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Abstract

Analytical formulations and solutions for the thick rectangular plate static analysis with clamped support based on a three-
dimensional (3-D) elasticity theory is developed using the energy method. The theoretical model, whose formulation is
based on the static elastic principle as already reported in the literature, is presented herein to obviate the shear correction
coefficients while considering shear deformation effect and transverse normal strain/stress in the analysis. The equilibrium
equations are obtained using 3-D kinematic and constitutive relations. The deflection and rotation functions, which are the
solutions of the equilibrium equation, are obtained in closed form using a general variational technique for solving the
boundary value problem. The minimization energy equation yields the general equation which was used tceobtain th
theoretical model for the deflection and stresses of the plate. The results are compared with the available literaure and th
results-computed trigonometric displacement function shows that this 3-D predicts the vertical displacement and the
stresses more accurately than previous studies considered in this paper. The result showed that the percentage difference
between the present work and those of 2-D Mindlin FSDT, 2-D numeric analysis, and 2-D HSDT of polynomial shape
functions was about 3.02%, 0.62%, and 0.33%, respectively. It is concluded that the 3-D trigonometric model gives an
exact solution, unlike other 2-D theories, and can be used for clamped-supported thick plate analysis.

Keywords:Exact Static Theory; Equilibrium Equation; Bending dd &lamped Plate; Trigonometric Model.

1. Introduction

Plates are thredimensional structural elements with spatial dimensions along x, y, and z axes, whose applications
are prevalent in different aspects of engineering, such as marine, naval, aerospace,cabeamhistructural
engineering. Plates can be classified in terms of shapes such as: quadrilateral, square, circular, or rectangular. Depending
on their constituent materials, they may also be classified as isotropic, anisotropic, orthotropic, hompgemneous
homogeneous. They can also be defined based on thickness as thin, thick, or moderately thick platesrfiga2iis
to its sparto-depth ratio ¢/t), Mahi et al. (2015) [3] and Timoshenl& WoinowskyKrieger (1959)[4] classified
rectangulaplates with5 0< a/t < 1 0 8s thin plate2 0< a/t <5 0as moderately thick and/t < 2 0as thick plate
[5]. The use bthick plates has greatly increased in structural engineering as a result of its cost benefits and other
advantages such as its light weidtigh strength and load resistance ability [6, 7]

In general, plate research consists of buckling, deflection, and vibration analysis [8]. The bending of the thick
rectangular plate is considered in this paper. Bending is the deformation of the plgté atgles to the plate surface
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due to the impact of forces and moments [9, 10]. As a result of applied load, a structural member is displaced and stresses
are induced. Consequently, the structure tends to bend to withstand the load. The bendingfedatessare strongly
influenced by their thickness in comparison with their other parameters [10]. To ensure the stability of thick plates for
resisting design load, bending analysis is needed so as to determine the displacements, moments, ahdati@sses a

points of the plate [11, 12].

Many researchers have developed and applied several theories to avoid the complexity of analyzing rectangular plates
asa threedimensionalelement These theories include the classical plate theory (CPT) and thedrgflate theory
(RPT). These theories offer solutions to plate problems in either exact or approximate form. Classical plate theory [13]
cannot ascertain the proper bending behavior of thick plates as the shear deformation effect is overlookedtjg4, 15].
introduction of shear deformation effects on the plate displacements distinguishes thick plate theories from thin plate
theories. This resulted in the formulation of refined plate theories. The refined plate theories (RPT), which can be
employed for titk plate analysis [16], consists of fistder shear deformation theory (FSDT), also called Reissner
Mindlin theory [1719], and higheorder shear deformation theories (HSDTS), that provide zero shear stress conditions
at the upper and underside of fllates without the shear correction factor-4].

Refined plate theories, which has been used by scholars such2ag,[28nsider five strains, five stress components,
assuming the normal stress and strain along #rdszto be zero. Refined plate s are inadequate to express an
accurate bending response of a typical thick plate. In order to overcome the errors of refined plate theories (RPT) in
analysis of rectangular plates, thiienensional theory must be employed to ensure that no sirestiain element is
assumed to be zero. For a typicdD3hick plate analysis, refined plate theories are indelicate, hence the need for precise
results through the application ofCBtheory is justified

The purpose of this research is to appl 3heory in solving the problem of deflection for a clamped isotropic
rectangular thick plate, investigating the impact of aspect ratio and displacement of the moment, shear force, stresses,
and stress resultant of the plate using the Energy method. Thisvetisdyndertaken with the following objectives in
mind:

¢ To create the internal energy of a thiBmensional rectangular thick plate

e To generate the compatibility and overall governing equations of the plate and derive equations of displacements
and shear eformation slope coefficient for x, y and z coordinates

e To obtain the exact expressions of the displacements, bending moment, shear force and stresses for the thick
rectangular plate

2. Literature Review

For a rectangular SSSS Kirchhoff platiee Ritz method vas used by Nwoji et al. (2018) [26] to analyze the plate
bending problem. The method used by the authors yielded exact identical solutions as the exact results obtained by those
who employed the Navier double Fourier sine series method. Using the eXactiagiefshape function, the authors
obtainedanexact solution. lke (2017) [27] appli¢lde KantorovichGalerkin method in studying the bending of CSSS
plates withanassumed displacement function. The author formulated the equation of equilibrium in line witirithe w
of EulerLagrange and solved to obtain the deflection and bending moment coefficients for deflection at the center of
the plates under the uniform. The author did not consider the stresses in the direction of thickness axis neither was plates
the CCCCbhoundary condition taken into account. The author did not apply the general variational method in the
derivation of the displacement function and shape function used was assumed, which made the result +iotra close
solution

Usingananalytical method, Oreka & al. (2019) [2] employed thirdrder refined theory for solving the bending of
a thick rectangular plate that is simply supported on all the edges. To determine displacement coefficients, the equation
of total stored energy of a thick plate that vgeherated from elastic. Integral direct integration methaottheéxact
analytical solution approach was used to determine the work, stresses, displacement and the shear deformation equation
and the values obtained from their study conformed to the valuegpfi@rious studies. However, the authors did not
consider a full 3D analogy for a typical thredimensional plate with all round clamped edges using the energy method

Ibearugbulem et al. (2018) [28] applied shear deformation theory with a polynomialfshapen to analyze the
bending of CCCC rectangular thick plates. As with other higihder theories, the condition of zero shear stress on the
surfaces of the plate were met with the transverse shear stress derived from the constitutive relatibaasf/tfiehe
authors did not consider a trigonometric shape function. Even though the result of their displacements and stresses, a 3
D theory was not applie®nyeka & Edozie (2021) [29] analyzed the displacements and stresses of thick rectangular
CCFC plae applying the higher order polynomial which was derived from the governing equation using the general
variation method. The results of their study agreed well with those of refined plate theory, but varied more with the value
of the classical plate theprThe considerations of authors will not yield a good result febgBate because it is limited
to a 2D plate theory. The trigonometric shape function and CCCC boundary condition was not considered
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Analyzing the problem of displacemestresses in thk plates with simply supported edges, Sayyad & Ghugal,
(2012) [23] used the refined theory of shear deformation and exponential functions. The shear transverse distortion and
rotary inertia were found using the theory and the functions in thicknesdrmatertbrm. Compared with other refined
plate theories, the displacements and stresses achieved in their result were satisfactory. The authors did not consider
trigonometric displacement function in an energy method using-thehgory. Also, their analys did not cover for
thick plates with alround clamped boundary conditior@nyeka et al. (2020) [30] analyzed the bending behavior of
rectangular thick CSCS and SCFS plates based on foradr polynomial shear deformation function. The authors
developed a new approach to achieve the critical load of the plate from the established equation. The deflection and
stresses obtained in their study were identical with the other order theories, but they did not analypdattee in
displacement and moment thiatluce mending in the plate. Also, the author neither analyzes the plate as a tfpical 3
element nor did they consider a thick plate of all round clamped edges

Applying the numerical method on account of the thdemensional theory of elasticity, theudty of bending
solutions of thick plates with clamped edge conditions, was carried out Grigorenko et al. (2013) [31]. The authors
employed two coordinate directions of spline collocation and the resultant displacements and stresses in the clamped
thick redangular plates were satisfactory. The result of their study were not exactly because they did not consider the
analytical approach neither did they use the energy method that is more simplified

Onyeka & Ibearugbulem (2020) [32], used the direct variagioergy method to obtain closed form solutions for
bending analysis of CCCC and CCFC thick rectangular plates, apphgmpnlinear strairdisplacement polynomial
shape function of fourth order shear deformation theory. From the principle of variationdligalce authors obtained
the governing equations which were used to solve the deflgmtadriem of the plateS hey also developed formulas
for calculating actual and maximum lateral Ieadposed on the plate before deformatymtsto the specified marium
specified limit and elastic yield respectively. Their result confirmed that the actual loadukathe bending problem
can be predicted using this theory. ThB 3heory was also not employembr did the authors consider the use of the
trigononetric shape function. The authors investigated only the aspect ratio effects on the critical thickness of the plate
without considering the displacement and stres&dbreedimensional analysis of a thick SSSS plate was presented
analytically byFuet al (2022 [33].

To obtain a total potential energy function, strain and stress with six components each, were theeshédgr
deformation thexy of third order. The rotatiorand deflection expressierwere derived from the solutions of
compatibility equationghat were obtained by minimizing the function with respect to shear deformation rotations. The
deflection equation was found by solving the governing equation derived from further minimization of the function with
respect to deflect. The values of thecaddted deflections and stresses obtained from tBeaBalysis were coarse
compared with those of refined plate theories. The work is limited as there is no application of trigonometric
displacement functions which produces an exact solution

Ibearugbulen& Onyeka (2020) [34] employed direct variation energy method to soltree bending problem of
clamped rectangular plates using third order plate theory. The method used did not require shearing correction factors
and the results obtained revealed its precibipmumerical comparison. The authors did not analyze for the critical
lateral load and the solutions of their study were not exactly as a rethdassumed shape function and rapplication
of the general variational method. The authors did not confidarse of trigonometric displacement function and did
not apply the 3D theorMost of these reviewed studies are mostly based on refined plate theories. Aside from the work
by Ibearugbulem & Onyekat al. 020 [34], one can hardly see work ¢imebending behéor of thick plate based on
3-D theory. The need for this current research work cannot be neglected, as it is worthwhilesgép in the literature.
The peculiarity of this study with the various previous respective works resides in the typgedhpbry, method of
analysis, the displacement functions, and the plate supports. In this study, the general variation of the total potential
energy was performed in order to get an exact trigopnometric shape function from the elastic principle withquti@as
Investigating the bending features for a CCCC rectangular, this work also went ahead to determine the displacements
and stresses of the plate usin® plate theory

3. Methodology

The research methodology of this study is presented by consideregfamgular plate ifrigure 1 as a three
dimensional element in which the deformation exists in the three axis: length (a), width (b) and thickness (t). The
analytical approach dheenergy method was used to obtain formulas for the analysis
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Figure 1. An element of thick rectangular plate showing middle surface

Figure 2 is a flowchart which indicates the procedures of formulating the potential energy equation in the form of the
kinematics and thredimensional constitutive rdians for a static elastic theory of plate, thereafter, the governing
equations were derived and solved to obtain formula for the analysis

=

Static theory of elasticity was used to get strain S Potential energy equation S Equilibrium and governing equation ¢
and stress relationship formulation 3-D plate were developed

v
- Tt : Getting deflection function and substitute jts Deflection coefficient was used to obtajn
Sfolvég%a?r??g;g{;gmﬁﬂgﬁgr? n_> value into energy equation to obtain —— the expression for displacement and
deflection coefficients stress of the plate

Figure 2. Flowchart to the article analysis procedure as presented in the research metrmdgy

3.1 Kinematics

The 3D displacement kinematics along x, y and z axis (u, v and w) shown in the Bguwebtained assuming that
the xz section and-y section, is no longer normal teyxplane after bending

6,0 1, Top fiber

\

Total Deformation line / /

.
/] Bottom fiber

Middle surface

Figure 3. Rotation of x-z (or y-z) section after bending

Resolving the deformation diagram in Figure 3 using trigonometric relations, the algebraic relationship between the
displacement and slope along the x axis and y becomes
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d

0 =73, )
v

Gy = a_Z (2)

where 0, a n @, is the shear deformation rotation along x axis and y. axis

Taking into account, the thick plate assumption as stated in this section, tHamsarsional form of the Equatien
1 and 2gives

=332 ®
b,=15: ®
Where
z=ts (5)
Rearranging Equation 3 andgives
u=t 9, (6)
v=t 9, @)

where ua ndis the inplane displacement alongaxis and y axis respectivelyhus, the six nowlimensional
coordnates strain components were derived using sttains p1 a c e me n t expression accor
presented in Equatier8 to 13:

om 182 ®
5=12y ©)
g =12 (10)
%y=m st e on (11)
7xz=%'?7_1:+ i %: 12)
7y2:%.3—z+$.ﬂ; (13)

where ¢,, ¢, a n g are normal strain along x axis, y axis and z axis respectiyelyy, ,an dy, ,represents the shear
strain in the plane parallel to theyxx-z and yz plane

3.2 Constitutive Relations

The three dimensional constitutive relat:ion 1s deterrr

(1-p) u T 0 0 0 %]
[%] u (1—p) u 0 0 0 &y
[ % | I U A-w 0 0 0 .
Oz _ E 1-2pu z
Tx 4~ 1+pw)(1-2u) 0 0 0 ( 2 ) 0 0 Yx (14)
Ty 0 0 0 0 (ﬂ) 0
Tx 2 12 Yy 7
—2u
0 0 0 0 0 (—2 ) v d

where E and p are the modulus ofeliast i t y and .Poisson’s ratio

The six stress components were obtained by substituting Equations 8 to 13 into Equation 14 and simplifying the
outcome as

o Ly s S0, 1 0w

O-x_(1+u)(1—2u)[(1 u)a'6R+HaB'BQ+Ht'6S (15)
_ E 30, | (1=t 590y  u 9 u

% = Wrna-2n) [”t Sof ap o0 t'a‘;] (16)
___E 00,  pt 500y  (1-w) 2

% = T (i—zn) ['Ut @OR af 0Q ¢ ° a‘;] 17
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b= G e oot 700 (18)
5= Gamean 3 g (20)
3.3 Strain Energy
The strain energgl) is mathematically defied as
=200y s (vt + oy + v + Tty F Tty 4Ty 2, ) A RLQAS (21)

Substituting the values of stresses (Equatiottsl®) and strain (Equations 1&20) into Equation 21, and integrate
the dot product with respect to gives

_ Et3a b aes 1005 5 905 y | (1-p) (aes )>2 (1-21) (aes )32 (1-2p) (aeS ,)2
_2{1+u)(1—2u)32ff[(1 )3 +,8 aR'aQ+ B2 \ag + 282 \ a0 + 2 R +

121-2p) (5 2 2 ow 1 6w ow 2a95y6w Ha &xa_w
1Eoa) (a95x+a65y (R)+32 Q)+z 0, 22 Q)+o 202 (Bexlv y 22)

l_f’iy.a_W)+(1 wa? (aws) ]d Rl Q

B"0Q S

Where

. _ Et3
1 Z1+p)(1-2p)

(23)
3.4. Energy Equation Formulation
The total potential energy is mathematically expressed as
[I=U-V (24)
V=abdf, [hd Rl Q (25)

where, V, g,4; and h are the external work, uniformly distributed load, coefficient of deflection and shape function of
the plate respectivelya and b is the length and breadth of the plate

Substituting Equations 22 and 25 into Equation 24 gives

905 5905 y (1—#)(3‘95))2 (1—2#)(aes§2 (1—2;0(% 2

D*a b _ 695 l

_2a2ff[(1 ’j B AR 2Q B2 \aq 22 \a0Q 2 dR +
6(1-24) ( o a_ i aw ZaHSya (1- ,u)a 2 26
ey ( 0.2 +a0, 3+ (2) +1 “Q)+2a 2y “Q)+ a?)]deQ— (26)

folfola bh‘ﬂla RO Q

3.5. Governing Equation

The solution of the governing egtion is presented as the result of energy functional minimization with respect to

>

deflection to give exact plate’s shape function

Aoy bO
h=[1 R Co(s;R) S i(@R)] Z;].[l Q Co(50Q) S i(@Q)] 2; /Ay (27)
as b3
a, bO
6, =.80.[1 S i(@R) cC 0(s;R)] az].m Q €00 s i @O, (28)
as b3
(2N b1
0, =aiB.A0.[1 R C o(8R) S i(®R)] Z;].[l ¢S i(@Q) ¢,C 0(s;0Q)] [bz] (29)
b
as 3

Let;
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w=A4,.h (30)
oh

O =22 (31)
_ s o

O = a B aQ (32)

where;A4, a n d; are the coefficient of shear deformation along x axis and coefficient of shear deformation along y axis
respectively

Substituting Equation30, 31 and 32 into 26, gives

=2 b[(l — WA ke + 5[4z As + I ‘”“3 ey +6(1 -2 (% ) ([42% +
(33)
A2+ 2A1A2]. k, + ﬁ. [45% + 4,2 + 2A1A3].k22) - Z‘Z“Zﬂ]
Where
a2n\?
k= J; 1) (5) d R d .
key= 1y 0y ( aRa)QdeQ (35)
a
ky= [ (#) dRdQ (36)
k—ff(ah dRdQ (37)
—ff(a" dRdQ (38)
kn=J,[;h.d Rd Q (39)
Minimizing Equation 33 with respect #, gives
2 = (1 - WAk + [A3 + A5 (1 = 2]k o+ 6(1 = 240) (2 ) [A, + Ak, =0 (40)
Minimizing Equation 33 with respect # gives
2
S = Gk, 4 [ + A5 (1= 20V o 55 (1= 240 (£) (145 + 4] ko) = 0 (41)
Rewriting Equations 34 and 35 giv
1= Wy +— (1 — 2wk, + 6(1 — 2 LA ke, ] 4, = [—6(1 = 220 (9) k] 4 42
(1= Wk + 35 (1 = 2k o+ 6(1 = 240) (% 2+[2ﬁ2 J4s = |-6(1 = 21 (%) k| Ay (42)
[ k, JA [(1 B, + (1 — 21k + 5 (1—2,u) * 1 ]A [——(1—2;0 (“) k ]A (43)
2B2 2 2p2 Xy 2z 3= B2 ¢ Q 1

Solving Equations 42 and 43 simultaneously gives

A, = MA, (44)
A; = NA; (45)
Let:
_(ng23m14229 (46)
(r1 712771 12 2
— (ri 713711 729 (47)
(ri 71271 722
Where
a2
ra= (U= Wk + 55 (1= 200ky y+ 601 =20 () &, (48)

T'2 2 (1 #)k +_(1 Zﬂ)kx y+

2 £ (-2 (%) ko (49)

B? t
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1 2 6 2
1 2=121= Z?kx y 3= —6(1—2p) (%) ky 15 3=13 .= _ﬁ(l —2u) (%) ko, (50)

Minimizing Equation 33 with respect #y gives

ar D*a b a\? 1 2qa‘*k
= [6(1 —2) (;) ([2,41 +24,) k, + 5. (24, + 2A3].k22) - D—h] =0 (51)
That is:
2 i
6(1 — 24) (%) ([A1 + UA )k, + ; [4, + VAl].kZZ) — =g (52)

Factorizing Equations 52ndsimplifying gives

6(1 — 24) (%)ZA1 ([1 + ULk, + %. [1+ V].kzz) = ‘*‘;ﬂ (53)

TA, = qf*kh (54)

- (2) e
Where

T =6(1—24) (%)2 *([1+U].kz+%.[1+V].kzz) (56)

3.6. Numerical Analysis

The numerical analysis of a rectangular thick plate v
shown in the Figure 4 and carrying uniformly distributed load (includingveeijht) is presented. An exact
trigonometric functions as was obtained in the Equation 27 and applied here to get the actual values of the shape
functions, coefficients of deflection and shear deformation rotations at x and y axis of the plate

a
| |
| |
0 R
A C
Z Z
/
/] -
& -
L
/ /
7 cp
~1C -
Z 2
/
e -
Z 7
7 C -~
—=
o
Figure 4. CCCC Rectangular Plate
The boundary conditions of the plate in Figure 4 are as follows
AtR =Q =0, w = (57)
dw dw
AtR—Q—O,ﬁ—d—Q—O (58)
AtR =Q =1L, w= (59)
dw dw
AtR—Q—l,ﬁ—d—Q—O (60)

The derived trigonometric deflectiom (x,y) functions is subjected to a CCCC boundary condition totlyet
particular solution of the deflection. Hence, the analytical solution of the deflection of the plate in trigopnometric form
after satisfying the boundary conditions for all edges clamped rectangular plate presented in the Equation 61
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w =a, Xb,(C 025t R—1).(C 025t Q— 1) (61)
where the coefficient of the deflection

A, =a, Xb, (62)
while the shape function

h=(C 02t R—1).(C 025t Q— 1) (63)

3.7. Exact Displacement and Stress Expression

By substituting the value aofi;,4, a n d; in Equatios 49, 38 and 39 into Equation 15 20 and substitute
appropriately, the iplane displacement alongaxis becomes

u=t§_4ﬂ(k_n)a_h (64)

a ' D* \T/AR

The inplane displacement alongaxis becomes

_ o N oaat (kp\on
V_t"’:z_ﬁ'u*(r)aq (65)

The deflection equation of the plate as

w=(C o2t R—1).(C 025t 0—1).9% ("T—") (66)

D*

The six stress elemerdse presented in Equations 15 toa)

o = | (1= W0 HIEh w2 L 22 ()2 ©7)
% = i [ o+ L T 22 () 2] (©8)
0, = gt [ T+ L 4 () et 2 (69)
foy= ) [Le 2o L oo (70
o= e [ Lo () 2] 71

L L O
Ty z= @+ (-2p) 200 + 2a 8 D* \T/a (72)

Thus, the stiffness coefficients of CCCC rectangulatgs$ obtained from Equations 34 to 88d presented in the
Table 1

Table 1. Trigonometric form of stiffness coefficients of CCCC rectangular plate

Deflection form k, k., k, k, k2, ky

Trigonometry 1zt 4t 1 z* 3m? 3m? 1.0

4. Results and Discussion

The parametric data for the trigonometric stiffness coefficientisd, ky, ks, koz and kg for CCCC shape functions
are presented in Table 1. This data was obtained by substitutingdfgb@tinto Equation30, 31, 32, 33, 34 and 35 as
presented in the Figure 5. This stiffness coefficients were used to obtain the value of the shape functions and displacement
and rotation of the plate material when subjected to a uniformly distributexvérae load under the same boundary
conditions. The graph in Figure 5 showed thairkd k hawe the highest coefficient followed bykwhile k;, ko, and k
contains the lowest amount of stiffness coefficient
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1400
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8 800
P
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€ 600
o
m
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O || |
kx kxy ky kz k2z kq
Stiffness Coefficient

Figure 5. Stiffness coefficient for the CCCC plate boundary condition

The numerical results of the natimensional displacements (u, v & w) and the stresses characteristicsf a 3
clamped rectangular plate which was subjected to uniform distributed load was olisimgdhe established exact
trigonometric displacement function. Figa@and 7 contains the result of the rtimensional value of displacements
and stresses at different spifaickness aspect ratio in a rectangular thick plate aspect ratio of 1 agpeZtively

2.5 1
mw mu mQx mQz mTxy mTyz

i

Spantthicknes ratio (a/t)

N
1

=
o

[

o
o

o

Displacement (w, u) and Stresso, 6z, XY, TYZ)

)
o1

Figure 6. The result of displacements and stresses of a clamped square plates

The result covered the3 bending and stress analysis of rectangular plate at varying thickness. The span to thickness
ratio consideredsi ranged between 4, 5, 10, 15, 20, 50, 100 and CPT, which is obviously seen to span from the thick
plate, moderately thick plate and thin plate [22]. The present work obtainedimensional result of stresses and
displacements of the plate by expresshgdeflection and rotation functions in the form of trigopnometry to analyze the
bending characteristics of the plate

The nondimensional result in the Figure 6 shows that as the-8pekness ratio of the plate increase, thelene
displacement along and y axis (u and v) increases too, whereas, the deflection (w) which occurs at the plate due to the
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applied load decrease with increases in the value of thetkjgkness ratio of the plate. On the other hand, the stress
perpendicular to the x, y andazis (o, 0, & g,) decreases as the spaepth ratio of the plate increases. Meanwhile, the
increase at the spahickness ratio of the plate increases the value shear stress along(the)while the span depth

ratio causes aatrease in the value shear stress along-thand yz plane( t, ,& 7, ). These decrease continue until
failure occurs in the plate structure

Ow Ou Qx mQz Txy Tyz

w
o

w

N
o

N

[EY

o
o

Displacement (w, u) and stresso§, 6z, TXY, TYZ)
[
6]
|
]
|

o
I
I
|

4 5 10 15 20 50 100 CPT

o
o

Spanthicknes ratio (a/t)

Figure 7, Displacement and stresses of a CCCC plate aspect ratio of 2

Figure 6 shows that, at a spinickness ratio between 4 and 20, the value of out of plane displacement varies between
0.0026 and 0.0137. These values maintain a constant value of 0.0132 at ththisganss 50 till 100 which is the same
as the CPT. A vaation in deflection is discovered more when the plate is thicker and less when thhiska@ss
increase (thinner plate) under the same loading capacity/condition. This deflection becomes constant and equal to the
value of the CPT at spahickness rat of 50 and above under the same loading capacity/condition. These decrease
continue until the plate structure deflects beyond the elastic yield stress, hence, failure occurs. Thus, it can be said that
at span- thickness ratio between 4 and 20 the plateegarded as thick. The spathickness ratio beyond 20 till 50 the
plate is regarded as moderately thick while the thin plate is regarded as those beyertthisgaass ratio beyond 50

The nondimensional result in the Figure 7 shows that as the-8pekness ratio of the plate increase, thelene
displacement along x and y axis (u and v) increases too, whereas, the deflection (w) which occurs at the plate due to the
applied load decrease with increases in the value of thetkjgkness ratio othe plate. On the other hand, the stress
perpendicular to the x, y and z akis, o, & g,) decreases as the spd@pth ratio of the plate increases. Meanwhile, the
increase at the spdhickness ratio of the plate increases the value shear stress alonyg thexwhile the spasdepth
ratio causes a decreaselie value shear stress along the and yz plane(t, ,& 7, ).

Figure 7 shows that, at a spinickness ratio between 4 and 20, the value of out of plane displacement varies between
0.0509 and 0.0291. These values maintain a constant vau@2&3 at the spanthickness 50 till 100 which is equal
to the value of the CPT. A variation in deflection is discovered more when the plate is thicker and less when the span
thickness increase (thinner plate) under the same loading capacity/condii®deflection becomes constant and the
same as the CPT at sptmickness ratio of 50 and above under the same loading capacity/condition. These decrease
continue until the plate structure deflects beyond the elastic yield stress, hence, failure demjris.can be said that
at span- thickness ratio between 4 and 20 the plate is regarded as thick. Thetbjzimess ratio beyond 20 till 50 the
plate is regarded as moderately thick while the thin plate is regarded as those beyenthisgaass rab beyond 50

Study in the Figure 6 and 7 shows that as the aspect ratio of the plate increasglathe displacement along x and
y axis (u and v) decrease whereas, the deflection (w) which occurs at the plate due to the applied load increase with
increases in the value of the sgihiickness ratio of the plate. On the other hand, the stress perpendicular to the x, y and
z axis (oy, 0, & g,) increases as the spdepth ratio of the plate increases. This means that, if the plate material is
stretched beyond the elastic limit, the failure in a plate structure is bound to occur as the more stresses are induced withi
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the plate element which affects the performance in terms of the serviceability of the plate. Thus, caution must be taken
when séecting the depth and other dimensions along the x andordinate of the plate to ensure accuracy of the
analysis and safety in the construction

In summary, there are three categories of rectangular plates. The plates whose deflection and vertitaekshda
not vary much with CPT is categorized as thin plate. Hence, the plate whose deflection and transverse shear stress varies
very much from zero is categorized as thick plates. Thus, thetBjg&ness ratio for these categories of rectangular
plates are: Thick plate is categorized as the plate with the span to thickness /tatio 2 Owhile the thin plate is
categorized as the plate with the sphickness ratio.a/t > 1 0.0ln between the thick and thin plate exist, the
moderately thick plate. Thick plate is categorized as the plate with thetsplamess ratioa/t > 2 0< 50. Meanwhile,
the present theory stress prediction shows that the result of the displacement and stress of thin and moderately thick plate
using the 3D theory is the same for the bending analysis of rectangular plate under the CCCC boundary condition

Thecomparative analysis was performed in this study as presented in the Table 2 and Table 3 to show the disparity
between different theories used in the plate analysis. This theory includes the analytical process ranging from Double
integration, according tbevi, Mindlin theory, FSDT, HSDT and-B elasticity. Numerical and approximate approaches
were also adopted to compare and show the validity of the derived relationships. The present study was also validated
with the past works using different shape ottheanatical functions such as polynomial, exponential, hyperbolic and
trigonometric displacement functions. The result of the percentage difference evaluation showed that the plate with the
largest thickness (a/t of 4) givaspercentage difference of 1,815, 0.37 0.37 1.29 1.01and 3.12% of the work of
Ibearugbulem et a(2018)[28], Ibearugbulem & Onyek&020)[34], Li et al. (2015)[35], Liu & Liew (1998)[36],

Lok & Cheng(2001)[37], Shen & Hg1995)[38] and Zhong & Xu2017)[39] respetively, when compared with the
present study. On the other hand, the thick plate at a/t of 10ggp@xentage difference of 0,3898 0.98 0.98 1.64
0.98% and 2.95% dhe work of Ibearugbulem et §2018)[28], Ibearugbulem & Onyekg020)[34], Li et al.(2015)

[35], Liu & Liew (1998)[36], Lok & Cheng(2001) [37], Shen & He(1995) [38] and Zhong & Xu(2017)[39]
respectively, when comparedttvithe present study. More gbe thick plate at a/t of 20 givespercentage difference

of 0.8Q 0.80Q, 2.85 2.85and 2.89% of the work of Ibearugbulem et(a018)[28], Ibearugbulem & Onyekg&020)[34],

Li et al. (2015)[35], Liu & Liew (1998)[36] and Shen & Hé1995)[38] respectively, when compared with the present
study. The result of theavk of Lok & Cheng(2001)[37] andZhong & Xu(2017)[39] at a/t of 20 is not available in
the literature in consideratiom.able 3showsthat, the difference with past works in consideration percentagewise
decreases and converges as the platgeitng thinner. It can be deduced that, the difference with past works in
consideration percentagewise at a/t of 10 and 20 gives a constant value of 0.15% and 0.13% respectively, a value which
could be the same difference when compared with the valine @RT.

Table 2. Comparative deflection analysis for square plate at varyingspaf hi ckness ratio (p = a/t) b
and past studies

alt Present [28] [34] [35] [36] [37] [38] [39]
5 0.2178 0.214 0.219 0.217 0.217 0.215 0.220 0.211
10 0.1525 0.153 0.154 0.151 0.151 0.150 0.151 0.148
20 0.1369 0.138 0.138 0.133 0.133 - 0.133 -

From Table 3, its fourd that the average the difference wittD3lasticity trigonometric theory percentagewise and
those of the 2D HSDT with assumed polynomial shape function [30] afidiSDT with exact shape function [34] is
0.36% and 0.29% respectively. The average the difference pereergagvith 2D Mindlin FSDT [37,39] is about
2.41% and 3.62%, while the average difference percentagewise withDhhi@k plate numeric angsdis [35] anl
moderately thick38] is 53% and 61% respectively

Table 3. Percentage difference between the present study apdst studies

Abs oldutfef e bet ovyeree szmfiasvsral ue

%Di Ef Pawtal ue
Spanto depth ratio (a/t) [28] [34] [35] [36] [37] [38] [39]
5 1.745 0.551 0.367 0.367 1.286 1.010 3.122
10 0.328 0.984 0.984 0.984 1.639 0.984 2.951
20 0.804 0.804 2.849 2.849 - 2.849 -
Average % Difference 0.36 0.29 0.53 0.52 241 0.61 3.62
Total Ave.% Difference 1.19
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The overall average difference percentage wise withMindlin FSDT [37, 39] is about 3.02% while the overall
average difference percentagewise with tHe Bumeric analysis [36, 39] is about 0.62%. Thesent study overall
average difference values of deflection percentagewise with those uBindgSDT shape functions [30, 34] is about
0.33%. This negligible difference showed that HSDT is prefetatitee Levi, Mindlin theory and numerical method in
the thick plate analysis. Consequently, the smaller value of percentage between the present study andXhtSBDf 2
(0.33%) showed that HSDT using derived polynomial displacement function is better compared to those of HSDT with
an assumed shape fuiott as it predicted an exact deflection which proved more reliable in the analysis of thick plate
under the same boundary condition. Despite the fact that both Ibearugbule(@@t&)[28], Ibearugbulem & Onyeka
(2020)[34], Li et al.(2015)[35], Liu & Liew (1998)[36], Lok & Cheng(2001)[37], Shen & Hg1995)[38] and Zhong
& Xu (2017)[39] used shear deformation theory their work differs more when compared with the present study. This
shows that HSDT derived shape function, enhanced closedoluton in plate analysigdowever, the overall average
difference values of deflection percentagewise with Ibearugbulem @04i8)[28], Ibearugbulem & Onyek&020)

[34], Li et al.(2015)[35], Liu & Liew (1998)[36], Lok & Cheng(2001)[37], Shen & Hg(1995) [38] and Zhong & Xu
(2017)[39] is 1. 19%. This showed that at the 98 % confidence level, both theory and methods are the same for a thick
plate analysis

It is worth noting that the-® RPT with exact deflection gives a closer result when comparédewéct 3D plate
theory than those-B RPTs with an assumed deflection and other RPT and CPT in the thick plate analysis. Hence, an
exact 3D theory is required to achieve efficiency. Thus, the present model uses the six stress elements to yield the exact
solution for the analysis of a thick plate that is clamped and supported on all the edges (CCCC). Hence, the result of the
present analysis, which contains all the stress elements with an exact deflection function, ensures that the variation of
the stresas through the thickness of the plateich induces stresses can be used with confidence for bending analysis
of the plate.
5. Conclusiors

The 3D bending and stress analysis of thick rectangular plates uddngj&sticity theory has been investigated, and
the following conclusion has been drawn:

¢ A closerform solution is predicted by the trigonometric shape function than by the polynomial displacement
function

e The present theory of stress prediction shows that the result of the displacement and sireaadfitbderately
thick plates using the-B theory is the same at a sgickness ratio beyond 50% for the bending analysis of
rectangular plates under the CCCC boundary condition

¢ Classical theory is good for thin plates but epezdicts buckling loadi relatively thick plates

¢ Plate analysis requires[3 analogy for a true solution, but thee2shear deformation theory gives an approximate
solution which is practically unrealistic

¢ The 3D exact plate model developed in this study can be used antigsis of any category of the plate
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