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Abstract 

Aspect-level sentiment analysis is essential for businesses to comprehend sentiment polarities associated with various 

aspects within unstructured texts. Although several solutions have been proposed in recent studies in sentiment analysis, a 

few challenges persist. A significant challenge is the presence of multiple aspects within a single written text, each 

conveying its own sentiments. Besides this, the exploration of ensemble learning in the existing literature is limited. 

Therefore, this study proposes a novel aspect-level sentiment analysis solution that utilizes an ensemble of Bidirectional 

Long Short-Term Memory (BiLSTM) models. This innovative solution extracts aspects and sentiments and incorporates a 

rule-based algorithm to combine accurate sets of aspect and sentiment features. Experimental analysis demonstrates the 

effectiveness of the proposed methodology in accurately extracting aspect-level sentiment features from input texts. The 

proposed solution was able to obtain an F1 score of 92.98% on the SemEval-2014 Restaurant dataset when provided with 

the correct set of aspect-level sentiment features and an F1 score of 95.54% on the SemEval-2016 Laptop dataset when 

provided with the aspect-level sentiment features generated by the aspect-sentiment mapper algorithm. 

Keywords: Aspect-Level Sentiment Analysis; Ensemble Model; Deep Learning. 

 

1. Introduction 

The introduction of Web 2.0 has allowed people to express their thoughts and opinions on various topics and issues 

across different online platforms, including social media and e-commerce platforms. This ease of expression benefits 

not only users but also businesses, which leverage these online opinions to formulate and adjust their marketing strategies 

[1]. However, the large numbers of opinions posted online daily have made it nearly impossible to analyze them 

manually. Therefore, businesses will need to resort to automated methods to extract and analyze the information 

contained within these texts. 

One such analytical method is sentiment analysis, or opinion mining, which determines the sentiments or opinions 

expressed in written texts [2]. It is typically conducted on three levels of texts: the document level, sentence level, or 

aspect or feature level. At the document level, sentiment analysis focuses on extracting sentiments from entire 

documents, while at the sentence level, the emphasis is on extracting sentiments from individual sentences. On the other 

hand, aspect-level sentiment analysis concentrates on extracting sentiments from aspects, which can be defined as the 

attributes or characteristics of objects. 
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While both document- and sentence-level sentiment analysis can extract sentiments from text data, they are limited 

by their ability to capture only one sentiment per document or sentence. This limitation compromises the quality of 

sentiment information extracted, given that documents or sentences may contain multiple sentiments expressed in 

different aspects. Therefore, extracting sentiments at an aspect level emerges as the most appropriate method of retaining 

all of the sentiment information contained within texts. 

Nevertheless, this approach is not without its challenges. Firstly, written texts may express multiple aspects, each 

accompanied by its own sentiments. The absence of a comprehensive framework for extracting sentiments from different 

aspects may distort the overall sentiment representation in texts. Additionally, the concept of ensemble learning has not 

been extensively explored in previous works on aspect-level sentiment analysis. According to the review conducted by 

Brauwers & Frasincar (2022) [3], most recent studies in this field primarily advocate singular machine or deep learning 

approaches, overlooking the potential advantages of ensemble learning methods. Incorporating this machine learning 

technique can significantly enhance the aspect-level sentiment analysis process, as it can produce models that better 

generalize with their training data, consequently outperforming their singular model counterparts [4]. 

This study seeks to address the challenges mentioned above by proposing a novel solution for aspect-level sentiment 

analysis. This approach extracts sentiments from multiple aspects within texts and incorporates an ensemble learning 

strategy. The contributions of this study, therefore, will include the introduction of a new framework for extracting the 

sentiments of multiple aspects within texts as well as the exploration and refinement of ensemble deep learning 

techniques for the task of aspect-level sentiment analysis. 

This study is organized as follows: Section 2 highlights recent studies addressing the challenge of aspect-level 

sentiment analysis. Section 3 details the methodology adopted for the proposed aspect-level sentiment analysis solution. 

Section 4 highlights the experimental approach used to evaluate the proposed solution, the results obtained from the 

experiment, and a discussion. Section 5 concludes this study. 

2. Related Works 

Aspect-level sentiment analysis is regarded as a more fine-grained iteration of the process, theoretically not confined 

to just one sentiment polarity per document or sentence. However, to conduct this form of sentiment analysis effectively, 

it is imperative to identify or extract aspects before deriving their sentiments from unstructured texts. Several recent 

studies have presented solutions for extracting sentiments at an aspect level from input texts. 

Jiang et al. (2023a) [5] introduced a solution for aspect-level sentiment analysis utilizing the Gated Convolutional 

Network with Aspect Embedding (GCAE) [6] model. This modification of the Convolutional Neural Network (CNN) 

[7] incorporated additional gating mechanisms designed to extract sentiments associated with specific target aspects. 

The model’s architecture comprised a convolution layer, initially extracting and convolving linguistic and semantic 

features from the input texts, with a primary focus on the sentiment properties of the target aspects. Subsequently, these 

convolved features underwent a gating mechanism, filtering out sentiment features unrelated to the target aspects while 

amplifying the relevant ones. The filtered features were then directed to a max pooling layer, reducing their sizes before 

proceeding to the solution’s classification layer, ultimately predicting the final sentiment polarities of the target aspects. 

The solution proposed by Du et al. (2019) [8] employed a Bidirectional Recurrent Neural Network (BiRNN) [9] for 

extracting aspect-level sentiment features from texts. Recurrent Neural Networks (RNN) [10] capture dependencies at 

each time step in time-series data, utilizing both the input features of the current time step and the hidden states generated 

from preceding time steps. Building upon this concept, BiRNNs also incorporate hidden states from future time steps. 

The final contextualized representations used to depict each word in the solution’s input texts were crafted by 

concatenating both the forward and backward hidden states captured by its BiRNN layer. Following this, a convolution 

process was applied to these word representations before being directed to the solution’s primary capsule layer, 

representing various properties of the convolved features for sentiment analysis. 

The aspect-level sentiment analysis solution proposed by Sun et al. (2023) [11] also employed a CNN model and the 

gating mechanism used in GCAE to extract relevant sentiment features of its target aspects. However, this approach 

underwent several modifications. Firstly, their solution generated and utilized word and character embeddings of input 

texts, enabling the capture of richer syntactic and semantic features. Secondly, the sequential features of the enhanced 

context word embeddings were obtained using a Long Short-Term Memory (LSTM) model, similar to RNNs, as it 

captures the dependencies of words in sentences. Notably, LSTM utilizes multiple logic gates to retain or remove specific 

features from certain layers of their architecture. Lastly, the authors introduced additional convolution and gating layers 

into their solution’s architecture, enhancing its capability to capture more fine-grained sentiment features of target 

aspects. 

Much like LSTMs, Gated Recurrent Unit (GRU) [15] models are adept at capturing the long-term dependencies of 

each word in their input texts, utilizing logic gates to selectively retain or remove specific features at different layers in 

their architectures. In the context of sentiment analysis, both solutions presented by Han et al. (2020) [13] and Huang et 
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al. (2022) [14] employed Bidirectional Gated Recurrent Unit (BiGRU) layers to extract aspect-level sentiment features 

from their input texts. BiGRUs extend the GRU algorithm by incorporating both backward and forward hidden states 

when generating the sequential hidden states at each time step. 

Han et al. [13] implemented a dual BiGRU strategy in their sentiment analysis pipeline. One BiGRU was dedicated 

to capturing sequential aspect representations, while the other focused on capturing sequential representations of target 

sentences, including the short review texts embedded within these sentences. The features generated by both BiGRUs 

were then routed to the model’s attention mechanism before obtaining their final sentiment polarities. In contrast, the 

approach proposed by Huang [14] utilized multiple BiGRU layers to capture the sequential features of the model’s input 

text. Each BiGRU layer was dedicated to capturing the sequential features of one sentence, utilizing auxiliary information 

from sentences before and after each target sentence. 

The sentiment analysis solution presented in Tang et al. (2019) [16] utilized a Bidirectional Long Short-Term 

Memory (BiLSTM) [17] layer, along with multiple Context-Preserving Transformation (CPT) layers and an attention 

mechanism, to extract aspect-level sentiment features from its input texts. BiLSTM models extend the LSTM algorithm 

by incorporating future hidden states of input features when generating sequential hidden states at each time step. After 

passing the input word embeddings through the BiLSTM layer, each sequential feature was directed to a Context-

Preserving Transformation (CPT) layer, which underwent updates with contextual aspect features. Each CPT layer is 

comprised of an additional BiLSTM layer for learning the sequential features of target aspect terms, an attention 

mechanism, a fully connected layer, and a gating mechanism. The outputs from the CPT layers were subsequently fed 

into an attention mechanism, ultimately producing the final aspect-level sentiment features for the model’s input texts. 

The aspect-level sentiment analysis solutions proposed by Sun et al. (2019) [18], Jiang et al. (2023b) [19], and Zhou 

et al. (2020) [20] relied on both BiLSTM and Graph Convolutional Neural Network (GCNN) [21] layers to extract 

aspect-level sentiment features from texts. A GCNN can be conceptualized as a graph, where each node is a neural 

network that aggregates and transforms input features received from connected nodes. Sun et al. (2019) [18] first 

generated sequential features of dependency trees from their input texts. These features were then passed to the GCNN 

layer to further enhance them before undergoing average pooling. Subsequently, these features were utilized to identify 

sentiment polarities associated with target aspects. 

In Zhou et al.’s solution (2020) [20], a BiLSTM layer and two GCNNs were employed. One GCNN modeled the 

knowledge features of the texts, while the other modeled word dependencies. Features from both graph models were 

then processed through Multi-Head Attention layers, concatenated, and employed for sentiment polarity classification. 

Jiang et al.’s solution (2023b) [19] also used a BiLSTM layer and two GCNNs, introducing a location-aware 

transformation function that assigned position weights based on word proximity to target aspect terms. The first GCNN 

captured the emotional dependencies of target aspect terms, while the second captured semantic relationships between 

all words using a self-attention mechanism. The features from both GCNN models were concatenated before being 

passed to the classification layer to predict the target aspects’ final sentiments. 

The solution proposed by Xin et al. (2023) [22] employed an ensemble of Graph Attention (GAT) [23] models to 

capture both syntactic and semantic features associated with target aspect terms and their respective contextual words. 

GAT models, akin to GCNNs, constitute a graph of neural networks. However, the primary distinction lies in GATs 

assigning attention scores to each edge in the graph, highlighting highly correlated nodes. Syntactic features of the input 

texts were captured by combining features modeled by a dependency tree and a constituent tree. These features were 

then directed to the syntactic GAT model. Conversely, semantic features were captured based on the attention features 

of context words concerning their target aspects (local attention) and on the attention features of all words captured by 

a self-attention mechanism (global attention). These semantic features were then directed to the solution’s semantic GAT 

model. Features extracted by both GAT models were subsequently combined before being fed into the classification 

layer, predicting the final sentiments of the target aspects. 

The sentiment analysis solution proposed by Zhang & Qian (2020) [24] utilized a combination of BiLSTM, GCNN 

layers, and Bi-Level GCNN layers to model aspect-level sentiment features in its input texts based on two distinct sets 

of features. The model acquired text features by extracting corpus-specific lexical features through a GCNN and 

sequential features using a BiLSTM layer. These features were then directed to the model’s HierAgg module, comprising 

multiple cross networks to fuse the two features and Bi-Level GCNNs to model various relationships between the fused 

word features and their lexical and syntactic graphs. Subsequently, these features were aggregated, masked, and 

employed for sentiment polarity classification. 

While the solutions discussed above can extract aspect-level sentiment features from their input texts, they require 

handcrafted aspects to be manually mapped to their respective sentiments, which may not be practical in real-world 

scenarios. Besides this, the solutions discussed so far were limited to extracting the sentiments of one aspect per 

document or sentence. This may pose an issue as texts can contain more than one aspect, each expressed with its own 

sentiment. Recent studies have introduced various solutions to tackle these challenges. 
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Hu et al. (2023) [25] proposed an aspect-level sentiment analysis solution that adopted an ensemble approach to 
extract aspects and their corresponding sentiments from input texts. This was achieved by assessing the semantic 
relationships at both the word and sentence levels. Specifically, the model focused on understanding the connections 
between target sentences containing the desired aspects and sentiments and auxiliary sentences—statements mentioning 
a specific aspect and sentiment polarity. The solution initially gauged semantic relationships between words in the target 
sentence and entire auxiliary sentences, incorporating enhanced word embeddings with additional word dependency 
features. Subsequently, it measured the semantic relationships between target and auxiliary sentences, determining final 
output labels through a joint loss function that evaluated the loss of the two extracted relationship features. 

The solution proposed by Ray & Chakrabarti (2022) [26] utilized a Convolutional Neural Network (CNN) [27] along 
with a rule-based algorithm for extracting aspect-level sentiment features from its input texts. Their CNN model 
consisted of two sets of convolution and pooling layers, while their rule-based algorithm utilized word dependencies for 
aspect extraction and sentiment scores from SentiWordNet for sentiment analysis. Both algorithms could extract multiple 
aspects from their input texts, and any aspects captured by either algorithm were considered to be part of the final set of 
extracted aspects. Besides this, the sentiment analysis solution proposed by Cai et al. (2020) [28] utilized a Hierarchical 
GCNN approach to extract aspect-level sentiment features from its input texts. Their model consisted of two GCNN 
layers, with the first extracting the relationship, features between the input texts and the aspects contained within them 
and the inner-relationship features between each possible aspect. The second layer extracted the inter-relationship 
features between the extracted aspect features and their respective sentiment properties. A max-pooling layer was applied 
to these features before they were used for aspect and sentiment polarity classification. The final output labels produced 
by the solution were multi-labeled outputs depicting the presence of each aspect and their respective sentiment polarities. 

Lastly, the aspect-level sentiment analysis solution proposed by Wang et al. (2019) [29] utilized multiple RNN 
capsules to extract the aspect-level sentiment features from its input texts. Each capsule detected the presence of one 
aspect category and its respective sentiment polarity. Besides the RNN layer, each capsule contained multiple attention 
mechanisms to extract aspect and sentiment features from input texts. All the aspect-level sentiment analysis solutions 
discussed in this section are presented in Table 1. 

Table 1. Taxonomy of previous aspect-level sentiment analysis studies 

Study 
Sentiment Polarity Classification 

Algorithm 
Dataset A P R F1 

Cai et al. (2020) [28] GCNN 
SemEval-2016 Restaurant 

Reviews [2,676 samples] 
- 76.37 72.83 74.55 

Du et al. (2019) [8] BiRNN + Capsules Twitter Dataset [6,940 samples] 75.01 - - 73.81 

Han et al. (2020) [13] BiGRU SentiDrugs [4,028 samples] 78.26 - - 77.75 

Hu et al. (2023) [25] M.L.P. SentiHood [5,215 samples] 93.80 - - - 

Huang et al. (2022) [14] BiGRU 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
82.64 - - 73.38 

Jiang et al. (2023a) [5] CNN + Gating Mechanism 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
75.30 82.72 87.20 84.90 

Jiang et al. (2023b) [19] BiLSTM + GCNN 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
84.32 - - 77.61 

Ray & Chakrabarti (2022) [26] CNN + Rule-Based Algorithm 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
- 79.67 86.20 83.34 

Sun et al. (2019) [18] 
Dependency Tree + BiLSTM (aspect 

features) + GCNN (sentiment features) 
SemEval-2014 Restaurant 
Reviews [3,844 samples] 

82.30 - - 74.02 

Sun et al. (2023) [11] LSTM+ CNN + Gating Mechanism 
Self-Collected Automotive Parts 

Reviews [4,260 samples] 
95.90 - - 77.20 

Tang et al. (2019) [16] BiLSTM + Attention Mechanism Twitter Dataset [6,940 samples] 78.61   77.72 

Wang et al. (2019) [29] RNN Capsules 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
68.10 - - 61.60 

Xin et al. (2023) [22] Multi-Layer GCNN 
SemEval-2014 Restaurant 
Reviews [3,844 samples] 

86.42 - - 79.70 

Zhang & Qian (2020) [24] GCNN + BiLSTM + Bi-Level GCNN 
SemEval-2014 Restaurant 

Reviews [3,844 samples] 
81.97 - - 73.48 

Zhou et al. (2020) [20] BiLSTM + GCNN 
SemEval-2014 Laptop Reviews 

[3,845 samples] 
79.00 - - 75.57 

Based on the review conducted in this section, the proposed aspect-level sentiment analysis solution aims to map 

multiple aspects in its input texts to their corresponding sentiment polarities. To achieve this, the solution will adopt an 
ensemble approach, drawing inspiration from the methodology employed by Cai et al. [28]. Similar to their approach to 
modeling the inner-relationship features between aspects and their sentiment polarities, our solution will diverge by 
relying on an ensemble of sequential models, as demonstrated by Wang et al. [29]. This modification is suggested, 

recognizing that GCNNs, while effective, may not capture the sequential features of input texts as comprehensively as 
sequential models, providing richer contextual features for both aspect and sentiment polarity classification. 
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3. Research Methodology 

The proposed aspect-level sentiment analysis solution extracted the sentiments of each aspect in its input texts using 
an ensemble of sequential models. The framework of this solution consisted of a pre-processing module to remove noisy 
and redundant features from its raw input texts, a text encoding module to generate numerical representations of each 

word in them, an aspect extraction module to determine the aspects present in them as well as to extract their aspect-
related features, a sentiment encoding module to extract their sentiment features, an aspect-sentiment mapper algorithm 
that combined the correct set of aspect and sentiment features to form aspect-level sentiment features and an aspect-level 
sentiment classification model that classified the sentiment polarities of aspects based on the aspect-level sentiment 
features generated by the aspect-sentiment mapper. Figure 1 depicts this framework, while Figure 2 depicts the flowchart 
of the overall algorithm. 

3.1. Pre-Processing Module 

The pre-processing module of the proposed aspect-level sentiment analysis solution played a crucial role in enhancing 
performance by eliminating noisy and redundant features from raw input texts. Its primary function was to remove 
characters that did not contribute significantly to aspect extraction or sentiment analysis. Table 2 highlights the pre-
processing steps used for the proposed solution and their impact on a raw input sample. The character cases of the raw 
input texts passed to the proposed solution were first normalized by converting them into lowercase characters. This step 
was conducted to prevent the text encoding module from treating the same words with different character cases as 

different features. After normalizing their character cases, the numbers, punctuations, and other symbols were removed. 
Once the raw input texts passed to the module were pre-processed, they were sent to the proposed solution’s text 
encoding module. 

 

Figure 1. Framework of the proposed aspect extraction solution 

Table 2. Pre-processing steps and their effects 

Pre-Processing Step Data Before Pre-Processing Step Data After Pre-Processing Step 

Text normalization The build quality of this ASUS laptop is good for $500! the build quality of this asus laptop is good for $500! 

Numbers removal the build quality of this asus laptop is good for $500! the build quality of this asus laptop is good for $! 

Punctuations removal the build quality of this asus laptop is good for $! the build quality of this asus laptop is good for $ 

Symbols removal the build quality of this asus laptop is good for $ the build quality of this asus laptop is good for 
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3.2. Text Encoding Module 

The text encoding module of the proposed solution was responsible for converting the pre-processed texts passed to 
it into numerical representations. This step had to be conducted as machine and deep learning models cannot directly 
process text data. This study used pre-trained Bidirectional Encoder Representations from the Transformers (BERT) 

[30] model to convert the solution’s pre-processed texts into contextual word embeddings. Specifically, we opted to use 
a BERTBASE model, which consisted of 12 layers of transformer encoders to encode the syntactic, semantic, and 
contextual properties of each word in the input texts. Figure 3 highlights the results of converting each word from the 
pre-processed sentence generated in Table 2 into their respective BERT word embeddings. Once the input texts were 
encoded, they were sent to the proposed solution’s aspect extraction and sentiment encoding modules. 

 

Figure 2. Flowchart of overall algorithm 

 

Figure 3. Results of converting pre-processed words into BERT word embedding 
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3.3. Aspect Extraction Module 

The proposed solution’s aspect extraction module identified the aspects present in its input texts and extracted their 

aspect-related features. The framework of this module is depicted in Figure 4. 

 

Figure 4. Framework of Aspect Extraction Module 

The aspect extraction module consisted of an ensemble of aspect category models, where each was trained to identify 

words that belonged to a specific aspect category. After identifying the presence or absence of words in their assigned 

aspect category, the aspect category model encoded this information for aspect extraction. Table 3 highlights some of 

the words identified by some of the aspect category models as belonging to their respective aspects. 

Table 3. Sample words identified by some of the aspect category models as belonging to their respective aspects 

 

 

 

 

 

Given that the aspect-category models were standard BiLSTM models, the aspect-category features they encode can 

be computed by combining the forward (first word to last word) and backward (last word to first word) sequential 

features they generated. The forward sequential features generated by an aspect category model were computed with the 

following composite function: 

iτ→ = σ(Wi→Xt + Ui→hτ-1 + bi→) (1) 

fτ→ = σ(Wf→Xτ + Uf→hτ-1 + bf→) (2) 

oτ→ = σ(Wo→Xτ + Uo→hτ-1 + bo→) (3) 

cτ→ = fτ→ ⋅ cτ→-1 + iτ→ ⋅ tanh(Wc→Xτ + Uc→hτ-1 + bc→) (4) 

hτ→ = oτ→ ⋅ σ(cτ→) (5) 

where iτ→ represents the output from the input gate, f𝜏→ represents the output from the forget gate, o𝜏→ represents the 

output from the output gate, c𝜏→ represents the cell state, and h𝜏→ represents the hidden state of the current time step. 

Besides that, W and U represent the weight values, X represents the input feature, τ represents the current time step, σ 

Aspect Category Model Sample Words 

Food food, chicken, ingredients 

Service service, waiters, rudely 

Laptop laptop, computer, machine 
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represents the sigmoid squashing function, and tanh represents the tanh squashing function. While the formulas above 

depict the process of obtaining the forward sequential features of the input texts, the backward sequential features can 

be obtained by replacing the outputs from previous steps with the outputs from future steps instead. The final aspect 

features were obtained by concatenating the forward and backward sequential features, which are depicted in the 

computation below: 

ac=hτ→⊕hτ← (6) 

where ac represents an aspect category feature, h𝜏→ represents the forward sequential features of a given text, h𝜏← 

represents the text’s backward sequential features and ⊕ represents the concatenation operation. 

Once the aspect category features were generated for all possible aspect categories, they were combined with the 

initial flattened word embeddings to generate the final aspect features of the input texts used for aspect extraction. This 

feature can be computed as follows: 

ay
i
 = FX.i ⊕ Ai (7) 

where ayi represents the final aspect feature for input sample i, FXi represents the flattened word embeddings of input 

sample i, Ai represents the list of aspect features generated by the aspect category models, and ⊕ represents the 

concatenation operation. 

The final aspect features were then passed to the module’s aspect classification model, which consisted of several 

hidden layers and an output layer. These hidden layers generated the hidden states of the aspect features using the 

following computation: 

hj = ∑ WiXi

N

i=1

+ b (8) 

where hj represents the hidden output generated at layer j, N represents the total number of input features passed to the 

neuron, Wi represents the weight of feature Xi, and b represents the bias term used by the layer. 

The output layer of the module’s classification model then generated a multi-label output where each neuron 

independently represented the presence or absence of an aspect. The following computation depicts the output values 

produced by the output layer: 

ŷ
j 
= σ( ∑ WiXi

N

i=1

+ b) (9) 

where ŷj represents the output value j, σ represents the sigmoid activation function, N represents the total number of 

input features passed to the neuron, Wi represents the weight of feature Xi, and b represents the bias term used by the 

output layer. The aspect category features, and the aspect output labels generated by this module, were then sent to the 

solution’s aspect-level sentiment mapper. 

3.4. Sentiment Encoding Module 

The sentiment encoding module of the proposed solution was responsible for extracting the sentiment features of its 

input texts based on their overall sentiment polarities. It accomplished this using an ensemble of sentiment polarity 

models, where each identified words in their input texts that belonged to the respective sentiment polarities they were 

trained on. The models encoded the sentiment polarity information of their input texts based on the presence or lack of 

presence of words that belonged to their respective sentiment polarities. Table 4 highlights some of the words identified 

by the sentiment polarity models as being related to their respective sentiment polarities. 

Table 4. Sample words identified by the sentiment polarity models as belonging to their respective sentiment polarities 

Sentiment Polarity Model Sample Words 

Negative bad, terrible, slow 

Neutral okay, average, ok 

Positive good, tasty, fast 

As these models were also standard BiLSTM models, the forward and backward sequential features that made up the 

sentiment polarity features were computed based on Equations 1 to 6.  

Once the sentiment polarity features were generated, they were then combined to form singular sentiment polarity 

features that would be used as one of the input features for the overall sentiment encoding model. These singular features 

were computed based on the equation below: 
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SP. i= sp
i, Negative 

⊕ sp
i, Neutral

 ⊕ sp
i,Positive

 (10) 

where SPi represents the final sentiment polarity feature of input sample 𝑖 generated by this component, spNegative 

represents the negative sentiment polarity feature of the input text, spNeutral represents the neutral sentiment polarity 
feature of the input text, spPositive represents the positive sentiment polarity feature of the input text, and ⊕ represents the 
concatenation operation. 

The overall sentiment encoding model was responsible for identifying the overall sentiment of its input texts as well 
as extracting their contextual sentiment features. The first component of the model was its context modelling component, 

which extracted and condensed the context features found in the word embeddings of its input texts. This component 
consisted of a BiLSTM layer as well as two hidden layers. The second component was the sentiment modelling 
component, which extracted the overall sentiment features of its input texts based on the properties of the singular 
sentiment polarity features generated by the sentiment polarity models. The final contextual and overall sentiment 
features extracted by the model were computed based on the formula in Equation 8. 

Once both features were extracted, they were then combined to form single context-sensitive sentiment features that 

modelled the overall sentiments expressed in their respective input texts. 

OS.i = ci ⊕ si (11) 

where OSi represents the overall sentiment features of input sample 𝑖, ci represents the contextual features generated by 

the context component, si represents the sentiment features generated by the sentiment component and ⊕ represents the 
concatenation operation. 

The overall sentiment features were then passed to the model’s classification layer, generating one-hot output labels 
indicating the overall sentiment polarities of the solution’s input texts. The output labels generated in this layer were 
computed with the formula below: 

ŷ
j 
= s( ∑ WiXi

N

i=1

+ b) (12) 

where ŷj represents the output value j, s represents the softmax activation function, N represents the total number of input 
features passed to the neuron, Wi represents the weight of feature Xi, and b represents the bias term used by the output 
layer. The index with the highest value will be considered as the final overall aspect of the input texts (where the first 
index represents negative, the second index represents neutral, and the third index represents positive). 

The features generated by the sentiment polarity models as well as the overall sentiment-encoding model were passed 
to the proposed solution’s aspect-sentiment mapper along with the overall sentiment output produced by the sentiment-
encoding model. The framework of this module is depicted in Figure 5.  

 

Figure 5. Framework of Sentiment Encoding Module 
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3.5. Aspect-Sentiment Mapper Algorithm 

The aspect-sentiment mapper algorithm combined the accurate aspect and sentiment features essential for the aspect-

level sentiment classification model. Employing a rule-based algorithm, it systematically established a relationship 

between the input and output [31]. In the context of this research, the rule-based algorithm integrated the correct sets of 

aspect and sentiment features, guided by the output labels produced by the aspect extraction and sentiment encoding 

modules. Algorithm 1 comprehensively outlines the rules that the aspect-sentiment mapper applies in this crucial 

integration process. 

Algorithm 1: Rule-based algorithm used in the aspect-sentiment mapper 

Input:  acr: List of aspect category features 

             ao: Aspect output labels 

             negativePF: Negative sentiment polarity feature 

             neutralPF: Neutral sentiment polarity feature 

             positivePF: Positive sentiment polarity feature 

             osf: Overall sentiment feature 

             os: Overall sentiment output label 

             I: Total number of aspect categories 

 

1:          aspectSentimentFeatures ← [] 

2:          for i = 1, 2, 3, … I do 

3:              if ao[i] == True then 

4:                  sampleFeature ← concatenate(acr[i], osf) 

5:                  if os == Negative then 

6:                      sampleFeature ← concatenate(sampleFeature, negativePF) 

7:                  if os == Neutral then 

8:                      sampleFeature ← concatenate(sampleFeature, neutralPF) 

9:                  else then 

10:                    sampleFeature ← concatenate(sampleFeature, positivePF) 

11:                end if 

12:                update aspectSentimentFeatures ← sampleFeature 

13:            else then 

14:                skip 

15:            end if 

16:        end for 

 

Return: aspectSentimentFeatures 

The aspect-sentiment mapper generated the appropriate aspect-level sentiment features of its input texts by 

performing two tasks. It first combined the overall sentiment features generated by the sentiment encoding module with 

the aspect category features of the aspects present in the solution’s input texts. The mapper created multiple aspect-level 

sentiment features in cases with multiple aspects. Once the initial aspect-level sentiment features were generated, they 

were combined with the sentiment polarity features that represented the overall sentiments of the input texts. For 

example, the aspect-sentiment mapper combined the initial aspect-sentiment feature of an input text sample with its 

positive polarity feature if the overall sentiment of that sample was positive. This process created a weighted sentiment 

feature that more accurately encoded the sentiment properties of the input texts. An additional classification model was 

then required to extract the final sentiments from the aspect-level sentiment features, as that information cannot be 

directly extracted. Therefore, the aspect-level sentiment features were sent to the proposed solution’s aspect-level 

sentiment classification model, where the final sentiment polarities of the aspects they represented were identified. 

3.6. Aspect-Level Sentiment Classification Model 

The aspect-level sentiment classification model was responsible for classifying the sentiment polarities of individual 

aspects in the proposed solution’s input texts. The model consisted of an input layer that accepted the aspect-level 

sentiment features generated by the aspect-level sentiment mapper, two hidden layers, and an output layer. The output 

layer of the model produced one-hot labels, where the index with the highest value indicated the sentiment polarity of 

an aspect. Like the overall sentiment model, the first index represented the negative sentiment, the second represented 

the neutral sentiment, and the third represented the positive sentiment. These labels were generated based on the 

computation depicted in Equation 12. Each output label was then linked with the aspect output labels generated by the 

aspect extraction module, providing information on the aspects present in the input texts and their respective sentiment 

polarities. 
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4. Experiment 

An experimental evaluation was conducted to evaluate the effectiveness of the proposed solution in extracting 

sentiment features from aspects. It was evaluated on several datasets and was compared against several baseline aspect-

level sentiment analysis solutions. 

4.1. Datasets 

The proposed solution was evaluated on the SemEval-2014 Restaurant [32], SemEval-2015 Restaurant [33], 

SemEval-2016 Restaurant [34], and SemEval-2016 Laptop [34] datasets. These datasets consisted of restaurant and 

laptop reviews, with the aspects present in them labeled and the sentiments expressed for each of those aspects. 

The SemEval-2014 Restaurant dataset consisted of 3,844 reviews, with 3,044 allocated to its training set, while the 

remaining 800 reviews were allocated to its testing set. Secondly, the SemEval-2015 Restaurant dataset contained 2,000 

reviews, with 1,315 reviews allocated to its training set, while the remaining 685 reviews were allocated to its testing 

set. Thirdly, the SemEval-2016 Restaurant dataset consisted of 2,676 reviews, with 2,000 reviews being allocated for 

training while the remaining 676 were allocated for testing. Lastly, the SemEval-2016 Laptop dataset consisted of 3,308 

reviews, with 2,500 allocated for training and the remaining 808 allocated for testing. All the training and testing data 

used from each dataset were pre-allocated by the original authors. Table 5 highlights the number of samples allocated to 

each dataset’s training and testing sets. 

Table 5. Number of samples present in the training and testing sets in each dataset 

Dataset Training Reviews Testing Reviews Total Reviews 

SemEval-2014 Restaurant 3,044 800 3,844 

SemEval-2015 Restaurant 1,315 685 2,000 

SemEval-2016 Restaurant 2,000 676 2,676 

SemEval-2016 Laptop 2,500 808 3,308 

The restaurant dataset comprised 3,714 training and 1,025 testing aspects, totaling 4,739. The SemEval-2015 

Restaurant dataset included 1,437 training and 760 testing aspects, resulting in 2,197 aspects. For the SemEval-2016 

Restaurant dataset, there were 2,915 aspects, with 2,199 in the training set and 716 in the testing set. Finally, the 

SemEval-2016 Laptop dataset featured 3,308 aspects, with 2,500 in the training set and 808 in the testing set. Table 6 

provides a comprehensive overview of the number of aspects present in each dataset’s training and testing sets. 

Table 6. Number of aspects present in the training and testing sets in each dataset 

Dataset Training Aspects Testing Aspects Total Aspects 

SemEval-2014 Restaurant 3,714 1,025 4,739 

SemEval-2015 Restaurant 1,437 760 2,197 

SemEval-2016 Restaurant 2,199 716 2,915 

SemEval-2016 Laptop 2,368 688 3,056 

It’s important to highlight that only primary aspects were extracted from the SemEval-2015 Restaurant dataset and 

the SemEval-2016 Restaurant and Laptop datasets. Additionally, due to its limited presence in the datasets, the 

LOCATION aspect from the SemEval-2015 and SemEval-2016 restaurant datasets didn’t make it to the final extracted 

aspect labels. Instead, the PRICE aspect, initially a secondary aspect, was included as one of the final extracted aspect 

labels. Figure 6 illustrates the aspect annotation process employed in this experiment. 

 
Figure 6. Aspect annotation process 

In terms of negative, neutral, and positive aspects in the datasets, the SemEval-2014 Restaurant dataset comprised 

1,061 negative aspects, 843 neutral aspects, and 2,835 positive aspects. The SemEval-2015 Restaurant dataset had 676 

negative aspects, 141 neutral aspects, and 1,380 positive aspects. Moving to the SemEval-2016 Restaurant dataset it 

included 868 negative aspects, 198 neutral aspects, and 1,849 positive aspects. Lastly, the SemEval-2016 Laptop dataset 

featured 1,154 negative aspects, 249 neutral aspects, and 1,653 positive aspects. Table 7 comprehensively summarizes 

the aspects associated with each sentiment polarity. 
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Table 7. Number of aspects associated with each sentiment polarity 

Dataset Negative Aspects Neutral Aspects Positive Aspects 

SemEval-2014 Restaurant 1,061 843 2,835 

SemEval-2015 Restaurant 676 141 1,380 

SemEval-2016 Restaurant 868 198 1,849 

SemEval-2016 Laptop 1,154 249 1,653 

4.2. Baseline Methods 

The experimental results of several methods were chosen to act as baseline results to evaluate the effectiveness of 

the proposed solution in extracting sentiments from aspects. These methods consisted of aspect-level sentiment analysis 

solutions proposed in studies recently published as of the time of writing this article. These solutions include: 

Cai et al. (2020) [28]: The solution proposed by Cai et al. (2020) consisted of two GCNNs arranged hierarchically. 

The first GCNN layer extracted the relationship features between its input texts and each possible aspect category, as 

well as the inner-relationship features between all possible aspect categories, while the second GCNN layer extracted 

the inter-relationship features between the extracted aspect features and each possible sentiment polarity. 

Hoang et al. (2019) [35]: The aspect-level sentiment analysis solution proposed in this study utilized a fine-tuned 

BERT model to extract aspects and their respective sentiments from unstructured texts. 

Liang et al. (2021) [36]: The solution proposed in this study consisted of LSTM layers to extract the hidden contextual 

representations of the input sentences and GCNN layers to capture the sentiment dependencies of contextual words. 

Ray & Chakrabarti (2022) [26]: The aspect-level sentiment analysis solution proposed in Ray & Chakrabarti (2022) 

consisted of a CNN rule-based hybrid that extracted aspects from texts and their sentiment polarities. 

Sun et al. (2019) [18]: The solution proposed in this study utilized BiLSTM and GCNN layers to extract the sentiment 

representations of aspect terms present in its input texts. 

Yadav et al. (2021) [37]: The aspect-level sentiment analysis solution proposed in this study utilized two BiGRUs to 

extract the sequential features of context and aspect words and attention layers to assign attention weights to both sets 

of words. 

Zhang & Qian (2020) [24]: The aspect-level sentiment analysis solution proposed in Zhang & Qian (2020) utilized 

BiLSTM and GCNN layers to generate the initial sentence representations of its input texts as well as a HierAgg module 

to further refine them. The aspect-oriented representations of their input sentences were then obtained using a gating 

mechanism. 

Zhou & Law (2022) [38]: The solution proposed in this study utilized a GCNN model to extract the semantic 

relationships between aspect and context words of its input texts and an aspect-context attention module to assign 

attention weights to context words based on the aspects present. 

Zhou et al. (2020) [20]: The solution proposed in this study utilized BiLSTM layers, syntax, and knowledge GCNNs 

to model the syntax and knowledge representations, respectively. 

Jiang et al. (2023a) [5]: This study's aspect-level sentiment analysis solution consisted of a modified CNN model 

with additional gating mechanisms. 

Jiang et al. (2023b) [19]: The solution proposed in this work utilized a BiLSTM layer as well as two GCNN layers, 

with the first GCNN capturing the emotional dependencies of target aspect terms and the second GCNN capturing the 

semantic dependencies of all words in the solution’s input texts. 

Xin et al. (2023) [22]: The sentiment analysis solution proposed in this article adopted an ensemble of GAT models 

to capture both local (in relation to its target aspect terms) and global attention features of its input texts. 

4.3. Solution Implementation 

All of the deep learning models used in the proposed solution’s components were developed using Google’s 

Tensorflow framework [39]. Each model had its hyperparameters fine-tuned in order to obtain the most optimal versions 

of them. These hyperparameters included the number of hidden layers along with the number of neurons in each hidden 

layer, which determined the degree to which the solution’s components transformed the input features. Besides this, the 

number of epochs used to train each model and their optimizers and learning rates were fine-tuned to allow them to fully 

generalize their training features. Table 8 lists each model’s possible hyperparameter configurations, and Table 9 

highlights the most optimal hyperparameters for each of them. All of the tested hyperparameters were fine-tuned based 

on the F1 scores they produced when evaluated on data samples from the SemEval-2014 Restaurant, SemEval-2016 

Restaurant, and SemEval-2016 Laptop datasets. 



HighTech and Innovation Journal         Vol. 5, No. 1, March, 2024 

121 

 

Table 8. Possible hyperparameter configurations 

Model Hyperparameter Tested Values 

Aspect Category and 

Sentiment Polarity Models 

Number of BiLSTM Hidden Layer Neurons 120 - 1030 

Number of Hidden Layers 0 - 2 

Number of Hidden Layer Neurons 120 - 480 

Number of Training Epochs 10 – 50 

Aspect Classification and 

Sentiment Encoding Models 

Number of BiLSTM Hidden Layer Neurons (Sentiment Encoding Model) 120 - 1030 

Number of Hidden Layers 0 - 7 

Number of Hidden Layer Neurons 120 - 480 

Number of Training Epochs 10 – 400 

Aspect-Level Sentiment 

Analysis Model 

Number of Hidden Layers 0 - 3 

Number of Hidden Layer Neurons 120 - 480 

Number of Training Epochs 10 – 1600 

All Models 
Optimizers 

Adam, Stochastic Gradient 
Descent (SGD), RMSProp 

Learning Rates 0.001, 0.0001, 0.00001 

Table 9. Optimal hyperparameter configurations 

Model Hyperparameter Optimal Value 

Aspect Category Model 

Number of BiLSTM Hidden Layer Neurons 128 

Number of Hidden Layers 0 

Number of Hidden Layer Neurons - 

Number of Training Epochs 25 

Optimiser Adam 

Learning Rate 0.001 

Sentiment Polarity 
Model 

Number of BiLSTM Hidden Layer Neurons 512 

Number of Hidden Layers 1 

Number of Hidden Layer Neurons 240 

Number of Training Epochs 25 

Optimiser Adam 

Learning Rate 0.001 

Aspect Classification 

Model 

Number of Hidden Layers 6 

Number of Hidden Layer Neurons 

1. 480 

2. 120 
3. 120 

4. 120 

5. 240 

6. 480 

Number of Training Epochs 200 

Optimiser SGD 

Learning Rate 0.0001 

Sentiment Encoding 
Model 

Number of BiLSTM Hidden Layer Neurons 1,024 

Number of Hidden Layers 6 

Number of Hidden Layer Neurons 

1. 480 

2. 240 

3. 120 
4. 240 

5. 480 

6. 480 

Number of Training Epochs 25 

Optimiser SGD 

Learning Rate 0.001 

Aspect-Level Sentiment 

Analysis Model 

Number of Hidden Layers 2 

Number of Hidden Layer Neurons 
1. 480 

2. 480 

Number of Training Epochs 800 

Optimiser SGD 

Learning Rate 0.001 
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The optimal hyperparameter configurations presented in Table 9 indicate that minimal transformation of the 

solution’s input features was necessary to extract their aspect category and sentiment polarity features. This is evident 

from the limited number of hidden layers required for each set of models. However, the process of obtaining the final 

aspect categories, as well as the overall sentiments of the input features, required much bigger models, with both the 

aspect extraction and sentiment encoding models requiring 6 hidden layers to do so. All of the models discussed so far 

did not require large numbers of epochs to fully generalize with their training features, except for the aspect extraction 

model, which required 200 epochs to do so. Lastly, the aspect-level sentiment analysis model did not require large 

numbers of hidden layers to determine the sentiment polarities of extracted aspects but did require 800 epochs to 

generalize with its training features. The aspect category and sentiment polarity models were best trained using the Adam 

optimizer, while the remaining models were best trained using the Stochastic Gradient Descent (SGD) optimizer instead. 

All components were trained using a learning rate of 0.001 except for the aspect extraction model, which required a 

lower learning rate of 0.0001 to better generalize with its training data. 

4.4. Results 

Two types of evaluation were performed on the proposed aspect-level sentiment analysis solution during the 

experimental evaluation. The first evaluation type involved assessing the performance of the proposed solution when 

provided with the correct sets of aspect and sentiment polarity features (E1). The second evaluation type involved 

assessing the proposed solution when provided with the aspect and sentiment polarity features generated by the 

aspect-sentiment mapper (E2). An input aspect sample was considered to be correctly predicted in Evaluation E1 

when its sentiment was correctly predicted, while an input aspect sample was considered to be correctly predicted in 

Evaluation E2 when both its presence or lack of presence as well as its respective sentiment were correctly predicted. 

Table 10 displays the metrics used in both evaluations. Weighted metrics were used to evaluate the model due to the 

large number of instances of the absent aspect output class in Evaluation E2. Tables 11 to 14 and Figures 7 to 10 

highlight the performance of the proposed solution when compared against the baseline methods evaluated on the 

same datasets. 

Table 10. Evaluation metrics used in the experiment 

Metric Description 

Accuracy (A) 

The percentage of correct positive and negative predictions out of the total number of predicted samples. 

A = 
TP + TN

N
 

Precision (P) 

The weighted percentage of the number of correct positive predictions made out of the total number of positive 
predictions. 

Px = 
TP.x

TP.x + FP.x
;   P = 

N1P1 + N2P2 ... + NxPx

N
 

Recall (R) 

The weighted percentage of the number of correct positive predictions made out of the total number of true positive 

samples. 

Rx = 
TP.x

TP.x + FN.x
;  R = 

N1R1 + N2R2 ... + NxRx

N
 

F1 Score (F1) 

The weighted harmonic mean of the weighted precision and recall scores. 

F1x = 2 ×
Px × Rx

Px + Rx
;  F1 = 

N1F11 + N2F12 + ... + NxF1x

N
 

 

N - Number of samples; TP - True Positive; FP - False Positive; FN - False Negative; and TN - True Negative 

Table 81. SemEval-2014 Restaurant experimental results 

Solution A P R F1 

Ray & Chakrabarti (2022) [26] - 79.67 86.20 83.34 

Sun et al. (2019) [18] 82.30 - - 74.02 

Zhou et al. (2020) [20] 79.00 - - 75.57 

Jiang et al. (2023a) [5] 75.30 82.72 87.20 84.90 

Jiang et al. (2023b) [19] 84.32 - - 77.61 

Xin et al. (2023) [22] 86.42 - - 79.70 

Proposed Solution (E1) 92.98 93.01 92.98 92.98 

Proposed Solution (E2) 86.52 87.20 86.52 86.83 
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Table 92. SemEval-2015 Restaurant experimental results 

Solution A P R F1 

Cai et al. (2020) [28] - 76.37 72.83 74.55 

Zhang & Qian (2020) [24] 81.16 - - 64.79 

Yadav et al. (2021) [37] 80.88 - - 62.48 

Proposed Solution (E1) 89.45 87.76 89.45 88.30 

Proposed Solution (E2) 84.32 83.04 84.32 83.53 

Table 103. SemEval-2016 Restaurant experimental results 

Solution A P R F1 

Cai et al. (2020) [28] - 76.37 72.83 74.55 

Hoang et al. (2019) [35] 89.80 89.50 89.80 89.50 

Liang et al. (2021) [36] 91.97 - - 79.56 

Proposed Solution (E1) 89.57 88.67 89.57 89.01 

Proposed Solution (E2) 84.73 86.07 84.73 85.11 

Table 114. SemEval-2016 Laptop experimental results 

Study A P R F1 

Hoang et al. (2019) [35] 82.80 83.60 82.80 83.20 

Zhou & Law (2022) [38] 85.65 - - 34.07 

Cai et al. (2020) [28] - 61.43 48.42 54.15 

Proposed Solution (E1) 90.12 90.38 90.12 90.24 

Proposed Solution (E2) 95.22 95.95 95.22 95.54 

The evaluation results clearly indicate the performance of the proposed solution is higher, consistently outperforming 
the baseline methods across various datasets in terms of accuracy, precision, recall, and F1 scores. This trend was 
observed during assessments on the SemEval-2014 Restaurant, SemEval-2015 Restaurant, and SemEval-2016 Laptop 
datasets. 

The proposed solution excelled particularly on the SemEval-2014 Restaurant dataset during evaluation E1, achieving 
the highest accuracy, precision, recall, and F1 scores compared to its performance on other datasets. With an accuracy 

score of 92.98%, the solution demonstrated its proficiency in predicting both present and absent sentiments within aspect 
features. The precision score of 93.01% underscored the reliability of its positive predictions, while the recall score of 
92.98% showcased its capacity to identify the presence of each sentiment class in the input texts. Therefore, the proposed 
solution’s F1 score of 92.98% acts as a good indicator of its ability to correctly identify the sentiments of each aspect in 
its unstructured input texts. 

 

Figure 7. SemEval-2014 Restaurant performance comparison 
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Figure 8. SemEval-2015 Restaurant performance comparison 

 

Figure 9. SemEval-2016 Restaurant performance comparison 

 

Figure 10. SemEval-2016 Laptop performance comparison 
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On the other hand, the proposed solution demonstrated its superior performance on the SemEval-2016 Laptop dataset 

during evaluation E2. When assessed on this dataset, it achieved its highest accuracy, precision, recall, and F1 scores. 

With an accuracy score of 95.22%, it showcased its proficiency in accurately identifying the presence or absence of 

aspects along with their respective sentiments. The precision score of 95.95% reflected its capability to generate reliable 

positive predictions regarding the presence of aspects and their sentiments. Furthermore, the recall score of 95.22% 

emphasized its accuracy in identifying the true sentiments of each aspect in the input test samples. Consequently, the F1 

score of 95.54% underlines the proposed solution’s excellence in recognizing the presence of aspects and their respective 

sentiments. 

4.5. Discussion 

The evaluation results derived from the experiment in this study demonstrate the effectiveness of employing ensemble 

learning techniques for each subtask in aspect-level sentiment analysis, coupled with the inclusion of additional heuristic 

features or knowledge in generating aspect-level sentiment features. This effectiveness is evident in the accuracy and F1 

scores achieved by the proposed solution, surpassing other baseline solutions across most of the selected datasets. 

Additionally, the E2 evaluation results obtained by the proposed solution demonstrate the effectiveness of the aspect-

sentiment mapper algorithm in accurately assigning sentiment features to the extracted aspects. These results underscore 

the practicality of the algorithm in real-world scenarios, especially where the aspect information of unstructured texts is 

typically unknown. Each feature extracted from the solution’s input texts plays a crucial role in accurately representing 

the aspects present in unstructured texts and their respective sentiments. 

To underscore their significance, an ablation study was conducted using only subsets of the features generated by the 

components for aspect-level sentiment classification. The study focused on the SemEval-2014 Restaurant dataset, and 

the model’s performance was assessed for each set of features. The results obtained during the study are presented in 

Table 15. 

Table 125. Ablation study results 

Feature A P R F1 

Aspect Features 54.05 57.65 54.05 55.25 

Aspect + Static Sentiment Features 75.90 77.46 75.90 76.53 

Aspect + Weighted Sentiment Features (used in the proposed solution) 92.98 93.01 92.98 92.98 

While the aspect features generated by the aspect extraction component accurately represented the aspects in its input 

texts, they lacked the appropriate features that highlighted their respective sentiments. This can be seen in its accuracy 

and F1 scores of 54.05% and 55.25%, respectively, the lowest out of the three feature sets. Adding the static sentiment 

features mitigated this issue by providing additional context and overall sentiment features for the input texts in which 

they resided. This can be seen through its improved accuracy and F1 scores of 75.90% and 76.53%, respectively. 

However, the addition of heuristic sentiment polarity features, which corresponded to the overall sentiments of the 

proposed solution’s input texts, has provided more accurate sentiment features for the aspect-level sentiment 

classification model. This can be seen in its accuracy and F1 scores of 92.98%. 

5. Conclusion  

In conclusion, this study has introduced a novel ensemble-based aspect-level sentiment analysis solution proficient 

in extracting sentiments from multiple aspects within texts. Leveraging an ensemble of BiLSTM models, the solution 

captures both aspect and sentiment features from input texts. Multiple classifiers are employed to identify aspects, overall 

sentiments of the texts, and sentiments of extracted aspects. The integration of this ensemble approach, coupled with a 

rule-based aspect-sentiment mapper algorithm, empowers the solution to accurately extract sentiments from multiple 

aspects in unstructured texts. Notably, it achieves E2 evaluation F1 scores of 86.83%, 83.53%, 85.11%, and 95.54% 

when evaluated on the SemEval-2014 Restaurant, SemEval-2015 Restaurant, SemEval-2016 Restaurant, and SemEval-

2016 Laptop datasets, respectively. Beyond the experimental evaluation, an ablation study emphasizes the significance 

of each extracted feature in precisely generating aspect sentiment features. Future endeavors for this study include 

extending the proposed solution to extract aspects and their sentiments from texts in other languages and further refining 

the aspect and sentiment feature extraction processes. 
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