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Abstract

The biggest obstacle that students have when participating in a virtual learning environment (e-learning) is discovering a
platform that has functionalities that can be customized to fit their needs. This is usually accomplished in several ways
using educational resources such as learning materials and virtual classroom design elements. Our research has tried to
meet this demand by suggesting an extra element in the virtual classroom design, i.e., classifying the students’ learning
styles through machine-learning techniques based on information gathered from questionnaires. This feature allows
teachers or instructors to modify their lesson plans to better suit the learning preferences of their students. Additionally,
this feature aids in the creation of a learning path that serves as a guide for students as they choose their course materials.
In this study, we have selected the Felder-Silverman Learning Style Model (FSLSM) in the questionnaire design, which
focuses on identifying the students' learning styles. After that, we employ several machine learning algorithms to create a
prediction model for the students’ learning styles. The algorithms include Decision Tree, Support Vector Machines, K-
Nearest Neighbors, Naive Bayes, Linear Discriminant Analysis, Random Forest, and Logistic Regression. The best
prediction model from this exercise contributes to the recommendation model that was created using a collaborative
filtering algorithm. We have carried out a pre-test and post-test method to evaluate our suggestions. There were 138 learners
who were following a learning path and participated in this study. The findings of the pretest and post-test indicated a
notable increase in students' motivation to study. This is confirmed by the fact that learners' satisfaction with online learning
climbed to 87% when the learning style was considered, from 60% when it wasn't.

Keywords: Education Quality; Education Environment; Learning Style; Recommendation Model; Personalization.

1. Introduction

The field of education is a prime example of how quickly technological improvements are developing. Due to
technological advancements, learning procedures have greatly changed. Learning can now happen virtually, using
information technology, especially the Internet, as well as in traditional classroom settings. The phrase "anywhere,
anytime, anyplace" refers to a form of education that can take place anywhere, at any time, and thanks to e-learning [1,
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2]. The capacity to enable learning without the limitations of in-person attendance and set schedules is one of the main
characteristics of online learning. However, e-learning has drawbacks for teachers as well as students. As fewer
interactions occur between teachers and students, learners believe that maintaining a high level of motivation is crucial
[3-5].

To improve student motivation in e-learning, instructors must establish e-learning methodologies. E-learning
platforms should be able to extract learners' personalization characteristics at the same time, from a technological
perspective. A type of personalization called learning style has been the focus of previous studies [6—9]. According to
Keefe [10], learning style is characterized by cognitive, affective, and psychological traits that are utilized during the
learning experience. Learning styles are unique and vary from person to person, according to Felder Silverman [11-13].
Students may experience discomfort and lose interest during the learning process if teachers do not consider their unique
learning styles [14]. This could cause students to lag in their studies.

Since learning styles have a big impact on academic achievement, teachers must take them into account when
designing their lesson plans. To guarantee effective teaching and learning programs, several studies highlight the
importance of determining learners' learning styles [3]. Kolb's learning styles [15, 16], Honey and Mumford's styles [17],
Myers and Briggs' types [18, 19], the VARK model [20], and the Felder Silverman Learning Style Model (FSLSM) [21,
22] are only a few of the learning styles that have been found. Two approaches can be used to identify learning styles:
the traditional way, which involves employing questionnaires, and the automated approach, which is based on
interactions between the learner and the system [12, 19]. Following the process of identifying their learning type, students
frequently need tailored recommendations for educational resources and settings.

Based on identified learning styles and course levels, prior research has suggested instructional materials [20].
Recommendations were given by Imran et al. [23] in light of prior training materials and learning style similarities. By
using a search, selection, rating, and suggestion process, Alfredo provided recommendations [24]. Based on the findings
of a questionnaire used to predict learning styles, this study offers suggestions. A pre-test and post-test were conducted
in order to verify the recommendations' outcomes. When posttest scores exceed pretest results, it indicates a strong level
of learner motivation. The study also incorporates a learning path to help determine learners' preparedness to participate
in the learning process [25-27]. Given that every instructional material has unique cognitive, emotional, and
psychomotor effects, the learning path is the first step toward quantifying learning styles [28-30].

The aforementioned literature has made extensive reference to the value of learning styles in supporting students'
academic endeavors. As a result, our research has recommended that learning styles be taken into account in educational
settings, particularly in online or virtual learning environments.

2. Related Works

Research related to learning style detection has been conducted by Rasheed, who employed machine learning
classification algorithms [31]. Rasheed's study involved 498 learner respondents and utilized methods like Decision
Tree, Support Vector Machines, K-Nearest Neighbors, Naive Bayes, Linear Discriminant Analysis, Random Forest, and
Logistic Regression for learning style detection. Cross-validation scores were computed for four dimensions. Notably,
the largest input dimension was achieved by Random Forest, Logistic Regression, and Linear Discriminant Analysis at
79%. The highest processing dimension was SVM, with 83% accuracy. The understanding dimension achieved a high
accuracy of 83% using SVM, while the perception dimension utilized perception and achieved 91% accuracy. However,
no recommendations were provided to learners based on the detection and validation results of their learning styles.

Another study focused on constructing learner profiles using the FSLSM model through clustering with the K-Means
algorithm [32]. This study mapped learning objects and created learner profiles, then applied the K-Means algorithm for
clustering. The results showed an accuracy of 78.83%, precision of 79.9%, recall of 83.1%, and F1 score of 80.12%. J.
Feldman's research detected Felder-Silverman learning styles using puzzle games and the Naive Bayes method [33].
This study included 45 learners, achieving an accuracy of 85% in learning style detection.

In terms of instructional material recommendations, Khairil et al. Proposed recommendations based on the similarity
and quality of instructional materials to enhance understanding and improve grades [34]. Content-based filtering and
good learning average ratings were employed. Another approach utilized collaborative learning by Poorni, involving a
fuzzy tree-structured learning activity model and a learner profile model that led to recommendation architectures for
administrators, students, and instructors [35]. Chen's research proposed an adaptive recommendation approach based on
online learning styles (AROLS) by adopting collaborative, association rule, and clustering techniques [36].

The methods employed in the above literature have highlighted their strategies which differ from our
recommendations in this regard. Our research has proposed integrating the machine learning approach, recommender
system, and learning style into the learning environment, whereas prior work has approached these three areas
independently. More explanations are provided in the following sections of this paper.
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3. Research Methodology

The research methodology employed in this study is depicted in the diagram below, delineating the sequential phases
commencing with the acquisition of learner data. The gathering of data on learning styles is executed through the
utilization of the ILS questionnaire based on the Felder-Silverman Learning Style. Once the data is procured, the
subsequent stage involves data preprocessing. This preprocessing procedure guarantees the data's preparedness for
utilization in machine learning processes. The outcomes of the processing, employing techniques like K-Nearest
Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, and Neural Network, subsequently furnish
recommendations. Elaborate clarifications pertaining to these stages are presented in Figure 1.

Quationaire Collecting Data |———> Algorithm
Prediction Recommendation
Result

Figure 1. Research Methodology

3.1. Questionnaire

The questionnaire method involves data collection by presenting a set of written questions or statements related to
the Felder-Silverman learning style to respondents for their responses.
3.2. Data Collection

The data obtained from the questionnaire results in the subsequent verification of initial data completeness. This step
is crucial, as not all the data from the raw dataset will be utilized. Consequently, several attributes are identified for
utilization. These attributes include: Name, Student ID, Gender, Class, Major, Course, Grade, Perception, Input,
Understanding, Learning Style.

3.3. Algorithm Prediction

The next stage involves processing the questionnaire data using Algorithms such as Naive Bayes [37], SVM [38,
39], Decision Tree [40], K-NN [41], Random Forest, and Neural Network. The processing yields predicted values from
the detection process.

Naive Bayes Algorithm

Naive Bayes is a supervised learning algorithm based on the Bayes theorem and is used for classification problems
by following a probabilistic approach. Naive Bayes is selected due to its requirement for a relatively smaller dataset for
processing. The following equation represents the Naive Bayes algorithm.

p(X LI-(I)Z.)P (H) (1)

P(H|X) =
Where:
X: Data with an unknown class;
H: Hypothesis that the data belongs to a specific class;
P(H|X): Probability of hypothesis H given condition X (posterior probability);
P(H): Probability of hypothesis H (prior probability);
P(X|H): Probability of X given the condition of hypothesis H.
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Algorithm Decision Tree

The Decision Tree algorithm is one of the methods that is relatively easy to interpret by humans. A decision tree is
a prediction model that employs a tree-like or hierarchical structure. The concept behind a decision tree is to transform
data into a decision tree and decision rules (see Figure 2).

c1)(c2) (e3) (ca)
Figure 2. Classification model using decision tree

K-Nearest Neighbor (K-NN)

K-NN is a classification method that is very simple in classifying an image based on its nearest neighbors. Here is
the equation for K-NN.

D(x,y) = Xk-1(xk — yi)? @)

Random Forest

Random Forest extends the Decision Tree approach by employing multiple Decision Trees, each trained with
individual samples. In this ensemble, attributes are divided within the chosen tree across subsets of attributes selected at
random.

Neural Network

A Neural Network is a computational model inspired by the structure and function of neural networks in the human
brain [42—45]. This machine learning algorithm can process inputs and identify complex and abstract patterns within the
data. Neural networks consist of artificial neurons connected in layers, where each neuron performs mathematical
operations on its inputs and sends its output to neurons in the next layer. Through the learning process, the weights or
parameters within the neural network are adjusted in such a way that the network can learn and recognize patterns within
the data. Neural networks have been utilized in various fields, such as image recognition, natural language processing,
and prediction.

3.4. Algorithm Recommendation
Content-Base Filtering (CBF)

This algorithm operates using items and users. In this study, items refer to learning elements such as learning methods
and instructional materials, while users represent learners. The acquisition of learning environment values is generated
from the responses to FSLSM learning style questions.

Collaborative Filtering (CF)

This recommendation algorithm functions by assigning ratings to instructional materials previously accessed by
learners. The provision of recommendations is based on these instructional materials and is accompanied by examples
and their implementations.

Hybrid Filtering

This algorithm is a combination of both Content-Based Filtering (CBF) and Collaborative Filtering (CF), typically
utilizing if-then statements to generate recommendations.
Result

In an effort to measure the success of this research, the assessment includes measuring the outcomes of pre-tests and
post-tests, as well as learner satisfaction with personalization. The calculation of the values obtained by learners is
conducted using the following equation.
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Result = (3 postestscore — Y, pretestscore) ?3)

4. Result and Discussion
4.1. Questionnaire and Data Collection

The questionnaire utilized is the FSLSM questionnaire, consisting of 44 questions. The questions were presented to
138 learners through an online form. The outcomes of this questionnaire are as follows (see Table 1):

Table 1. The Result of Questionnaires

No. 1D Processing Perception Input Understand
1 20010001 Active Intuitive Visual Sequential
2 20010002 Active Intuitive Visual Sequential
3 20010003 Active Intuitive Visual Sequential
4 20010004 Active Intuitive Visual Sequential
5 20010005 Reflective Sensing Verbal Global
6 20010006 Active Intuitive Visual Sequential
7 20010007 Active Intuitive Visual Sequential
8 20010008 Active Intuitive Visual Sequential
9 20010009 Active Intuitive Visual Sequential
10 20010010 Reflective Sensing Verbal Global

414 20020068 Reflective Sensing Verbal Sequential

Based on the results of the above questionnaire, information about learning style preferences was obtained. There
are four groups of learning styles with their corresponding activities: Processing, which includes active and reflective;
Perception, consisting of Sensing and Intuitive; Input, comprising Visual and Verbal; and Understand, with Global and
Sequential orientations. Quantitative outcomes from the questionnaire can be observed in Table 2.

Table 2. Value Conversion

Dimension
NPM Learning Style
Active Reflective  Sensing Intuitive Visual Verbal Sequential Global

20010001 1 0 0 1 1 0 1 0 Active-Intuitive-Visual-Sequential
20010002 0 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010003 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010004 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010005 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010006 1 0 0 1 1 0 1 0 Active-Intuitive-Visual-Sequential
20010007 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010008 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010009 0 1 1 0 0 1 0 1 Reflective-Sensing-Verbal-Global
20010010 1 0 0 1 1 0 1 0 Active-Intuitive-Visual-Sequential
20010011 1 0 0 1 1 0 1 0 ?

Based on the conversion results, a value of 0 is assigned to indicate no value, while a value of 1 signifies the
possession of a learning style.

4.2. Processing the Dataset Using Algorithms

After the data is collected, pre-processing is conducted to ensure that the data can be processed in the subsequent
stages. The total number of collected questionnaire responses is 414. As a result of data pre-processing, only 138 learner
data sets are deemed usable. These data sets are then labeled according to the FSLSM learning style. The models involve
the utilization of algorithms such as K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, and
Neural Network.
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Figure 3 depicts the model of algorithm utilization using RapidMiner. In Figure 3, the questionnaire results data is
uploaded, and nominal values are converted into numeric values. The "Multiply" function is used to process the K-
Nearest Neighbors (K-NN), Naive Bayes, Decision Tree, Random Forest, and Neural Network algorithms.
Subsequently, the performance of all algorithms is evaluated, and the results can be observed in Table 3.

Figure 3. lllustrating the algorithm model using RapidMiner

4.3. Prediction and Recommendations

According to Table 3's results, the prediction level with the highest accuracy was made using a Neural Network and
Naive Bayes, then a KNN.

Table 3. Prediction Results

Fold KNN Naive Bayes Decision Tree Random Forest Neural Network
2 78.50% 97.34% 67.87% 67.87% 97.34%
3 81.88% 97.34% 67.87% 67.87% 97.34%
4 84.30% 97.34% 67.87% 67.87% 97.34%
5 86.73% 97.35% 67.88% 67.88% 97.35%
6 85.27% 97.34% 67.87% 67.87% 97.34%
7 86.74% 97.34% 67.88% 67.88% 97.34%
8 88.18% 97.35% 67.88% 67.88% 97.35%
9 86.96% 97.34% 67.87% 67.87% 97.34%
10 86.70% 97.35% 67.89% 67.89% 97.35%

Recommendations using Collaborative Filtering

Based on the recommendations of learning materials and learning styles, Table 4 represents the mapping of FSLSM
learning styles with the recommended learning materials.

Table 4. Mapping of FSLSM with Learning Materials

Text Video PPT Exercise Forum  Index

Act v v l
Ref ) ) v

Sen v v v
Int ) ) vy v

Vis Y

Ver l v v

Seq v

Glo v Y
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Based on Table 4, the learner with NPM 20010001 has Active, Intuitive, Visual, and Sequential learning styles.

Table 5. Recommendation Results for NPM 20010001

Text  Video PPT  Exercise  Forum Index

Act v ‘/ )
Int ) v v v

Vis v

Seq v

Table 6. Recommendation Results for NPM 20010002. 20010003, 20010004, 20010005

Text Video PPT Exercise ~ Forum  Index

Ref = v v
Sen v v v
Ver v v
Glo v y

Table 7. Recommendation Results for NPM 20010006

Text Video PPT Exercise ~ Forum  Index

Act v y \
Int =+ v v v

Vis ‘/

Seq v

The learner's suggestion model based on their learning style is shown in Tables 5, 6, and 7. For instance, it was
suggested that the learner with ID 20010001 in Table 5 use a video, exercise, and forum as their learning tools. While
students with 1Ds 20010002, 20010003, 20010004, and 20010005 are more likely to use PowerPoint and videos as their
learning tools, regarding ID 200100086, it was advised that they do their study utilizing a video, an exercise, and a forum.

Learning Path

On the other hand, a learning path serves as a guide for the learning process, which can be observed in the Figure 4.
Figure 4 represents the Learning Path of education, which contains information about the cognitive, affective, and
psychomotor goals of the learning journey. Depicting this Learning Path is valuable in providing information regarding
what preparations learners need to undertake to achieve their targets. Certainly, each learning topic has different
achievements for each main topic and subtopic. For instance, in Data Mining education, learners are not immediately
introduced to data processing practices. Instead, there's a foundation in concepts like data, databases, pre-processing,
supervised learning, and unsupervised learning. The outcomes of these conceptual lessons contribute to cognitive
understanding, while affective aspects pertain more to learners' skills in data manipulation.

Figure 4. Pre-Test and Post-Test toward the Learning Path

The contrast between the pre-test and post-tests used in this study is explained in Figure 5. In comparison to the pre-
test findings, the post-test results demonstrate a substantial improvement. Less than 80% is the highest level attained by
the pre-test, whereas 100% is the highest level attained by the post-test. They also show how satisfied students are with
how learning styles are incorporated into their studies.
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Figure 5. Compare Pre-test and Post-test

5. Conclusion

In terms of accuracy, the Naive Bayes and Neural Network algorithms perform better than the K-Nearest Neighbors,
Decision Tree, and Random Forest algorithms, according to experiments conducted with the Felder-Silverman learning
style dataset, which included 138 learners. Learner performance is positively impacted by the application of the Felder-
Silverman learning style detection approach through questionnaires and advice based on prediction results. The inclusion
of a learning path can also greatly enhance student motivation, as this study has shown. It is noteworthy to acknowledge
that the extent of the research surpasses the Felder-Silverman Learning Model alone.
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