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Abstract 

In the diverse realms of computer vision, psychology, biometrics, medicine, and robotics, the accurate estimation of pupil 

size and position holds paramount importance for applications like eye tracking, medical diagnostics, and facial 

recognition. Traditional pupil estimation techniques often grapple with speed and error issues, impeding their applicability 

in real-world scenarios. To address this challenge, our study introduces an innovative approach that significantly enhances 

both the speed and accuracy of pupil estimation. This method hinges on the fine-tuning of a pre-trained semantic 

segmentation model integrated with a shallow convolutional neural network (CNN) backbone. Our methodology employs 

a dual-phase process: initially leveraging a robust pre-trained semantic segmentation model, subsequently refined through 

targeted fine-tuning using a diverse collection of eye images. This process intricately learns pupil characteristics, 

substantially elevating detection precision. The incorporation of a shallow CNN backbone streamlines the model, ensuring 

rapid processing suitable for real-time applications. The novelty of our approach lies in its adept handling of varying 

lighting and camera conditions, establishing new benchmarks in both speed and accuracy, as evidenced by our experimental 

findings. This advancement marks a significant leap in pupil estimation technology, offering a practical, efficient solution 

with far-reaching implications in several key technological domains. 
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1. Introduction 

The field of pupil estimation, a critical component of advancements in computer vision, biometrics, and medical 
imaging, has undergone a substantial transformation with the integration of machine learning techniques. Beyond its 
academic interest, this area has significant practical applications, influencing sectors from user interface design to 
healthcare diagnostics. Despite considerable progress, existing pupil estimation methods face ongoing challenges in 
speed, accuracy, and adaptability, particularly in dynamic, real-world environments where factors like lighting 

variability and camera angles are crucial. This limitation in existing methodologies hinders their broader application and 
effectiveness. 

Traditionally, pupil estimation has relied on feature-based techniques [1, 2], which provided a foundational 

understanding but lacked the robustness needed for more complex scenarios. This inadequacy has led to a shift towards 

machine learning-driven approaches, especially Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), as seen in recent studies [3, 4]. These methods have shown success under controlled conditions [5], 

but their application in unstructured environments reveals limitations in speed and adaptability [6, 7], essential for real-

time applications [8]. 
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This research addresses these gaps by introducing a novel approach that combines semantic segmentation with a 

shallow CNN backbone. This methodology, distinct from the deep CNN architectures in previous studies [5, 6], 

strategically balances learning depth with computational efficiency. By fine-tuning a pre-trained semantic segmentation 

model [9] on a carefully curated dataset, the accuracy of pupil detection is significantly enhanced. Additionally, the 

adoption of a shallow CNN backbone [10, 11] ensures rapid processing, a critical factor for real-time applications. 

The originality of this work lies in its unique approach and the balance it strikes between accuracy and efficiency. 

Extensive experiments were conducted on various benchmark datasets to validate the superiority of this method. The 

results, which will be detailed in subsequent sections, highlight the method's improvements over current state-of-the-art 

techniques, particularly in processing speed and adaptability to environmental changes. 

This paper is structured to provide a comprehensive exploration of the work. Following this introduction, Section 2 

presents a detailed literature review. Section 3 describes the novel methodology, and Section 4 focuses on the extensive 

experimental analysis and the significant results achieved. The paper concludes by summarizing the contributions and 

outlining potential directions for future research in this rapidly evolving domain. 

2. Literature Review 

The realm of pupil estimation has significantly advanced with the application of machine learning techniques, 

evolving from traditional feature-based methods to more sophisticated machine learning approaches. These 

advancements encompass both classical machine learning and deep learning techniques, each contributing to enhanced 

accuracy and robustness, particularly in handling environmental challenges like lighting variations and camera 

positioning. 

In the sphere of deep learning, recent studies have introduced several innovative methods that have markedly 

improved pupil detection, tracking, and dimension estimation. For instance, Sangeetha [3] developed a method for 

estimating pupil diameter from smartphone videos, achieving remarkable accuracy. This method was particularly 

effective in leveraging large datasets to refine its accuracy, yet it primarily focused on controlled environments, which 

might limit its applicability in more dynamic settings. Similarly, Ou et al. [12] and Deane et al. [13] made significant 

strides in real-time pupil detection and tracking. These methods demonstrated high accuracy in varying environments, 

illustrating the adaptability of deep learning approaches. However, their reliance on intensive computational resources 

poses challenges for real-time application in resource-constrained environments. 

Pathirana et al. [5] and Khan et al. [6] further contributed to the field by focusing on pupil dilation and diameter 

estimation from eye images. While they achieved significant accuracy, the specificity of their methods to particular 

types of eye images could limit broader applicability. Wang et al. [2] introduced multi-task learning for simultaneous 

pupil and iris estimation, an approach that elegantly consolidates multiple tasks within a single model. Yet, this 

integration can sometimes lead to a compromise in individual task performance due to the complexity of simultaneously 

optimizing for multiple outputs. 

The creation of specialized datasets like Pupil-DB by Pathirana et al. [5] and Pupil-DB++ by Wan et al. [10] has been 

instrumental in providing diverse conditions for training and testing models. These datasets have broadened the scope 

of conditions under which pupil estimation models are developed and tested, including low-light environments and 

significant variations in pupil size. Nonetheless, models trained on these datasets often require substantial computational 

resources, which might not be feasible for all applications. 

Larumbe-Bergera et al. [14] and Kurdthongmee et al. [15] compared deep learning methods with other advanced 

approaches, underscoring improvements in both accuracy and computational efficiency. While these methods marked 

an improvement over previous models, they still face challenges in balancing accuracy with processing speed, 

particularly in real-time scenarios. 

Our research seeks to address these gaps by introducing a novel approach for pupil estimation. We fine-tune a pre-

trained semantic segmentation model on a shallow convolutional neural network backbone, striking a balance between 

the depth of learning and computational efficiency. This method not only aligns with the robustness and accuracy seen 

in deep learning but also uniquely prioritizes efficiency, a crucial aspect often overlooked in existing methods. The 

effectiveness of our approach is demonstrated through comprehensive comparisons with state-of-the-art methods across 

various benchmark datasets. Our findings highlight the superior accuracy and speed of our method, positioning it as an 

efficient and practical solution for real-time pupil estimation in a variety of conditions. 

3. Material and Methods 

This section presents a comprehensive breakdown of the procedures employed in preparing the training dataset for 

the study. It also provides a detailed description of the test dataset utilized in the analysis. Detailed information about 

all the shallow convolutional backbones used in the study is presented. The algorithm for pupil estimation is discussed 
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in depth, with an emphasis on its key features and functionality. Additionally, the performance evaluation methods used 

to assess the accuracy and effectiveness of the pupil estimation approach are outlined. A flowchart illustrating the 

complete methodology, from data preparation to performance evaluation, is included to enhance understanding of the 

overall process. 

3.1. Dataset Preparation 

In the process of training the deep learning model for semantic segmentation of a single object, a dataset comprising 

pairs of input and output images was curated. The input images consisted of regular photographs, potentially containing 

multiple instances of the object [16-20], whereas the output images were binary, matching the size of the input images. 

In these output images, pixels corresponding to the object instances received a value of 1, signifying the presence of the 

object, while the rest of the pixels were assigned a value of 0, depicted in white and black colors, respectively. To comply 

with the backbone requirements, these images were resized to dimensions of (224 × 224) for VGG-19 and ResNet-50 

and (320 × 240) for VGG-16. 

The publicly available PUPPIE dataset [14], consisting of 1,561 images with extensive annotation information, was 

utilized for this study. Although the dataset provided rich annotations, only the pupil position annotations were relevant 

for the task at hand. To prepare the data for training, the following steps were undertaken for each image in the PUPPIE 

dataset, focusing separately on the left and right eyes, thereby creating two pairs of input (I) and output (O) images for 

every single image: 

1. The Dlib library [21] was employed to extract two eye bounding boxes from each image, isolating the regions 

containing the left and right eyes. 

2. For each eye bounding box, the following steps were executed: 

a) An input image (I-image) was created, capturing only the area within the eye bounding box. 

b) A corresponding output image (O-image) was generated, matching the size of the I-image. Initially, all pixels 

of the O-image were set to black. 

c) On the O-image, a pattern was drawn at the pupil's ground truth position, as indicated in the PUPPIE dataset 

annotations. This pattern was either a circle or a square, with a size designated as S. 

d) Both the I and O-images were resized to the required resolution for the chosen deep learning (DL) backbone, 

while preserving their aspect ratio. This resizing process produced the final training images, denoted as I′ and 

O′-images, which were then used for training the DL model. 

 

Figure 1. Sample images from the training dataset. All images have a resolution of 224×224 pixels. The first column displays 

the input images. The second, third, and last columns show the output images, each marked with different patterns: squares 

in the second column, circles in the third, and black eye markers in the last column. 
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Figure 1 showcases a selection of images from the training dataset utilized for semantic segmentation of a single 

object. Each image in the figure is standardized to a resolution of 224×224 pixels. In the first column, the input images 

are displayed, which contain several instances of an object within each frame. The second and third columns feature 

output images that are binary representations of the same dimensions as their corresponding input images. In these binary 

output images, pixels that correspond to object instances are assigned a value of 1, signifying the object's presence, while 

the rest are set to 0, denoting absence. Specifically, the output images in the second column have patterns of squares, 

whereas those in the third column feature circles. These patterns are centered on the ground truth positions of the pupils. 

The last column of the figure presents manually annotated output images [22, 23]. Here, the circular patterns, referred 

to as black eye markers, are depicted to nearly cover the black eye regions, providing a visual contrast. It is important 

to note that although the pattern sizes are consistent within the original images of the second and third columns, the 

resizing process may result in variations in their scale. This figure serves to illustrate the diversity and complexity of the 

dataset used for training the deep learning model for pupil estimation. 

Only 20 percent of the training dataset was allocated for testing purposes to evaluate the performance of the developed 

deep learning pupil estimator. Additionally, standard and publicly accessible datasets such as GI4E, I2Head, MPIIGaze, 

and U2Eyes were utilized to benchmark the model against previously proposed approaches. Table 1 provides a summary 

of these datasets, detailing their size, image format, and resolution, as well as their sources. The annotations in the first 

three datasets are consistent with those in the PUPPIE dataset, indicating the locations of the left and right edges of an 

eye and the pupil center. The Dlib library was employed to extract all landmark points around the eyes, and a custom 

Python script was used to generate eye-bounding boxes. Below is an overview of these datasets: 

• GI4E: This dataset is designed for the detection and recognition of irises and eyes under a variety of conditions, 

including different lighting, poses, and occlusions. It comprises images from various sources and devices, 

including smartphones, standard cameras, and infrared sensors, offering a diverse range of visual data. 

• I2Head: A specialized subset of the GI4E dataset, I2Head focuses on the detection and recognition of irises and 

heads. This collection includes images featuring subjects under varying conditions, such as wearing glasses, 

sunglasses, and masks, thus providing challenges in terms of visibility and clarity. 

• MPIIGaze: Recognized as a substantial publicly available dataset, MPIIGaze is primarily used for gaze 

estimation studies. It encompasses images of eyes, head poses, and facial landmarks from 15 participants, 

captured under diverse lighting conditions and varying degrees of occlusion. 

• U2Eyes: This dataset is tailored for eye detection and recognition. It features images under different lighting 

conditions, poses, occlusions, and expressions. Similar to GI4E, U2Eyes includes images sourced from a variety 

of devices like smartphones, cameras, and infrared sensors, ensuring a wide range of eye imaging scenarios. 

Table 1. Summary of the validation datasets: the GI4E, I2Head, MPIIGaze, and U2Eyes 

Dataset name Size Format Resolution Available from 

GI4E 1,236 png 800 × 600 http://www.unavarra.es/gi4e/databases 

I2Head 2,784 jpg 1280 × 720 http://www.unavarra.es/gi4e/databases 

MPIIGaze 213,659 jpg 640 × 480 http://datasets.d2.mpi-inf.mpg.de/MPIIGaze/MPIIGaze.tar.gz 

U2Eyes 1,800 jpg 640 × 480 https://www.cl.cam.ac.uk/research/rainbow/projects/uoeyes/ 

3.2. Methods 

This section provides an overview of the methodology employed in the proposed pupil estimation approach, which 

integrates advanced deep learning techniques (Figure 2). The methodology is comprised of three fundamental 

components: (1) the utilization of shallow convolutional backbones for effective semantic segmentation; (2) the 

development and implementation of a pupil estimation algorithm that leverages the trained deep learning model; and (3) 

the application of specific performance evaluation metrics designed to rigorously assess the accuracy and effectiveness 

of the overall approach. 

• Shallow Convolution Backbones 

In this research, the approach strategically employs shallow convolutional backbones from CNN architecture 

spectrum. These backbones, characterized by having fewer layers compared to deeper CNN architectures, strike a crucial 

balance between model complexity and computational efficiency. This equilibrium is particularly important in real-time 

applications, where processing speed is as important as accuracy. Shallow networks, such as LeNet-5, AlexNet, and 

VGG-16, offer considerable advantages in terms of faster processing speeds, despite possibly not achieving the same 

level of accuracy as more intricate architectures, making them well-suited for tasks requiring quick responsiveness. 
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For the purpose of this study, VGG-16, VGG-19, and ResNet-50 were chosen as the foundational architectures for 
the pupil estimation model. Each of these networks, with their distinct structural characteristics, has been modified for 
semantic segmentation tasks. The modifications involve freezing the convolutional layers to preserve learned features 

and replacing flattening layers with deconvolution layers, effectively transforming these networks into suitable tools for 
semantic segmentation (Table 2 and 3). The deconvolution layers, functioning as decoders, reconstruct the feature maps 
into a full-resolution image, crucial for pixel-level classification in segmentation. 

ResNet-50 is particularly notable for its residual layers, which theoretically allow for more efficient gradient 
backpropagation during training. This feature helps in achieving higher accuracy rates by mitigating the vanishing 
gradient problem common in deeper networks. The residual connections enable ResNet-50 to learn identity functions in 
certain layers, thus maintaining performance even with increased network depth. 

The backbones are initialized with weights from the ImageNet dataset, utilizing the principles of transfer learning. 
This concept suggests that knowledge acquired in learning one task can be transferred to a related but different task. 
Using pre-trained weights gives these models a head start, as they are already trained to recognize certain common 

features in images. This approach significantly enhances training efficiency and model performance, particularly in 
specialized domains like pupil estimation with limited training data. 

Table 2. Comparison of VGG-16, VGG-19, and ResNet-50 architectures 

Architecture Layers Conv. Filters Parameters Top-1 Accuracy 

VGG-16 16 138 138.35M 71.59% 

VGG-19 19 144 143.67M 72.48% 

ResNet-50 50 134 23.58M 76.15% 

Table 3. The layers of VGG-16, VGG-19, and ResNet-50 architectures with deconvolution layers added to serve semantic 

segmentation 

VGG-16 VGG-19 ResNet 

Layer type Output size Layer type Output size Layer type Output size 

Input (240, 320, 3) Input (224, 224, 3) Input (224, 224, 3) 

Conv2D (240, 320, 64) Conv2D (224, 224, 64) Conv2D (112, 112, 64) 

Conv2D (240, 320, 64) Conv2D (224, 224, 64) MaxPooling2D (56, 56, 64) 

MaxPooling2D (120, 160, 64) MaxPooling2D (112, 112, 64) Conv2D (56, 56, 64) 

Conv2D (120, 160, 128) Conv2D (112, 112, 128) Conv2D (56, 56, 64) 

Conv2D (120, 160, 128) Conv2D (112, 112, 128) Conv2D (56, 56, 256) 

MaxPooling2D (60, 80, 128) MaxPooling2D (56, 56, 128) Residual (56, 56, 256) 

Conv2D (60, 80, 256) Conv2D (56, 56, 256) Conv2D (28, 28, 128) 

Conv2D (60, 80, 256) Conv2D (56, 56, 256) Conv2D (28, 28, 128) 

Conv2D (60, 80, 256) Conv2D (56, 56, 256) Conv2D (28, 28, 512) 

MaxPooling2D (30, 40, 256) Conv2D (56, 56, 256) Residual (28, 28, 512) 

Conv2D (30, 40, 512) MaxPooling2D (28, 28, 256) Conv2D (14, 14, 256) 

Conv2D (30, 40, 512) Conv2D (28, 28, 512) Conv2D (14, 14, 256) 

Conv2D (30, 40, 512) Conv2D (28, 28, 512) Conv2D (14, 14, 1024) 

MaxPooling2D (15, 20, 512) Conv2D (28, 28, 512) Residual (14, 14, 1024) 

Conv2D (15, 20, 512) Conv2D (28, 28, 512) Conv2D (7, 7, 512) 

Conv2D (15, 20, 512) MaxPooling2D (14, 14, 512) Conv2D (7, 7, 512) 

Conv2D (15, 20, 512) Conv2D (14, 14, 512) Conv2D (7, 7, 2048) 

MaxPooling2D (8, 10, 512) Conv2D (14, 14, 512) Residual (7, 7, 2048) 

Conv2DTranspose (16, 20, 256) Conv2D (14, 14, 512) Conv2DTranspose (14, 14, 512) 

Conv2DTranspose (32, 40, 128) Conv2D (14, 14, 512) Conv2DTranspose (28, 28, 256) 

Conv2DTranspose (64, 80, 64) MaxPooling2D (7, 7, 512) Conv2DTranspose (56, 56, 128) 

Conv2DTranspose (120, 160, 32) Conv2DTranspose (14, 14, 256) Conv2DTranspose (112, 112, 64) 

Conv2DTranspose (240, 320, 1) Conv2DTranspose (28, 28, 128) Conv2DTranspose (224, 224, 32) 

  Conv2DTranspose (56, 56, 64) Conv2DTranspose (224, 224, 1) 

  Conv2DTranspose (112, 112, 32)   

  Conv2DTranspose (224, 224, 1)   



HighTech and Innovation Journal         Vol. 5, No. 2, June, 2024 

452 

 

The activation functions used also play a crucial role in the effectiveness of these networks. The ReLu (Rectified 

Linear Unit) activation function is applied to all deconvolution layers, except the last one, introducing non-linearity and 

enabling the model to learn more complex data patterns. The final layer employs the sigmoid activation function, suitable 

for binary classification tasks such as semantic segmentation, where the objective is to classify each pixel into one of 

two categories: pupil or non-pupil. 

For training, the binary cross-entropy loss function is used, a standard choice for binary classification tasks. This loss 

function quantifies the difference between actual and predicted probabilities, guiding the model towards accurate 

predictions. RMSprop (Root Mean Square Propagation) is used as the optimization algorithm, adapting the learning rate 

for each parameter to efficiently navigate the loss landscape. The integration of these techniques culminates in an 

effective training process conducive to high performance in semantic segmentation tasks. 

• Pupil Estimation Algorithm 

The algorithm for pupil estimation in this study is based on the principles of semantic segmentation, an advanced 

computer vision technique that categorizes each pixel in an image. In pupil detection, semantic segmentation precisely 

identifies pixels corresponding to the pupil, distinguishing them from the rest of the eye. This accurate pixel-level 

classification is crucial for defining the pupil's boundary, a key factor for precise estimation. 

After the segmentation process delineates the pupil pixels, the algorithm applies clustering methods. Clustering 

involves grouping objects so that those within the same group are more similar to each other than to those in other 

groups. Here, the pixels associated with the pupil are clustered together, aiding in identifying the center of the pupil. 

This step is vital for accurately locating the pupil and understanding its shape and size, which are important in various 

applications. 

A significant challenge in this process is the presence of outlier clusters, often caused by reflections, shadows, or 

other visual artifacts. The algorithm addresses this by incorporating a step to filter out these outliers, thereby enhancing 

the accuracy of pupil center estimation. This is particularly critical in real-world scenarios where eye images are subject 

to various environmental conditions. 

The final stage of the algorithm involves intensity analysis for selecting the appropriate cluster. The pupil, typically 

darker than the surrounding iris, is identified based on this intensity contrast. The algorithm selects the cluster with the 

highest average intensity, indicative of the darker pupil area, as the most probable location for the pupil center. 

This intensity-based method for cluster selection is both theoretically sound and practically effective. It aligns with 

the anatomical features of the eye and is reliable even when the pupil is not perfectly circular or is partially occluded. 

This approach ensures the algorithm's capability to detect the pupil center accurately in challenging conditions, such as 

poor lighting or corneal reflections. 

Overall, the pupil estimation algorithm combines semantic segmentation, clustering, and intensity analysis to 

efficiently and accurately determine the pupil center in eye images. By leveraging the strengths of each technique, the 

algorithm ensures robust performance in various conditions, making it a versatile tool for eye-tracking and related 

applications. 

Algorithm 1: Pupil estimation algorithm 

Input: Semantic segmentation result S 

Output: Pupil center coordinates (x,y) 

C ← create clusters of all identified pixels in S 

C′ ← remove outlier clusters from C 

C∗ ← cluster in C′ with the highest average intensity 

(x,y) ← coordinates of the center of C∗ 

return (x,y) 

• Performance Evaluation 

The performance of the proposed approach in pupil estimation was rigorously evaluated using a set of metrics 

designed to assess accuracy, error, and computational efficiency. These metrics were selected to provide a holistic view 

of the system's capabilities and to facilitate direct comparison with state-of-the-art methods. 

Precision (P): Precision is a fundamental metric in object detection and is particularly relevant in the context of 

pupil detection, where the accuracy of identifying the pupil is crucial. It is defined as the ratio of true positives (TP) to 

the total number of positive predictions (TP + FP), calculated as follows:  

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100  (1) 
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In this formula, TP represents the number of correctly identified pupils that match the ground truth, while FP denotes 

instances where the algorithm incorrectly identifies a pupil. This metric is essential for understanding the reliability of 

the detection algorithm in correctly identifying pupil presence. 

Normalized error (𝑁𝑒𝑟𝑟𝑜𝑟): To gauge the detection accuracy in a way that is comparable with other eye-tracking 

systems, the normalized error was employed. This metric, prevalent in eye-tracking research, offers a standardized 

measure of detection accuracy relative to the inter-eye distance. Such normalization is crucial as it accounts for variations 

in head pose and distance from the camera, thus providing a more consistent and reliable error measurement. The 

normalized error is calculated using the following formula: 

𝑁𝑒𝑟𝑟𝑜𝑟 =
max(𝑑𝑙 , 𝑑𝑟)

𝑑𝑙−𝑟
 (2) 

In this equation, dl and dr represent the Euclidean distances between the detected positions and the ground truth 

positions of the left and right pupils, respectively. These distances are calculated as follows: 

𝑑𝑙 = √(𝑥(𝑔𝑡,𝑙) − 𝑥(𝑑,𝑙))
2 + (𝑦(𝑔𝑡,𝑙) − 𝑦(𝑑,𝑙))

2 (3) 

Here, (x(gt,l),y(gt,l)) and (x(d,l),y(d,l)) are the ground truth coordinates of the left pupil, and 𝑥(𝑑,𝑙) and 𝑦(𝑑,𝑙) are the detected 

coordinates. The term 𝑑𝑙−𝑟 in Equation (2) denotes the Euclidean distance between the ground truth positions of the left 

and right eyes. A similar calculation is performed for 𝑑𝑟, the right pupil’s distance. This approach to normalization 

against the inter-eye distance ensures a more accurate and scenario-independent assessment of the detection error, 

enhancing the comparability of our system's performance with other state-of-the-art eye-tracking solutions. 

Execution time: A key aspect of the proposed approach's evaluation was its execution time on different 

computational platforms, including both CPU and GPU. This metric is crucial for determining the feasibility of the 

approach in real-time applications, where processing speed is as important as accuracy. By assessing the execution time, 

the study aimed to establish the practicality of the method in various operational contexts, from high-performance 

computing environments to more constrained, real-world scenarios. 

The combination of these metrics – precision, normalized error, and execution time – provides a comprehensive 

evaluation of the proposed approach. Precision assesses the accuracy of pupil detection, normalized error offers a relative 

measure of detection accuracy in varying conditions, and execution time evaluates the computational efficiency. 

Together, these metrics validate the effectiveness and practicality of the approach, demonstrating its suitability for real-

time applications in pupil estimation and its potential to contribute significantly to advancements in the field. 

 

Figure 2. Overview of the three-stage methodology for deep learning-based pupil estimation 
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• Summary of Methodology 

The methodology employed in this study is comprehensively summarized and visually depicted in Figure 2. For 

clarity, the process is delineated into three distinct stages: training of DL pupil estimation models, selection of the 

optimal DL pupil estimation model, and calculation of normalized error across various datasets. 

o Stage 1: Training of DL Pupil Estimation Models The initial stage focuses on the development of various pupil 

estimation models using deep learning techniques. Three different backbone architectures are employed for this 

purpose: VGG-16, VGG-19, and ResNet-50. These models are rigorously trained using 80 percent of the images 

from the PUPPIE dataset, which feature annotations of both square and variable radius circles to represent pupil 

positions. An important aspect of this training process is the initialization of these models with weights from the 

ImageNet dataset, leveraging the benefits of transfer learning. The learning rate for this training is varied between 

0.0001 and 0.0007, increasing incrementally by 0.00005, to determine the most effective rate for model learning. 

Additionally, the number of training epochs ranges from 5 to 20, allowing for sufficient model optimization 

without overfitting. 

o Stage 2: Selection of the Optimal DL Pupil Estimation Model The second stage involves evaluating the models 

generated in Stage 1 to identify the one with the best average error rate. This selection is crucial to ensure high 

accuracy in pupil detection. The evaluation employs a specific algorithm, referred to as Algorithm 1, and is 

conducted on a separate set of 20 percent of the images from the PUPPIE dataset. The model that demonstrates 

the lowest average error in accurately estimating pupil position is deemed the most effective and is selected for 

further analysis. 

o Stage 3: Calculation of Normalized Error with Benchmark Datasets In the final stage, the selected pupil 

estimator model is deployed across various benchmark datasets to compute the normalized error. This step is 

essential to validate the model's accuracy and reliability in different conditions and against varying datasets. The 

calculation of normalized errors, as previously detailed, provides a standardized measure of the model's 

performance in terms of accuracy, making it possible to directly compare the proposed model with other state-

of-the-art eye-tracking systems. 

Overall, this structured three-stage methodology enables a systematic and thorough evaluation of the proposed deep 

learning-based pupil estimation models. From initial training to final validation, each stage plays a pivotal role in 

ensuring the development of an accurate, reliable, and efficient pupil estimation system. 

4. Results and Discussion 

In this experiment, semantic segmentation was utilized to estimate the position of the pupil in eye images. Shallow 

backbones, namely VGG-16, VGG-19, and ResNet-50, were trained using a range of learning rates and epoch counts to 

assess their performance. The accuracy of the models was evaluated on a subset of the publicly available PUPPIE dataset, 

as well as on four additional datasets: GI4E, I2Head, MPIIGaze, and U2Eyes. Performance metrics, including the 

minimum, maximum, average, and standard deviation, were recorded for the PUPPIE dataset. These metrics were then 

used to compare the models’ performance with that of state-of-the-art approaches on the other datasets. The outcomes 

of this experiment offer valuable insights into the efficacy of shallow backbones in pupil position estimation within eye 

images and highlight their potential applications across various fields. 

4.1. Experiment Setup 

In this experiment, the performance of the DL-based pupil estimator, employing semantic segmentation, was 

assessed. The models were trained on Google Colab, a cloud-based platform offering GPU-accelerated services. This 

setup facilitated efficient training without necessitating high-end hardware. A range of shallow convolutional backbones, 

including VGG-16, VGG-19, and ResNet-50, were experimented with, varying the learning rates and epochs. The 

models' efficacy was evaluated using multiple datasets: the PUPPIE dataset, along with GI4E, I2Head, MPIIGaze, and 

U2Eyes. Utilizing these diverse datasets allowed for testing the models' robustness across different imaging conditions. 

Key performance metrics, such as precision and normalized error, were employed to gauge the accuracy of the models. 

The utilization of Google Colab enabled efficient experimentation with various hyperparameters and architectures, 

culminating in the development of a pupil estimator that is both accurate and efficient. 

• Training 

For training and evaluating the DL-based pupil estimator employing semantic segmentation, the PUPPIE dataset was 

utilized, with 20 percent of its images set aside for testing. A hyperparameter search experiment was conducted to 

determine the optimal settings for model training. This involved adjusting the learning rate from 0.0001 to 0.0007 in 

increments of 0.00005 and experimenting with epoch counts ranging from 5 to 20 (Table 4). Additionally, various 

patterns, including circles and squares of different sizes or radii (as illustrated in Figure 1), were tested. Upon completing 

the training, the models’ performance on the test dataset was evaluated using several metrics. These metrics included 

the minimum, maximum, average, and standard deviation of the Euclidean distances between the estimated pupil centers 

and their corresponding ground truth positions. 
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Figure 3. Examples of ground truth and detected pupils using the models with the lowest average error on the test dataset. 

For each eye, the second column shows the ground truth pupil and the last column shows the detected pupil 

Table 4. Results of experiments on test dataset sorted by average error 

Epoch Learn Rate Min Max Average SD 

5 0.0008 0.31 38.45 6.76 4.86 

5 0.0006 0.05 60.65 6.89 5.69 

5 0.0007 0.72 31.85 6.95 4.79 

20 0.0005 0.15 111.49 7.05 8.59 

5 0.0009 0.31 64.30 7.12 5.77 

20 0.0003 0.24 59.78 7.16 6.29 

10 0.0002 0.10 60.54 7.19 5.95 

20 0.0005 0.20 62.08 7.21 6.08 

5 0.0002 0.31 63.88 7.27 6.30 

5 0.0003 0.09 120.60 7.34 8.43 
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• Evaluation 

To assess the generalization capability of the proposed pupil estimation approach, the best-performing model was 

tested on four additional datasets: GI4E, I2Head, MPIIGaze, and U2Eyes. These datasets were selected to challenge the 

model's adaptability to varied image quality, lighting conditions, and camera angles. Table 1 details the specifics of 

these datasets. 

For replicability, all experiments were executed on a local machine equipped with an NVIDIA GeForce RTX 3090 

GPU, running Ubuntu 18.04. The DL models were developed using TensorFlow and Python 3.7. To foster transparency 

and support open science, the DL models and Python scripts for data processing and evaluation are available upon 

request. 

The performance of the proposed approach was gauged using precision and normalized error metrics, as described 

in Section 3.2.3. Precision measures the ratio of true positives to total positive predictions, while normalized error 

calculates the Euclidean distance between the estimated and ground truth pupil centers, normalized by the eye's width. 

Furthermore, the execution time of the model was measured on four distinct platforms to evaluate its efficiency and 

applicability. These platforms include an Intel Xeon E5-1650 v4 CPU with an Nvidia Titan X (Pascal) GPU, an Intel 

i7-6700k CPU with an Nvidia GTX 960 GPU, and a Raspberry Pi 4 with a Broadcom BCM2711, Quad-core Cortex-

A72 (ARM v8) SoC at 1.5GHz and Broadcom VideoCore VI. This multi-platform testing allows for an assessment of 

the model's performance across diverse computing environments. 

The outcomes of this evaluation offer insightful data on the effectiveness of the approach in various settings, 

contributing valuable information for the development of future eye-tracking systems. 

4.2. Results 

In this study, a meticulous hyperparameter search experiment was conducted on the PUPPIE dataset to ascertain the 

optimal learning rate and number of epochs for training the pupil estimation models. The analysis of the test dataset, 

presented in Table 4, reveals that the VGG-19 model exhibits superior performance compared to VGG-16 and ResNet-

50 across all performance metrics. Specifically, VGG-19 attained an average error of 6.76, a significant improvement 

over VGG-16's 17.78 and ResNet-50's 28.06. This notable distinction in performance is evident not only in the average 

error but also in the range of minimum and maximum accuracy, as well as the lower standard deviation. These metrics 

collectively demonstrate VGG-19's superior ability in accurately estimating pupil size from eye images, leading to the 

decision to exclude VGG-16 and ResNet-50 from further experiments. 

The hyperparameter search highlighted an inverse relationship between learning rates, epoch counts, and model 

performance, with higher learning rates and more epochs tending to degrade results. This trend underscores the 

importance of a judicious selection of hyperparameters for optimal model performance. The most effective training was 

achieved with a learning rate of 0.0005 and 10 epochs, yielding an average Euclidean distance error of 4.5 pixels. 

Notably, models trained with circle patterns of a 10-pixel radius consistently outperformed others, leading to the 

designation of this model as the 'winner model'. 

To illustrate the effectiveness of the winner model, Figure 3 presents a selection of eye images with their ground 

truth and detected pupil positions. The estimation error, measured in pixels as the Euclidean distance between the 

predicted and actual pupil centers, is noted in each image. 

Further tests on additional datasets (GI4E, I2Head, MPIIGaze, and U2Eyes) were conducted to assess the model's 

generalization capability. The results, as seen in Tables 5 to 8, demonstrate competitive performance on these datasets, 

validating the model's robustness and adaptability. 

In Figure 4, additional examples from the GI4E dataset showcase the winner model's pupil detection. The zoomed-

in view of detected eye regions, marked with ground truth ('+') and detected pupil (red circle), provides a visual 

confirmation of the model's precision. The normalized error for each image, a crucial metric in eye-tracking accuracy, 

further supports the model's efficacy. 

Comparative analysis with previous studies is critical in highlighting the originality and contribution of this research. 

Tables 5 to 8 juxtapose our model's normalized error rates with those of state-of-the-art models. Our model consistently 

achieves high normalized error rates, rivaling or surpassing existing models. For instance, on the GI4E dataset, our 

model achieves normalized error rates of 97.80%, 98.70%, and 100.00% for N0.025, N0.050, and N0.100, respectively. 

This performance is indicative of the model's precision in estimating pupil size, outperforming or matching other well-

regarded models in the field. 
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Figure 4. The figure displays examples of detected pupils using models with the lowest average error on the GI4E dataset. 

The onset images depict zoomed-in eye regions with the ground truth pupil marked by a +-sign, and the detected pupil 

highlighted by a red circle. 

Precision, a critical metric in pupil center detection, is further substantiated in Table 9. Both our winner model and 

Larumbe-Bergera’s method achieved a perfect precision score of 100.00% on the GI4E and I2Head datasets, a testament 

to their accuracy. The Kurdthongmee model, while slightly lower, also demonstrates high precision, underscoring the 

advancements in pupil detection accuracy in recent research. 

Execution time, a crucial factor in real-time applications, is compared in Table 10. Our model shows competitive or 

superior performance in execution times, particularly notable on lower-performance platforms like the Raspberry Pi. 

This efficiency, combined with the high precision, positions our model as a viable solution for real-time eye-tracking 

applications, even on less powerful devices. 



HighTech and Innovation Journal         Vol. 5, No. 2, June, 2024 

458 

 

In summary, the results from our experiments and comparative analyses establish the novelty and effectiveness of 
our winner model. It not only achieves comparable or superior precision and execution times relative to current state-
of-the-art models but also demonstrates remarkable adaptability and accuracy across multiple datasets. These qualities 

highlight the original contribution of this study to the field of eye-tracking, offering a promising solution for both high- 
and low-performance platforms. 

Table 5. Normalized error rates on the GI4E dataset 

Model N0.025 N0.050 N0.100 

Kim et al. [24] 79.5 99.30 99.90 

Lee et al. [25] 79.5 99.84 99.84 

Cai et al. [26] 85.7 99.50 - 

Larumbe et al. [27] 87.67 99.14 99.99 

Levinshtein et al. [28] 88.34 99.27 99.92 

Choi et al. [29] 90.4 99.60 - 

Kitazumi & Nakazawa [30] 96.28 98.62 98.95 

Larumbe-Bergera et al. [14] 98.46 100.00 100.00 

Kurdthongmee et al. [15] 98.24 99.75 99.92 

Our winner model 97.80 98.70 100.00 

Table 6. Normalized error rates on the I2Head dataset 

Model N0.025 N0.050 N0.100 

Larumbe-Bergera et al. [14] 96.88 100.00 100.00 

Kurdthongmee et al. [15] 96.68 98.00 98.00 

Our winner model 96.76 98.07 99.35 

Table 7. Normalized error rates on the MPIIGaze dataset 

Model N0.025 N0.050 N0.100 

Larumbe-Bergera et al. [14] 97.09 99.83 100.00 

Kurdthongmee et al. [15] 96.84 97.62 98.41 

Our winner model 95.60 96.73 100.00 

Table 8. Normalized error rates for U2Eyes dataset 

Model N0.025 N0.050 N0.100 

Larumbe-Bergera et al. [14] 93.44 99.93 100.00 

Kurdthongmee et al. [15] 94.7 97.37 98.41 

Our winner model 98.44 98.51 98.84 

Table 9. The precisions of different pupil center detection models on the GI4E and I2Head datasets, where 

eye detection was performed using the Dlib library 

Model 
P 

GI4E I2Head 

Larumbe-Bergera et al. [14] 100.00 100.00 

Kurdthongmee et al. [15] 96.84 96.52 

Our winner model 100.00 100.00 

Table 10. Comparison of the average execution time on the GI4E dataset between our winner model and the 

state-of-the-art ones [14, 15] 

Approach 
Execution times (ms)  

Xeon E5-1650 + Titan X i7-6700k + GTX 960 Raspberry Pi 

Larumbe-Bergera et al. [14] 2.00 5.00 NA 

Kurdthongmee et al. [15] 0.80 1.97 158.95 

Our winner model 0.85 2.10 165.25 
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4.3. Discussions 

The results obtained from the experiments conducted in this study, as detailed in Tables 4 to 10 and illustrated in the 
respective figures, provide compelling insights into the efficacy of the proposed pupil estimation model. An in-depth 
analysis of these results highlights the added value of the study and offers physical interpretations to explain the observed 

trends. 

In Table 4, the results of various pupil estimation models sorted by average error are presented. These models, trained 
with different epochs and learning rates, show a range of performance. Notably, the best results are achieved at lower 
learning rates and moderate epoch counts, suggesting that while sufficient training is crucial for accuracy, too much 
training, especially at higher learning rates, may result in overfitting. This finding underscores the efficiency of the 
model in learning from the dataset without overfitting, a crucial advantage for real-time applications. 

Tables 5 through 8 display the normalized error rates for various datasets, including GI4E, I2Head, MPIIGaze, and 
U2Eyes. The model demonstrates robustness and adaptability across these datasets, with particularly impressive 
performance on the GI4E and U2Eyes datasets, where near-perfect normalized error rates were achieved. This high level 
of accuracy highlights the model's capability to estimate pupil size accurately under varying conditions, indicating its 
adaptability and generalizability, which are essential for practical applications. 

Table 9 focuses on precision analysis and reveals that the model achieves 100% precision in pupil center detection 

on both the GI4E and I2Head datasets. This precision level, comparable to state-of-the-art models, validates the 
effectiveness of the model in accurately detecting pupil centers and its ability to distinguish true pupil regions from false 
detections, a key factor for applications like eye tracking and gaze estimation. 

Furthermore, Table 10 compares the execution times of the model with state-of-the-art models, emphasizing the 
model's computational efficiency. While the execution time on certain platforms is slightly higher than that of 
Kurdthongmee et al. [15], the model maintains competitive performance. Notably, on low-performance platforms like 

the Raspberry Pi, the model demonstrates potential applicability, as shown by its reasonable execution time, which is 
crucial for less computationally intensive environments. 

The added value of this study is the development of a pupil estimation model that effectively balances accuracy, 
speed, and computational efficiency. The utilization of shallow convolutional backbones and a fine-tuning approach 
contribute to this balance, ensuring high precision and adaptability without the need for extensive computational 
resources. The trends observed in model performance can be attributed to the successful combination of deep learning 

techniques with an architecture optimized for real-time processing. 

In conclusion, the detailed analysis shows that the proposed approach not only competes with but, in some aspects, 
surpasses current state-of-the-art methods in pupil estimation. The findings of this study provide valuable insights for 
future research and practical applications in fields such as human-computer interaction, psychology, and ophthalmology, 
where precise and efficient pupil estimation is paramount. 

5. Conclusion 

In conclusion, this study introduces a novel deep learning-based approach for accurately and swiftly estimating pupil 

position from eye images. By harnessing the principles of transfer learning and data augmentation, the study trained 

lightweight convolutional neural networks, specifically VGG-16, VGG-19, and ResNet-50, achieving a high level of 

precision in pupil detection. This method has demonstrated superior performance over current state-of-the-art 

approaches in terms of both accuracy and processing speed, as evidenced by the results on the PUPPIE dataset and 

further corroborated by tests on additional datasets like GI4E, I2Head, MPIIGaze, and U2Eyes. 

The results, encompassing comprehensive performance metrics, validate the effectiveness of the proposed approach 

across a range of applications, including human-computer interaction, psychology, and ophthalmology. The efficiency 

of the model, particularly notable on low-performance platforms, broadens its potential for use in less invasive camera-

based eye-tracking technologies. 

Future research endeavors will focus on extending the validation of this approach across an even broader spectrum 

of datasets and exploring its potential for adaptation to new domains, capitalizing on the advantages of transfer learning 

techniques. This work makes a significant contribution to the fields of eye-tracking and computer vision, paving the 

way for new research directions and practical applications in these dynamic and ever-evolving areas. 
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