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Abstract 

The COVID-19 outbreak was initially reported in Wuhan, China, and it has been declared a Public Health Emergency of 

International Concern (PHEIC) on January 30, 2020 by WHO. It has now spread to over 180 countries and has gradually 

evolved into a world-wide pandemic, endangering the state of global public health and becoming a serious threat to the 

global community. To combat and prevent the spread of the disease, all individuals should be well-informed of the 

rapidly changing state of COVID-19. To accomplish this objective, I have built a website to analyze and deliver the latest 

state of the disease and relevant analytical insights. The website is designed to cater to the general audience and aims to 

communicate insights through various straightforward and concise data visualizations that are supported by sound 

statistical methods, accurate data modeling, state-of-the-art natural language processing techniques, and reliable data 

sources. This paper discusses the major methodologies, which are utilized to generate the insights displayed on the 

website, which include an automatic data ingestion pipeline, normalization techniques, moving average computation, 

ARIMA time-series forecasting, and logistic regression models. In addition, the paper highlights key discoveries that 

have been derived with regard to COVID-19 using the methodologies. 

Keywords: Coronavirus Epidemiology; Data Analysis; Data Visualization; Hypothesis Testing; ARIMA Time-Series Forecast; Natural 

Language Processing; Logistic Regression. 

 

1. Introduction 

The floristic region of South Kolkheti (Adjara) is part of the Caucasus Ecoregion, which is included among the 200 

world-renowned ecoregions by the World Wildlife Fund (WWF). These ecoregions are characterized by plant 

diversity, high levels of endemism, taxonomic uniqueness, and the rarity of biomes globally [1]. 

COVID-19 is an infectious disease caused by a severe acute respiratory syndrome coronavirus. It was first 

identified in December 2019 in Wuhan, China, and has resulted in an ongoing pandemic. The virus is typically rapidly 

spread from one person to another via respiratory droplets produced during coughing and sneezing. It is considered 

most contagious when people are symptomatic, although transmission may be possible before symptoms show in 

patients. The time between exposure and symptom onset is generally between two and 14 days, with an average of five 

days [1]. Since knowledge about this virus is rapidly evolving due to its rapid spread and uncertain mutations, the 

public is urged to learn about the most recent state of the virus on a regular basis in order to stay informed. To 

contribute to the fight against COVID-19, I have created a COVID-19 real-time tracker website to serve as a platform 
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to provide the latest status of the spread of the disease and to present useful analytical insights into the disease. It 

includes features such as odometers of the latest state of COVID-19 cases, trend analysis, and short-term forecasts in 

181 different countries, as well as informative visualizations of the most common symptoms and risk factors, and 

patient demographic distributions. The website retrieves the most recent data from reliable data sources on an hourly 

basis and transforms the data into informative visualizations and analytical insights.  

Section 2 of the paper discusses the related work in the realm of data analysis of COVID-19 and highlights the 

innovative differences between the study presneted in this paper and the previous studies. Section 3 to 6 of the paper 

provide a brief description of every feature of the website and discuss relevant methodologies behind each feature. 

Each section begins with an overview subsection to introduce the components and functions of the feature, followed 

by more detailed discussions of the methodologies that are utilized to build the feature and key insights from the 

relevant analytic study. In section 3, the paper discusses the mechanism of real-time data retrieval and various data 

processing techniques that are utilized to generate the insights in the Overview feature of the website. Section 4 

discusses the concepts of moving average and ARIMA time-series forecasting, and how they are implemented in the 

Trend feature of the website. In section 5, the paper discusses n-gram tokenization, min-max normalization, and 

logistic regression model for studying common symptoms from the COVID-19 patients and risk factors that 

potentially increase the patient’s likelihood of dying from the disease. Section 6 highlights the demographic 

distributions of infected patients and explains the applications of hypothesis testing in discovering potential 

differences in demographic distributions of different patient groups. Lastly, section 7 concludes the paper with major 

components of this study and discusses the future of the research and development regarding COVD-19.  

2. Related Work 

Since the initial outbreak of COVID-19, there has been a number of attempts to analyze the state of the virus from 

the perspective of data analytics. In early 2020, Samrat K. Dey released one of the earliest papers that analyzes the 

outbreak of COVID-19 through visual exploratory analysis, focusing on the spatial component and comparing the 

spread in the Hubei province, other Chinese provinces, and the rest of the world [2]. The author has also published an 

interactive notebook that consists of various interactive visualizations on a website. While the website serves as a great 

platform for the audience to gain deeper insights, the website’s notebook remains in a static state and does not update 

as the state of COVID-19 quickly changes with time. This inspired me to present my analysis of COVID-19 in a 

highly reproducible manner, in which case all data ingestions and analysis procedures can be repeated automatically 

and persistently. In addition to visual exploratory analysis, there was also significant effort in understanding and 

forecasting the spread of the virus. In an early paper presented by Tong (2020), the author attempts to model and 

project the spread of the virus through mathematical analysis that utilizes moving average and the SIR model, a 

traditional epidemic model [3]. 

Similar work was also conducted in a study led by Baoquan Chen, in which case the author attempts to forecast the 

future trend of COVID-19 through the C-SEIR model, an extension of the traditional SIR model [4]. After 

reproducing some of the previously mentioned work, I have found epidemic modeling to be limiting in terms of 

modeling the uncertainty of COVID-19 due to its strict model assumptions that conflict with the spread of COVID-19. 

Thus, I have taken a different direction to model the state of COVID-19 with a more flexible framework that utilizes 

time-series modeling with moving average in my study. Moreover, there were many clinical studies on discovering the 

common symptoms and identifying potential risk factors associated with the virus through traditional medical research 

methods such as experimental design and analysis [5-7]. In this paper, I have proposed an innovative way to analyze 

medical records retrospectively to estimate the relative prevalence of various symptoms and identify potential risk 

factors through natural language processing techniques. This paper also significantly differs from the existing related 

work in the field because it presents a larger breadth of analysis on various aspects of COVID-19, ranging from 

visualizations of its latest state to statistical modeling that produces short-terming forecasting and identifies potential 

risk factors. 

3. Feature 1: Overview 

3.1. Introduction 

The landing page of the website is the Overview page, and it presents the most current states of COVID-19 at a 

global scale (Figure 1). The top of the page has three odometer boxes to display the total confirmed cases, the total 

deaths, and the total recovered cases along with their respective daily new counts. The bottom half of the page 

contains a user-interactive control panel and a display window. The users are able to apply population normalization 

or log transformation to the visualizations in the display window through the widgets in the control panel.  
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Figure 1. Overview Page (Website Landing Page) 

The display window has the viewing options of heat map visualizations (Figure 2), time-series line plots (Figure 3), 

or data tables (Figure 4). All visualizations have interactive features such as tooltip and zooming, and all tables can be 

interactively sorted by clicking on column names. The heat map visualization allows the users to quickly assess the 

severity of COVID-19 in different geographical locations while the time-series line plot shows a comparison of the 

most affected regions on a standardized time scale. The data table provides the users with the flexibility to explore and 

search for data of their interest. 

 

Figure 2. Global Confirmed Cases Heat Map 

The purpose of this feature is to provide the audience with a concise view of the severity of COVID-19 in different 

locations and inform the audience of the latest progression of the disease easily. The options of applying log 

transformation and population normalization allow the audience to observe the state of COVID-19 from different 

perspectives while the interactive table allows the audience to explore specific metrics of their interest. These options 

are useful because they allow users to access more detailed information under a different context. The website also 

consists of an overview page specific for the United States at a state level, similar to the shown page corresponding to 

a global scale at the country level. The overview page for United Stats shares the same features discussed above and it 

can be accessed by expanding the Overview feature and clicking on the U.S. tab (Figure 5). The subsequent 

subsections discuss the mechanism of automatic data ingestion pipeline and various data processing techniques that 

are utilized to generate the insights in the Overview feature of the website. 
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Figure 3. Global Confirmed Cases Time-Series Line Plot 

 

Figure 4. Global Data Table for COVID-19 Statistics by Country 

 

Figure 5. Two Subpages of the Overview Feature 
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3.2. Automatic Data Ingestion Pipeline 

To ensure the accuracy and the reliability of the website’s content, the website’s server retrieves the newest data 

from the COVID-19 data repository maintained by the Center for Systems Science and Engineering at Johns Hopkins 

University on an hourly basis. The data repository is regulated by the Johns Hopkins University Center for Systems 

Science and Engineering and supported by the ESRI Living Atlas Team and the Johns Hopkins University Applied 

Physics Lab. The data source is supposed to be updated numerous times throughout the day, and the validity of the 

data is verified by researchers at Johns Hopkins University. The content displayed in the Overview feature is therefore 

derived from a real-time and reliable data source. 

To achieve an automatic data ingestion process, I have created a data pipeline using Apache Airflow to retrieve the 

most recent data from the CSSE data repository by Johns Hopkins. The data pipeline contains a protocol to download 

and ingest the most recent data from the data source, and it is governed by a scheduler to run at the beginning of every 

hour. During each data ingestion process, the pipeline’s program will download the data by obtaining the current date 

and accessing the data source with a modified URL. For example, the newest daily report data file can always be 

accessed using the link “https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/ 

csse_covid_19_daily_reports/MM-DD-YYYY.csv, where “MM-DD-YYYY” is used as a placeholder to store the 

current date. The program recognizes the date in Pacific Standard Time and inputs it into the link’s placeholder when 

the server tries to retrieve the newest data. The link directs to a raw CSV file in HTML format, which can be directly 

downloaded using a pre-specified R script. Once the data file is downloaded successfully, it will be ingested and 

stored in an AWS S3 bucket. When the website is opened by a user, the server behind the website will read the data 

stored in the AWS S3 bucket and pre-process it into different data frames that support the content on the website. If 

the process were to be unsuccessful due to unforeseen circumstances, the web server will load up the most recent data 

file that it has ingested previously to support the content on the web page. Figure 6 summarizes the data ingestion 

process of the website. 

 

Figure 6. Automatic Data Ingestion Pipeline Summary 

3.3. Transformation and Normalization Techniques  

The control panel on the page allows the users to apply log transformation and population normalization (i.e. cases 

per million) to the data, which interacts with the corresponding visualizations of the heat map and time-series line plot. 

When the user turns the log scale switch on, the logarithmic function with a base of 10 is used as a deterministic 

mathematical function to be applied to each point in a data set. That is, for every data point 𝑥𝑖, its value will be 

replaced by 𝑦𝑖 = log10(𝑥𝑖). Such a transformation can significantly improve the interpretability and the appearance of 

the graph. The choice of using the logarithmic function is based on the nature of exponential growth associated with 

pandemic and the relatively large differences in the raw counts of cases across different locations in the later stages of 

a pandemic. The effect of log transformation is demonstrated in Figure 7. 
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Figure 7. Before (Left) and After (Right) Log Transformation 

On the other hand, while population normalization does not necessarily improve the appearance of the 

visualizations, it alters the interpretation of the visualization by accounting for the population of each region. Such a 

perspective is beneficial because each country or state could vary significantly in its population. Assessing the number 

of cases per million provides a more robust estimation of the severity of the COVID-19 in each region rather than 

solely observing the total counts. To achieve population normalization, global country-level population data and state-

level population data of the U.S. are preprocessed and stored on the server, and they will be joined to the retrieved data 

to produce the corresponding visualizations. Precisely, the normalization is applied in the following manner, for every 

data point 𝑥𝑖, its value will be replaced by 𝑦𝑖 = (𝑥𝑖/𝑛𝑗).1,000,000, where 𝑛𝑗  denotes the population of countryj. 

Figure 8 further displays the usefulness of the log transformation as a visual tool for studying the data. 

 

Figure 8. Before (Left) and After (Right) Population Normalization 

In addition, the time-series line plots have built-in timescale standardization. Rather than comparing the time-series 

data with respect to date, the plot compares them with respect to the number of days after the spread of the disease 

reaches a certain magnitude. Since the time frames of outbreaks are different in every region, it will be hard to 

compare the severity of the disease in each region in separate time frames. Hence, the application of timescale 

standardization helps to standardize the time-series data into a universal time scale. In conjunction with population 

normalization, the audience is able to compare regions that have the fastest spread of COVID-19. 

4. Feature 2: Trend Analysis 

4.1. Introduction 

This section discusses another useful feature of the website and its ability to display time-series data in different 

ways. The Trend feature of the website focuses on individual country-level statistics. The page contains a user-

interactive control panel and a display window, where the display window shows visualizations of the daily increment 

of daily new cases as shown in Figures 9 and 10. In the figure, the orange bar plot represents the number of daily new 

cases while the black line represents the 14-days moving average of the daily new cases. The grey dotted line extended 

from the black line and the orange ribbon around it together represent a 14-day forecast of the number of daily new 

cases. The user-interactive control panel on the left allows the user to select the metric of interest (i.e. confirmed cases, 

deaths, or recovered cases), the country of interest (including 181 countries), and whether the scope of the plot should 

focus on visualizing the short-term trend or the long-term trend. 
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Figure 9. New Confirmed Cases Short-term Trend in USA 

 

Figure 10. New Confirmed Cases Long-term Trend in USA 

The purpose of this feature is to provide insights into the trend of the spread of the disease in each country. In 

particular, the plot is designed to answer the pressing question of whether the curve has flattened. Since the number of 

daily new cases has a substantial amount of fluctuations, applying a moving average aggregation can help to reveal the 

underlying direction of the curve of the number of daily new cases. In addition, the moving average values display 

trends and patterns that can serve as the basis for time-series modeling to be used for forecasting purposes. The 

subsequent subsections discuss the concepts of moving average and ARIMA time-series forecasting, and how they are 

implemented in the Trend feature of the website. 

4.2. Moving Average 

One major component of the trend visualization is the moving average curve overlaid on the bar plot, and the value 

of the period of days used for commutating the moving average aggregation is 14 in this case. Moving average is an 

aggregating calculation to analyze data points by calculating a series of averages on different subsets of the full data 

set [8]. In this case, the method of simple moving average is used to compute the values of the moving averages. As an 

example, suppose we wish to calculate a simple moving average, if tX  is the number of new cases at time t, a simple 

moving average at mt   is computed as: 
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 By computing a series of simple moving averages, we smooth out short-term fluctuations in the number of daily new 

cases and highlight longer-term trends or cycles. This is especially useful in determining the constantly changing state 

of the COVID-19 outbreak in a particular region. 

(1) 
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4.3. ARIMA Time-Series Model 

The following discussion briefly introduces the ARIMA model and provides the necessary background information 

for the prediction mechanism used by the website. ARIMA, short for Auto Regressive Integrated Moving Average 

models, are commonly used to fit time-series data using lags and the lagged forecast errors so that the fitted model can 

be used to forecast future values. 

ARIMA models involve the notions of stationarity, differencing, autoregressive models, and moving average 

models [10]. An ARIMA model assumes that the input time-series data is univariate and stationary. Stationarity 

implies that the time series’ properties are independent of the time when they were captured. Additionally, the data has 

a constant mean and variance. Otherwise, they need to be transformed before one can use the ARIMA model. Such a 

transformation process is called differencing, and the appropriate order of differencing can be determined by using 

methods such as the Kwiatkowski-Phillips- Schmidt-Shin (KPSS) test [11]. Differencing is a process of computing the 

differences between consecutive observations. It has the function of stabilizing the mean of a time series by removing 

changes in the level of a time series, and therefore reducing trend and seasonality. In an autoregression model, we 

forecast the variable of interest using a linear combination of past values of the variable. The term autoregression 

indicates that it is a regression of the variable against itself. Thus, an autoregressive model of order p can be written as: 

,...11 tptptt yycy   
 

where t  is white noise. This is like a multiple regression but with lagged values of ty as predictors. We refer to this 

as an AR(p) model, an autoregressive model of order p. In contrast, rather than using past values of the forecast 

variable in a regression, a moving average model uses past forecast errors in a regression-like model. 

，qtqtt cy    ...11
 

where t  is white noise. We refer to this as an MA(q) model, a moving average model of order q. 

If we combine differencing with autoregression and a moving average model, we obtain an ARIM model. The full 

model of can be written as: 

,...... 11

''

11

'

tqtqtptptt yycy   
 

where yt’ is the differenced series, p is the order of the autoregressive part, d is the degree of differencing, and q is the 

order of the moving average part. Once we have the desired forecast yt’, we can undifference the forecast values to 

obtain the forecast of the original time-series. We denote such a model by ARIMA(p,d,q). 

Auto ARIMA models can be implemented using the auto.arima() function in the forecast R package. On the 

website, ARIMA models are used to predict is used to implement ARIMA time-series prediction on the number of 

daily new cases. For every given time-series, the script automatically estimates the parameters in the ARIMA fitting 

model and finds the best ARIMA model to the data based on the AIC score. AIC is an abbreviation of the Akaike 

Information Criterion, and it estimates the quality of a mode fit l relative to a collection of data models. Specifically, 

AIC estimates the estimator of out-of-sample prediction error, and so smaller values are desirable. Given a particular 

statistical data model with k estimated parameters number and �̂� the maximum likelihood function value. Then the 

model’s AIC value is given by: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�) (5) 

Thus, for ARIMA models, AIC can be computed as follows; 

𝐴𝐼𝐶 = −2 log 𝐿 + 2(𝑝 + 𝑞 + 𝑘) (6) 

For every given time-series, auto.arima() chooses the parameters which give the smallest AIC and forecasts the 

values for the next n days [9]. For the forecast displayed on the website, we use n = 5 days. As a part of the output 

from the auto.arima() function, the 95% intervals are taken to plot the transparent orange ribbon around the mean 

prediction shown in Figures 9 and 10.  

5. Feature 3: Common Symptoms 

5.1. Introduction 

This subsection discusses common symptoms experienced by COVID-19 patients and the information can be 

obtained from the website. The section Common Symptoms contains an interactive visual summary of the most 

common symptoms associated with the disease (Figure 11). The information discussed in this section is derived from 

medical records of infected patients around the world made publicly available by the Open COVID-19 Data Working 

Group in their nCoV2019 data repository. Due to data quality issues and the uncertain nature of the disease, it is 

difficult to estimate the true prevalence of the symptoms among infected patients. Hence, their prevalence measure is 

standardized to a 0-to-10 scale and is represented by the horizontal axis of the plot.  

(2) 

(3) 

(4) 
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Figure 11. Common Symptoms of COVID-19 

5.2. N-Gram Tokenization 

Since the symptom variable from the patient-level data contains descriptive sentences of a patient’s symptoms (e.g. 

“Moderate fever 38.5oC, cough, strong headache”), we have to apply natural language processing techniques such as 

n-gram tokenization to transform and preprocess the data. The goal is to convert the descriptive sentences into a set of 

binary indicator variables, as shown by the simple example in Figure 12. 

 

Figure 12. Example of Converting Sentences to Binary Indicators 

The process of word tokenization refers to splitting a sample of text into words or phrases. In addition, n-gram 

tokenization refers to tokenization that splits the text into phrases which contain n words. For example, unigram 

tokenization turns the sentence “he has shortness of breath” into [he, has, shortness, of, breath] while trigram 

tokenization turns the sentence into [he has shortness, has shortness of, shortness of breath]. 

As an attempt to collect all of the recorded symptoms in the dataset, we apply n-gram tokenization to every 

descriptive sentence and compute the frequency of each token for n = {1, 2, 3, 4}. As anticipated, we can obtain a list 

of the most common symptoms from the symptom records by looking through the processed output from n-gram 

tokenization (Figure 13). 

 

Figure 13. Examples of N-Gram Output 
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After obtaining a comprehensive list of symptoms, we create a dictionary of phrases for each symptom and loop 

through all descriptive sentences to see if they contain any phrase in any dictionary. For example, the dictionary for 

cough is [cough, coughing], and any sentence that contains cough or coughing will take the value of 1 for cough’s 

binary indicator variable and 0 if otherwise. By the end of the loop, we would have converted the descriptive sentences 

into a set of binary indicator variables in the format shown in Figure 12. 

5.3. Min-Max Normalization 

After the application of n-gram tokenization to create all the necessary binary indicator variables, we can then 

obtain the aggregated count of patients for every symptom by calculating the numerical sum of each binary indicator 

variable. To better communicate the level of prevalence of each symptom, we apply min-max normalization to the 

columnar sums to standardize each data point on a scale of 0 to 10. For any symptom’s columnar sum, Si, its scaled 

value is computed as follows; 

，10
minmax

min
, 
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where i refers to the symptom index i on the vertical axis in Figure 11. The scaled value is an abstract representation of 

the symptom’s prevalence relative to other symptoms, and it does not reflect the true prevalence of the symptom 

among patients who have been infected with COVID-19. 

5.4. Logistic Regression 

A logistic regression model is built to identify risk factors that could potentially increase a patient’s likelihood of 

dying from COVID-19, and more generally for any model with a binary outcome. Once we have formed all the binary 

indicator variables for symptoms, we use them along with other variables as predictors to build a logistic regression 

model to predict a patient’s binary outcome, such as whether the patient recovered from the disease or died from the 

disease. We next review the logistic regression model and discuss hypothesis testing of the model’s coefficients. 

Let y be a binary output variable, taking on values 0 or 1, where 1 denotes the patient's death and 0 otherwise. 
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To find the maximum likelihood estimators of β, we differentiate the above expression with respect to each β 
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(9) 

(10) 
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Since there is no closed-form solution to these equations, they must be solved iteratively using a numerical method, 

such as the Newton-Raphson method. Assuming that we have successfully estimated all the coefficients, ̂ , using a 

numerical method, we then conduct hypothesis testing to evaluate if the predictors have statistically significant 

associations with the outcome variable [12]. 

Using large sample theory, we apply the Wald test to test any selected coefficient in the model. If the jth coefficient 

is of interest, null and alternative hypotheses are: 
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To calculate the test statistics associated with the coefficient, we compute z as follows; 
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Which has a standard normal distribution under the null hypothesis. Here ̂  is the estimated coefficient and its 

standard deviation, )ˆ(SE , is calculated by taking the inverse of the estimated information matrix. Extension to the 

case when we want to test multiple coefficients is available but not discussed here. 

We now use a multiple logistic model to fit the COVID-19 patient dataset and include symptoms and demographic 

variables as predictors, we have the following logit function; 
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where π is the probability that a patient will die from COVID-19 or not. The above symptoms are taken from Figure 

11 and the indicator variable takes on the value 1 if the patient has that particular symptom and 0 otherwise. After the 

model is fitted, we need to assess the quality of the model fit. We use cross-validation to evaluate the model's ability to 

predict future or out-of-sample responses using various goodness of fit measures [13]. We also apply model diagnostic 

tools in order to flag potential problems such as overfitting or selection bias. These additional analyses provide 

insights on the model’s level of robustness and generalization of the new data that is not a part of its training data. One 

round of cross-validation partitions a sample of data into complementary subsets, performs the analysis on one subset 

(i.e. the training set), and validates the analysis on the other subset (i.e. the validation set or testing set). To reduce 

variability, we perform this procedure k times by initially partitioning the data into k subsets. Figure 14 demonstrates a 

visual summary of the process when k = 5. 

 

Figure 14. 5-Fold Cross Validation Visualization 

(12) 

(13) 
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Using the caret and glmnet packages in R, we use glmnet to create our logistic regression model and feed it into the 

cross-validation function from caret. We then perform 5-fold cross-validation to compute the overall accuracy and the 

ROC curve of the logistic regression model. Our results show that the model has an overall accuracy of 0.900 with a 

standard deviation of 0.03, and the ROC curve is shown in Figure 16. We recall ROC is short for receiver operating 

characteristic curve, and it is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. AUROC is short for the area under the ROC curve and a random classifier has a 

baseline AUROC of 0.5. In general, a binary classifier is more desirable if it has a larger AUROC value. 

 

Figure 15. ROC Curve 

After confirming the quality of the model, we apply the same model to the whole dataset, and the Table 1 displays 

our results for the fitted model. 

Table 1. Logistic Regression Analysis Results 

Variable Estimate Std. Error z value Pr (>|z|) 

(Intercept) -8.1 0.73 -11.11 <0.001 

age 0.11 0.01 10.09 <0.001 

sexFemale -0.37 0.3 -1.23 0.22 

Chronic_disease_binary 1 0.51 0.42 1.23 0.22 

respiratory_distress_syndrome 1 19.53 1402.78 0.01 0.99 

respiratory_failure 1 19.46 1832.13 0.01 0.99 

chest_ distress 1 18.38 4619.9 0 1 

shortness_of_breath 1 2.56 1.11 2.3 0.02 

heart_ failure 1 17.76 3812.91 0 1 

runny_nose 1 -17.4 3196.51 -0.01 1 

septic_shock 1 16.09 2113.25 0.01 0.99 

sore_throat 1 -0.04 1.15 -0.04 0.97 

anorexia 1 17.33 7604.24 0 1 

arrhythmia 1 12.15 2892.88 0 1 

cough 1 0.69 0.6 1.15 0.25 

diarrhea 1 2.42 9.78 0.25 0.8 

dizziness 1 18.96 10754.01 0 1 

fatigue 1 1.43 1.06 1.35 0.18 

fever 1 0.79 0.5 1.59 0.11 

headache 1 0.94 4.41 0.21 0.83 

infarction 1 19.96 3750.52 0.01 1 

malaise 1 -18.27 5054.53 0 1 

myalgia 1 -17.88 4579.83 0 1 

phlegm 1 -15.06 4911.26 0 1 

pneumonia 1 2.87 1.07 2.7 0.01 

sepsis 1 13.85 4111.91 0 1 
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6. Feature 4: Patient Demographics 

6.1. Introduction 

This section of the website shows a summary visualization of the distributions of demographic characteristics of 

patients with recorded demographic information (Figure 16). The demographic information available from the data 

source includes patient age and gender. 

 

 

 

Figure 16. Summary Visualizations of Demographics Characteristics of COVID-19 Patients 

6.2. Two Sample T-Test 

To determine if there is a statistically significant difference in the age of two patient groups, active/recovered or 

death, we conduct a two-sample t-test. Two-sample t-test is a hypothesis testing method to compare two continuous-

data distributions. More precisely, it tests to determine if the means of two continuous distributions are equal. The 

assumptions of the two-sample t-test properly are: 
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i. The data are continuous (not discrete), 

ii. The data follow the normal probability distribution, 

iii. The variances of the two populations are equal, 

iv. The two samples are independent. There is no relationship between the individuals in one sample as compared to 

the other, 

v. Both samples are simple random samples from their respective populations and each individual in the population 

has an equal probability of being selected in the sample [14]. 

Assumption (i) is satisfied as the value of age is continuous. However, assumptions (iv) and (v) may not be valid 

due to potential data quality issues such as missing data. We presume they are satisfied and proceed with cautions. For 

assumptions (ii), we validate the data’s normality using QQ plots as shown in Figure 17. 

 

Figure 17. QQ Plots of Ages of Active/Recovered Patients (Left) and Dead Patients (Right) 

The data points appear to be decently consistent with the quantiles of a normal distribution. For assumption (iii), 

we apply the F-test to test the equality of variances for the two groups and the hypotheses are 
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where SX denotes the sample standard deviation of the age of active/recovered patients, SY denotes the sample standard 

deviation of the age of dead patients. Under the null hypothesis, F has an F-distribution with n and m degrees of 

freedom and for our data, the corresponding p-value is 0.00097. Thus, we have sufficient evidence to reject the null 

hypothesis and conclude that the variances of the two groups are unequal at the alpha level of 0.05. 

Since the sample variances have been shown to be unequal, we use a two sample t-test with un-pooled variances to 

test whether the means from the two groups are equal, as follows, 

，

m

S

n

S

YX
t

H

H

YX

YX

YX

22

1

0

:

:












  

.

1

)(

1

)(

)(

2
2

2
2

2
22










m

m

S

n

n

S

m

S

n

S

vdf
YX

YX

 

Under the null hypothesis, t has a student-t distribution with the degree of freedom of v. With a test statistic of -

23.785 and a p-value that is approximately 0, we reject the null hypothesis at the alpha level of 0.05. Hence, we 

conclude that the average age of patients who are active or recovered is different from the average of patients who 

have died from COVID-19. 

(14) 

(15) 

(16) 
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6.3. Chi-Square Test 

To determine if there is a statistically significant association between a patient’s gender and a patient’s outcome, 

we conduct a Chi-Square test for a test of association of a 2x2 contingency table. The assumptions of the Chi-Square 

Test are 

vi. The data are continuous (not discrete), 

vii. The data follow the normal probability distribution, 

viii. The variances of the two populations are equal, 

ix. The two samples are independent. There is no relationship between the individuals in one sample as compared to 

the other, 

x. Both samples are simple random samples from their respective populations and each individual in the population 

has an equal probability of being selected in the sample [15]. 

Assumptions (i) and (ii) are met since we are observing counts of patients who are either male or female, and either 

active/recovered or deceased. In addition, assumption (iv) is satisfied as shown by the 2x2 contingency table below. 

We presume assumption (iii) to hold and proceed. 

After filtering out missing data to create a subset of patient data with recorded genders and outcomes, we obtained 

the following 2x2 contingency Table: 

Table 2. The 2×2 Contingency Table 

Gender Active/Recovered Death 

Male 299 132 

Female 213 71 

More generally, in a rxc contingency table, let Ri and Cj be the row sum of row i and the column sum of column j 

respectively, and let n be the total in the sample. We calculate the Chi-square test statistic as follows, 
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Under the null hypothesis, gender has no association with whether the COVID-19 patients died from the disease or 

not, X2 has a Chi-square distribution with the degree of freedom of (r-1)(c-1), where r and c are the number of rows 

and columns in the contingency table, respectively. For our data in Table 2, we obtained a test statistic of 2.6657 and a 

p-value of 0.1025. The result does not provide sufficient evidence for rejecting the null hypothesis at the alpha level of 

0.05 and we conclude that a patient’s gender has no statistically significant association with whether the COVID-19 

patients died from the disease or not. 

7. Conclusion 

This research describes a web-based application for assessing real-time data for analyzing the latest trends of 

COVID-19 across different regions, COVID-19’s symptoms, and patient demographics. The research also highlights 

details of the methodologies behind the real-time COVID-19 tracker website, which include automatic data ingestion 

pipeline, data transformation and normalization, time-series forecast with ARIMA model forecast, text mining 

techniques, and logistic regression model. The literature also explains how these methodologies are combined to 

produce predictions and insights. The unique and innovative components of the analytical approach in this paper 

include the automatic data ingestion and processing associated with the website, as well as the NLP-oriented approach 

to discover the common symptoms. However, we need to be cautious about accepting the conclusions as there are 

potential data quality issues, such as when the patient-level data has a substantial amount of missing data and 

erroneous entries. To verify the findings in this research, we should repeatedly reproduce our findings in the research 

when we have access to an updated dataset and towards the end of the pandemic. 

During a global-level pandemic such as COVID-19, it is paramount for the public to have access to the latest status 

of the outbreak and be well-informed of relevant insights into the disease. A platform such as a real-time COVID-19 

tracker website will assist the public community to disseminate accurate and reliable insights into the spread of 

COVID-19. The research and effort behind this project are motivated by the social responsibility to spread awareness 

to the common public by providing scientific-based data analysis, prediction, and relevant findings. This paper and 

research project are still ongoing research as many more investigations regarding COVID-19 can be carried out. It will 

serve as an initial step to unravel the many uncertainties that revolve around this global pandemic. 

(17) 
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