NEG denote No FSA, and FSA sentiments, 
respectively 

Text\Model Manual Label BERT ERNIE Fusion Model 

(a) 一点也不好吃 还这么贵，全是肥肉。(It's not 

good at all and it's so expensive. It's all fat.) 
POS (NEG, ✘) (NEG, ✘) (POS, ✔) 

(b) 吃出来一只蚊子，胃口全无#9寸奥良烤鸡披

萨# (Eat out a mosquito and lose your appetite #9’ 

Orleans Grilled Chicken Pizza.) 

NEG (NEG, ✔) (NEG, ✔) (NEG, ✔) 

(c) 味道一般，菜品也只能说一般，毕竟在那个

地段，而且服务员态度也不热情。(The flavor 

was average, the food was only average, after all, it 
was in that location, and the waiters were not 

welcoming.) 

POS (POS, ✔) (NEG, ✘) (POS, ✔) 

(d) 是不是放了几天了？太难吃了！有点馊的味

道！(Has it been sitting there for a few days? It's 

awful! It tastes a bit rancid!) 

NEG (NEG, ✔) (NEG, ✔) (NEG, ✔) 

5. Supplementary Experiments 

5.1. Ablation Experiments 

The fusion model includes three variants, all utilizing the same hyperparameters as our proposed methodology. The 

results can be found in Table 7 and Figure 4. 
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 w/o LE (Label Embedding): 

Token embedding is achieved using the baseline fine-tuning BERT pre-training model that we have adopted. The 

embedded vector then undergoes two layers of Bi-LSTM to extract the last layer of the hidden state from both 

directions. The obtained vectors are spliced to generate fixed vectors, which are then input into the classifier. 

 w/o ATT (Attention): 

This method excludes the attention mechanism applied to the keyword vectors generated by the Label Learning 

layer. The resulting vectors, along with the directional quantities of sentence features, are spliced in the last dimension 

and fed into the matcher to obtain the match score. 

 w/o MC (MCNN): 

This variant is based on our optimal model but excludes the MCNN. It uses only CNN with observation horizons 1, 

2, or 3, selecting the result with the best observation horizon. 

Table 7. The outcomes of the ablation experiments 

 Macro_Precision Macro_Recall Macro_F1 

Fusion Model 0.8753 0.8993 0.8866 

w/o LE 0.8707 0.8893 0.8796 

w/o ATT 0.8673 0.8942 0.8799 

w/o MC 0.8611 0.8777 0.8691 

 

Figure 4. Macro_Precision, Macro_recall, Macro_F1 for the ablation experiments 

The analysis of Table 7 reveals several key insights into the performance of our proposed methods and their 

interactions with different model components: 

 w/o LE Variant: The w/o LE variant is a pairing of BERT and Bi-LSTM, which has shown consistent 

performance improvement in SA tasks. This indicates a synergistic effect between our model and BERT 

variants, emphasizing the improved performance attained through their combination. 

 w/o ATT Variant: The w/o ATT variant, which eliminates the Attention layer with the same parameters, 

shows a noteworthy impact on performance. Macro_Precision, Macro_Recall, and Macro_F1 demonstrate a 

decrease, implying that the attention mechanism plays a crucial role in capturing features that the model 

overlooks or fails to learn. 

 w/o MC Variant (Without MCNN): The model's performance is only moderate across all metrics when the 

MCNN is removed based on different step sizes. This indicates that the MCNN significantly contribute to the 

overall effectiveness of the model, and their exclusion leads to a noticeable impact on performance. 
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In conclusion, the analysis emphasizes the collaborative nature of the model components, with the Attention layer 

and MCNN playing pivotal roles in achieving superior performance. Furthermore, the positive interaction with BERT 

variants confirms the effectiveness and versatility of our proposed label embedding model. 

5.2. Comparison Experiments 

This section aims to investigate whether the length of the word list influences the performance of our model. The 

hypothesis is that a longer word list, and consequently more embedded information, could potentially enhance the 

model's learning capabilities. To investigate this, a comparative experiment is conducted using a word list length of 4 as 

the benchmark under the same parameters. This exploration aims to illuminate the correlation between word list length 

and model performance, offering insights into how the quantity of embedded information may influence the learning 

process and outcomes. The findings are presented in Table 8 and Figure 5. 

Table 8. The outcomes of the comparative experiments 

 Macor_Precision Macro_Recall Macro_F1 

1/4 word 0.8622 0.8820 0.8716 

2/4 word 0.8753 0.8993 0.8866 

3/4 word 0.8706 0.8796 0.8750 

All word 0.8693 0.8929 0.8804 

 

Figure 5. Macro_Precision, Macro_recall, Macro_F1 for different word list lengths 

The analysis of Table 8 reveals some intriguing patterns in contrast to our initial expectations. As the word list 

length increases, the model performance initially improves, followed by a decline, and then a subsequent rise. After 

conducting numerous experiments and careful consideration, we focused on the pivot word selection weight 

indicator (WLLR). Upon closer examination, it was observed that the negative generic sentiment words in the early 

part of the word list have higher relevance to known domains. However, as the word list length expands, the 

relevance decreases, and there is even a risk of misclassification. We hypothesize that the expansion of the word list 

length introduces a noise problem. The inclusion of the Attention layer in our model, when the word list length 

reaches its full extent, synthesizes this information, reducing the weight of unfavorable words and consequently 

benefiting the model.  

This analysis underscores the importance of continuous optimization in our pivot word algorithm. Developing a more 

refined algorithm for the selection of general pivot words in sentiment analysis remains an area for improvement, 

ensuring the model's robustness and effectiveness. 
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6. Conclusion 

In this paper, we present an innovative method to classify food safety comments using fused self-semantic and self-

knowledge feature models. Introducing an auxiliary task filters positive and negative pivot words from known domains 

as label description information, embedding them into expressions through co-embedding. This not only tackles the 

challenge of domain adaptation but also introduces a novel labeling representation that incorporates labeling information 

into a neural network model. The result is a significant improvement in the effectiveness of domain-heavy text 

classification tasks, especially for short texts related to food safety. 

Looking ahead, our future research will focus on the field of multi-label fine-grained cross-field classification tasks, 

which is a cutting-edge and challenging domain in research. Considering the wide-ranging applications of multi-label, 

fine-grained classification tasks in real-world scenarios, we aim to extend the methods proposed in this paper to these 

domains. This exploration will provide valuable insights and inspiration, contributing to the enhancement of the 

universality and applicability of text classification methods within the food safety domain. We expect that ongoing 

research will continue to advance the application and development of NLP in the field of food safety and beyond. 
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