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Abstract

This study aims to improve the accuracy, speed, and safety of suicide risk assessment among adolescents in the digital
ecosystems of smart cities. To achieve this goal, an integrated system architecture was developed that combines natural
language processing methods, transformer models, and privacy-preserving computation. The methodological part includes
large-scale textual data analysis, distributed processing in Apache Spark and Hadoop environments, and the use of
federated learning, which allows models to be trained without transferring sensitive source information. The evaluation
was conducted on open mental health datasets and supplemented by a series of experiments simulating the system's
operation in real time, as well as surveys of specialists — psychologists, educators, and IT experts. The analysis showed
that transformer models, particularly BERT, significantly outperform classical algorithms, achieving an AUC-ROC of 0.96
and an F1 score of 0.92 with an average response time of 2.4 seconds. Survey participants noted the importance of
transparency and data protection, and the proposed architecture received high marks for reducing the risk of information
leaks and providing robust audit mechanisms. The novelty of the work lies in the combination of predictive analytics,
federated learning, differential privacy, and blockchain traceability in a single application-oriented system. The results
show that ethically sound and rapid suicide risk detection can be implemented in schools, medical institutions, and
municipal services, providing both practical benefits and contributing to methodological advancements.

Keywords: Smart Cities; Adolescent Mental Health; Suicide Risk Prediction; Privacy-Preserving Al; Federated Learning; Cloud
Computing; NLP.

1. Introduction

Teen suicide remains one of the biggest public health issues. With the increasing digitalization of communication,
many early warning signs now appear not in clinical settings but in digital communications — posts on social media,
messages on messaging apps, and educational digital platforms. At the same time, educational institutions, medical
services, and municipal structures lack the tools to systematically analyze such data on a large scale and in real time
without violating fundamental security and confidentiality principles. As a result, existing methods for identifying
suicide risk remain fragmented, and digital systems do not provide sufficiently comprehensive monitoring.

The development of big data and distributed computing technologies over the past two decades has laid the foundation
for more accurate and timely analysis of complex behavioral and linguistic patterns. The works of Dean & Ghemawat
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[1] and Dayalan [2] laid the foundation for processing large data sets in distributed environments, while the research of
Zaharia et al. [3] (Spark) demonstrated the effectiveness of computing on working sets and high performance when
working with data streams. The review by Zabala-Vargas et al. [4] emphasizes that the comprehensive use of big data,
analytics, and artificial intelligence can qualitatively change the management of complex processes. However, in the
field of adolescent mental health, these technical achievements are being implemented extremely slowly: most studies
are limited either by a small sample size or retrospective analysis.

At the same time, the field of suicide risk assessment is also developing. A systematic review by Bernert et al. [5]
shows that machine learning algorithms can improve the accuracy of predictions, but the authors note a persistent lack
of scalability, weak generalizability of models, and a lack of solutions for rapid integration into practice. Epidemiological
data, such as in the study by Hawton et al. [6], emphasize the existence of suicide clusters and the need for early
diagnosis. The work of Kim et al. [7] demonstrates that multidimensional models trained on independent international
cohorts of adolescents improve the accuracy of identifying suicidal thoughts. However, such models are rarely integrated
into the actual information systems of schools, clinics, and municipal services.

Clinical and longitudinal studies, such as those by Méndez-Bustos et al. [8], confirm the complex and dynamic nature
of the formation of suicidal thoughts in adolescents and the need for continuous monitoring. Regional studies by
Saduakassova et al. [9] highlight the potential of using Artificial Intelligence (Al) for the early detection of destructive
behavior among children and adolescents, but note the lack of technologically mature, safe, and scalable solutions
suitable for implementation in practice.

Against this backdrop, smart city infrastructure represents both an opportunity and a challenge. On the one hand, it
already includes educational platforms, telemedicine services, and municipal helplines — sources of data that can be used
for early risk detection. On the other hand, their integration requires strict compliance with legal and ethical standards,
minimization of data centralization, and a transparent decision-making mechanism. Figure 1 shows the conceptual
architecture of the proposed system, illustrating the data flows between distributed sources and cloud-based analytical
modules.
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Figure 1. Graphical abstract showing the integration of an Al-powered suicide risk prediction system into a smart city environment
Figure 2 demonstrates the dynamics of research in the field of adolescent mental health and suicide prevention,
allowing us to see the place of the proposed architecture in contemporary scientific discourse.
A review of the literature reveals several key gaps.

o Despite the maturity of big data ecosystems [1-3], there are no solutions that integrate them with modern natural
language processing (NLP) models into a unified architecture specifically adapted to the adolescent population.

o Existing studies focus primarily on model accuracy but rarely address issues related to implementation in the real-
world operational processes of schools and city services.

e Privacy-preserving learning methods, including federated learning and differential privacy, are predominantly
described at a conceptual or theoretical level, even though they are critically important when working with
adolescent data.

e There are almost no solutions that comprehensively address technical, clinical, and social requirements
simultaneously [5, 8, 9].
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This study aims to address these limitations. It proposes an architecture that combines modern transformer models,
distributed data processing on a Hadoop/Spark cluster, private machine learning methods, and transparent audit
mechanisms. The architecture is evaluated on large-scale text data and supplemented by a survey of doctors, educators,
and Information Technology (IT) specialists to analyze readiness for implementation and risk perception.
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Figure 2. Overview of the evolving landscape of adolescent mental health research and suicide prevention initiatives

The structure of the article is organized as follows. Section 2 contains a review of the literature on Al in suicide
prevention, big data technologies, and private computing mechanisms. Section 3 describes the research methodology,
including data selection, preprocessing methods, and model training parameters. Section 4 is devoted to the architecture
of the proposed system and its components. Section 5 presents the experimental results and their interpretation. Section
6 discusses practical conclusions, limitations, and directions for further research. The conclusion (Section 7) summarizes
the final conclusions of the work.

2. Related Work

This section reviews prior approaches to suicide-risk prediction, emphasizing big-data platforms, Al, and cloud
computing. Traditional prevention strategies — clinical assessments and crisis hotlines — face significant limitations in
scalability and predictive accuracy [9]. The growing influence of social media and digital behavior on youth mental
health underscores the need for more advanced, data-driven risk-assessment methods [10].

Machine learning and large-scale data analytics have emerged as transformative tools in mental health research.
Studies have demonstrated that Al-driven models can effectively identify suicide risk factors, such as historical medical
records, social media interactions, and behavioral patterns [11]. Advanced data-processing systems like the Hadoop
Distributed File System (HDFS) and Apache Spark enable large-scale data storage and real-time analysis, improving the
efficiency of suicide-risk prediction models [12].

Existing research has examined the application of Al in suicide prevention, especially in automated risk-detection
models. Lee & Pak [12] applied machine learning algorithms in a study on a large cohort and demonstrated that
intelligent models outperformed traditional methods in identifying high-risk individuals. Moreover, advanced graph-
processing systems such as GraphX and Neo4j have been used to analyze complex social data, identifying key patterns
in adolescent behavior associated with suicidal tendencies. Cloud-computing solutions, including Hadoop-based
architectures, play a critical role in ensuring scalability and real-time processing of suicide-risk data [13, 14]. Armbrust
et al. [15] highlighted how Spark Structured Query Language (SQL) facilitates social-data processing, allowing efficient
handling of structured and unstructured mental-health information. Furthermore, the implementation of parallel-
processing techniques in suicide-risk prediction systems enhances both the speed and accuracy of large-scale studies
[16].

Graph-processing systems have also been applied in mental health analytics, enabling more effective modeling of
social interactions and behavioral patterns [17]. These methods help identify indicators of psychological distress,
providing insights into the social dynamics of individuals at elevated risk. Moreover, Bohaterewicz et al. [18] employed
multi-level functional Magnetic Resonance Imaging (fMRI) features combined with machine-learning algorithms to
detect suicide risk in patients with schizophrenia, demonstrating the continued relevance of Al-based approaches in
clinical psychiatric assessment. The integration of electronic health records (EHRS) with Al-driven models has likewise
been investigated as a potential solution for suicide-risk estimation. Su et al. [19] developed an ML-based framework
that analyzes historical clinical data, identifying potential suicide risks without compromising patient confidentiality.
Furthermore, recent studies have highlighted the importance of benchmark datasets for Al research in suicide prevention,
ensuring more standardized, reliable, and reproducible results [20].
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Within the context of adolescent mental health, predictive models must account for the social, environmental, and
psychological factors that contribute to suicidal ideation. Studies by Khosravi et al. [21] have shown that integrating Al
models with large-scale adolescent population data significantly improves predictive performance, enabling mental
health professionals to intervene proactively. Existing systems such as FlumeJava and Hadoop-based architectures have
been explored for building efficient data-parallel pipelines in suicide-risk prediction [22]. These frameworks enable
distributed computing, allowing Al models to process large-scale mental health data in a secure and privacy-preserving
manner. Furthermore, recent research has emphasized the need for enhanced data-exchange mechanisms in suicide-risk
prediction systems to ensure faster and more reliable processing in Al-based interventions [23, 24].

The integration of MapReduce algorithms has also proven effective in processing high-dimensional mental health
data, enabling the development of more accurate risk-prediction models [10]. By leveraging Al-driven methodologies,
the future of suicide prevention is likely to be shaped by scalable, cloud-based, and privacy-preserving solutions,
ensuring more effective intervention strategies.

Table 1 provides an overview of existing approaches and their limitations, highlighting the need for advanced Al-
driven suicide-prevention systems that integrate large-scale data analytics, cloud computing, and privacy-preserving Al
techniques.

Table 1. State-of-the-art methods for suicide risk assessment, highlighting the role of Al models, big data platforms, and
cloud computing technologies

Approaches Proposed Solutions Features/Characteristics Limitations
Saduakassova Using Al to snot self-harm in young people Al-driven analysis of self-harm patterns and Limited data sources and lack of clinical
etal. [9] 9 P young peopre. risk factors. validation.
Rodway etal.  Analysis of childhood-related antecedents and gender Exploration of social, psychological, and Focuses on retrospective analysis rather than
[10] differences in suicide cases. medical factors influencing youth suicides. predictive modeling.
Jacha et al. Utilization of Hadoop for large-scale data storage and High-speed data storage and real-time data Scalability issues when applied to real-time
[11] processing in mental health applications. processing for mental health applications. monitoring systems.
Lee & Pak Machine learning-based forecast of self-destructive Machine learning models trained on large Potential biases in training data affecting
[12] ideation and arranging. population data for accurate predictions. generalizability.
Merceedi &  Comprehensive survey of HDFS for managing mental Cor_lveyed record framework  approach to Tall computational prerequisites for preparing
X taking care of enormous unstructured . .
Sabry [13] health Big Data. L . conveyed information.
wellbeing information.
Assefietal.  Execution of Apache Start MLIib for huge information  Scalable machine learning infrastructure for Reliance on expansive labeled datasets for
[14] machine learning in suicide hazard expectation. processing large datasets. precise preparing.
Armbrustet  Advancement of Spark SQL for organized information  Productive SQL-based inquiry handling for Limited compatibility with unstructured and
al. [15] handling in mental wellbeing analytics. organized suicide chance information. multimodal data.
Gonzalezet  GraphX system for analyzing social information in  Graph-processing framework for mapping Requires integration with outside social media
al. [16] social systems connected to suicide hazard. behavioral patterns in at-risk populations. stages for information improvement.
Ali & Comparative analysis of Neo4j and Spark GraphX for Graph database optimization for complex Challenges in handling real-time streaming data

Logofatu [17]

Bohaterewicz

processing large-scale mental health datasets.

Use of fMRI and machine learning for identifying

relationship analysis in mental health data.

Neuroscientific approach combining brain
imaging and machine learning for risk

efficiently.

Costly and complex implementation for large-

etal. [18] suicide risk in schizophrenia patients. detection. scale medical applications.
Suetal. [19] Machine learning analysis of EHR for suicide risk Utilize of chronicled therapeutic records and Privacy concerns and regulatory restrictions on
’ prediction. Al for early location. EHR usage.
Parsapoor et Creation of benchmark datasets for Al inquire about in ~ Standardization of Al models through Limited adoption of standardized datasets in Al
al. [20] suicide hazard discovery. benchmark datasets. research.
Khosraviet  Predictive models for adolescent suicide risk using Data-driven models trained on diverse Troubles in generalizing discoveries over
al. [21] national health data. adolescent populations. different populaces.

Bekmurat et

Data-parallel pipelines in Hadoop and Spark for

Efficient parallel computation in large-scale

Tall asset utilization in large-scale Al

al. [22] versatile suicide hazard expectation. suicide risk assessments. computations.
Marjit et al. Comparative study on data transfer methods in Hadoop ~ Analysis of optimal data transfer methods for  Latency and bandwidth constraints in real-time
[23] for mental health applications. mental health Big Data. applications.
Hashemetal. MapReduce optimization for processing large-scale Execution enhancements in large-scale Making MapReduce frameworks work well for
[24] suicide risk datasets. dispersed suicide hazard modeling. suicide chance models can be precarious.
) Development of a scalable, Al-driven, cloud-based Comb!nes machl_ne learning, hL_Jge information  Requires . broad_ approval over dlffer!ng
Our Solution analytics, and privacy-preserving Al methods populaces; potential challenges in guaranteeing

suicide risk prediction framework.

for real-time chance appraisal.

full information protection compliance.

Building on this foundation, recent advancements in smart city development highlight the crucial role of Al-driven

and data-centric systems in managing urban challenges, particularly in healthcare and mental health domains. Studies
such as [25, 26] emphasize the need for integrating real-time analytics and Al within smart city infrastructures to enhance
public safety and wellbeing. Chen et al. [27] further illustrate the potential of Big Data in urban health surveillance,
showing how predictive analytics can support crisis prevention efforts. Moreover, Federated Learning and Differential
Privacy approaches [28] provide scalable and privacy-preserving solutions, ensuring sensitive health data, like
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adolescent mental health indicators, are securely processed. This aligns with ethical Al practices and ensures compliance
with global data protection regulations. Previous studies [29, 30] underscore the im-portance of Explainable Al (XAl)
and the integration of Internet of Things (10T), Cloud, and Deep Learning technologies to enhance healthcare delivery
and mental health monitoring within Smart Cities. Other significant works [31-35] further highlight how smart city
systems can contribute to improved urban health resilience, including environmental quality and health equity [36].

The research presented in this study extends beyond suicide risk prediction by embedding its Al architecture within
smart city ecosystems. Smart cities thrive on interconnected systems that ensure real-time responsiveness, citizen safety,
and service optimization. By leveraging scalable Al models and Big Data analytics, the proposed system seamlessly
integrates with urban infrastructures such as educational institutions, public health services, and emergency response
networks.

3. Research Methodology

The methodological basis of the study was developed to assess the accuracy and reliability of artificial intelligence
models in identifying early signs of suicidal intent among adolescents. The work relies on machine learning, NLP, and
big data technologies, which allow for the analysis of large volumes of text information related to the psycho-emotional
state of users.

The main source of data is the Kaggle Suicide Ideation Analysis Dataset, which includes user messages labeled by
risk level (high risk, neutral category, no risk). The texts were collected from open Internet forums, social networks, and
mental health-themed platforms, ensuring a variety of emotional and behavioral indicators. Data preprocessing included
stop word removal, text normalization, lemmatization, tokenization, and feature extraction using Term Frequency—
Inverse Document Frequency (TF-IDF), Word2Vec neural embeddings, and Global Vectors for Word Representation
(GloVe), which allowed unstructured texts to be converted into a format suitable for machine analysis.

To ensure scalability and practical applicability in the smart city infrastructure, the distributed computing
environments Hadoop and Apache Spark were used. The HDFS was used to store large arrays of unstructured data, and
Map Reduce was used for parallel text processing. Apache Spark and the Apache Spark MLIlib machine-learning library
(MLlIib) provided accelerated model training and support for streaming analytics, which is especially important for the
rapid detection of high-risk users.

As part of the work, several machine learning models were trained and tested, including logistic regression, support
vector machines (SVM), naive Bayesian classifier, bidirectional Long Short-Term Memory (BiLSTM), and the
Bidirectional Encoder Representations from Transformers (BERT) model. Their effectiveness was evaluated using
standard metrics:

o AUC-ROC (Area Under the Receiver Operating Characteristic Curve), reflecting the model's ability to distinguish
between high- and low-risk texts;

¢ Precision—Recall, assessing the balance between true positives and the probability of false alarms;
o F1-measure, which is the harmonic mean between precision and sensitivity.

To increase statistical reliability, additional analysis methods were used: the y? test to evaluate the distribution of
categorical features, Analysis of Variance (ANOVA) to analyze variations, and regression methods to identify the most
significant textual indicators of suicide risk. A generalized diagram of the methodological stages of the study — from
data collection and preprocessing to model training, validation, and integration with big data technologies— is presented
in Figure 3, which demonstrates the sequence of stages and the interrelationships of the key components of the analytical

pipeline.

Stratified Random Sampling Interviews Data Collection |

—— o~

Data Preparation Informed Consent Data Confidentiality ‘
Descriptive Statistics

nferent ics Re
I —_ T y

End Multiple l'h;'.n‘.smun.\zm]n\ia‘ | ChiSquare Test Cohen's d | | Covariance Analysis | | Asalysis of Variance | | Correlation Analysis |

Effect Size Analysis Pearson’s ¢ |

gression Model |

Figure 3. Research methodology and workflow for analyzing suicide risk using big data technologies and machine learning
methods
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3.1. Data Sources

The data collection process for this study was designed to capture well-structured indicators of suicide risk while
ensuring flexibility, security, and accuracy. A multi-source data acquisition approach was utilized, integrating publicly
available datasets, user-generated content from online platforms, and anonymized EHRs. By combining multiple data
sources, this methodology enhances the robustness and generalizability of predictive models, ensuring that the findings
are relevant across diverse youth populations.

The dataset was balanced by dividing it into groups based on key demographic and behavioral variables such as age,
sex, geographic location, and digital activity level. Stratification helps address bias in data distribution, ensuring that the
model captures variations in mental health risk factors across different groups. The sample size required for each stratum
was determined using a statistical approach to maintain a 95% confidence level with a 5% margin of error. This was
calculated using the following equation:

z?P(1-P
s _ZPA-P)

S E2 (1)

where S, represents the sample size per stratum, z is the z -score corresponding to the required confidence level, P is the
estimated proportion of the population with suicidal tendencies, and E indicates the margin of error. This calculation
ensures that each subgroup is adequately represented, preventing overfitting and improving the model’s reliability.

The essential dataset utilized in this ponder is the Kaggle Suicide Estimation Examination Dataset, which includes
labeled textual data from social media and mental health platforms. To enhance the dataset, it was supplemented with
other publicly available mental health datasets, allowing broader cross-validation and improving overall data
consistency. These datasets contain records from emergency helplines, mental health forums, and online support groups.
The data were further categorized into multiple strata, including different age groups, sex categories, and levels of online
activity. This stratification ensures that the dataset is representative of diverse adolescent populations and does not
introduce bias toward any specific subgroup. Each subgroup was assigned a balanced weight to correct for potential
sampling biases, calculated using the following equation:

where W; is the weight assigned to subgroup i, N; is the number of data points in subgroup i, and N is the total dataset
size. This approach ensures fairness in model training, reducing bias towards overrepresented categories.

A substantial amount of work was undertaken to prepare the textual data, ensuring that it was consistent, accurate,
and suitable for machine-learning applications. This involved cleaning the content by removing irregular characters,
emojis, and extraneous elements. The raw text was then segmented into smaller, structured units while preserving the
original meaning. To extract the most informative features, TF-IDF and Word2Vec were employed, which enabled the
machine-learning models to analyze the data effectively. One major challenge encountered was handling missing or
imbalanced data. To address this, an oversampling technique was used to balance the proportions of suicidal and non-
suicidal content. To estimate the probability that a text sample indicated suicidal intent, the following equation was
applied:

N
Py = ) (R)i+ (A, @)
i=0

where i denotes the index of each stratum in the stratified sample, and S represents the total number of strata, P, represents
the total number of individuals in stratum, and A, denotes the number of correctly identified at-risk individuals. This
probabilistic estimation ensures that the model accounts for variations in suicidal tendencies across different
demographic groups.

Given the large volume of textual data, big data processing frameworks such as Apache Hadoop and Apache Spark
were utilized to enhance computational efficiency. Apache Hadoop was implemented for distributed storage and batch
processing, allowing the dataset to be processed across multiple nodes efficiently. Apache Spark was used for real-time
analytics, enabling continuous monitoring of new textual inputs. This significantly reduced the time required for data
processing and model training. The efficiency of data processing was estimated using the following equation:

Tp =7 “4)

where T, is the time required for processing, D is the size of the dataset, and R,, is the processing rate of the system. By
leveraging real-time analytics, the system ensures continuous monitoring, improves suicide-risk detection accuracy, and
reduces response times for early intervention.
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The model evaluation process involved the use of multiple performance metrics to ensure that the predictions were
both accurate and reliable. Standard metrics such as AUC-ROC, Precision—Recall, and F1-score were employed to assess
overall performance. AUC-ROC was used to measure the model’s ability to distinguish between suicidal and non-
suicidal text inputs. Precision-Recall was applied to evaluate the balance between correctly classified suicidal cases and
false positives, whereas the F1-score provided a harmonic mean between precision and recall. To assess the impact of
different variables on suicide risk prediction, a multiple regression analysis was conducted. The dependent variable,
representing suicide risk assessment, was modeled using independent variables such as behavioral patterns, social media
engagement, and linguistic indicators of distress. The equation for multiple regression analysis is expressed as follows:

Ad = (Ef,Ue, Of  Et) (5)

where Ef represents environmental factors, Ue refers to user engagement patterns, Of accounts for additional
influencing variables, and Et denotes the error term.

This analysis allowed for a detailed understanding of how various risk factors contribute to suicidal tendencies. By
integrating large-scale data systems with scalable machine learning models, this data-collection approach ensures that
suicide-risk assessment is both effective and adaptable. The combination of structured stratification, preprocessing, real-
time processing, and rigorous statistical evaluation provides a foundation for a robust and interpretable suicide-risk
prediction framework. This methodology not only enhances accuracy but also ensures that the models remain adaptable
to emerging mental-health trends.

3.2. Preprocessing

The information analysis process was conducted using a combination of descriptive and inferential statistical methods
to ensure a comprehensive and accurate evaluation of suicide-risk prediction models. Descriptive statistics provided an
overview of the dataset’s structure, allowing for a deeper understanding of distribution patterns across different
demographic and behavioral variables. Measures such as mean, median, mode, standard deviation, and frequency
distributions were computed to examine central tendencies and variability within the dataset. This process helped identify
key patterns and insights into the prevalence of suicidal tendencies across different population subgroups.

Inferential statistical procedures were then applied to assess relationships between variables and to evaluate the
effectiveness of the predictive models. The chi-square test was utilized to examine associations between categorical
variables, such as gender and suicide-risk classification, providing insights into whether certain demographic groups
exhibited higher tendencies toward self-harm. Furthermore, t-tests and ANOVA were conducted to compare group
means, analyzing variations in suicide risk across different age categories and geographic regions. To further examine
predictive accuracy, regression analysis was employed to assess how linguistic patterns, sentiment scores, and
engagement levels influenced suicide-risk predictions. One of the critical components of the analysis was the calculation
of the confidence interval, which provided a range of values within which the true population parameter was likely to
fall. This was determined using the following equation:

Ci zo

=T (6)
where Ci refers to the confidence interval, z is the standard z-score corresponding to the desired confidence level, o
represents the standard deviation, and n denotes the sample size used in the test.

To further refine the assessment of data dispersion, the margin of error was computed to determine the level of
uncertainty in estimating the selection rates of Al-driven suicide-risk prediction models. The margin of error was
calculated using the following equation:

E=vyx’ %)
= X —
Y S,
where Vy refers to quintile values, and S is the sample statistic. The margin of error played a crucial role in validating
the precision of the model’s predictions, ensuring that variations in the dataset did not compromise the reliability of the
results. Understanding the spread and consistency of data points within the dataset was essential for ensuring accurate
predictions. To achieve this, the mean value was computed to represent the average suicide risk score among different
subgroups. The mean was determined using the following equation:

1
X =130, X, (®)

where X denotes the mean value, and X; represents individual data points within the dataset. By computing the mean,
the study identified central tendencies in suicide-risk assessments, enabling a more structured approach to model
optimization. Additionally, the standard deviation was used to measure the degree of dispersion within the dataset,
providing insights into the variability of suicide-risk estimates. The standard deviation was calculated using the following
equation:

o= /% = (Xi — X)? ©)
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A smaller standard deviation indicated that most data points were close to the mean, implying higher consistency in
the estimates. Conversely, a larger standard deviation suggested greater variability in suicide-risk classifications,
highlighting the need for model refinement in specific cases. To complement the analysis of data dispersion, variance
was used to measure the degree of deviation in suicide-risk scores. Variance was calculated using the following equation;

Var(X) = L XL.(X; = X)? (10)

A small variance indicated that most suicide-risk estimates were closely aligned with the mean, whereas a larger
variance revealed substantial differences in assessment outcomes. Understanding variance provided valuable insights
into the consistency of the Al-driven prediction models and guided further refinements in classification accuracy.
Throughout the analysis, the integration of machine learning with rigorous statistical evaluation ensured that the suicide-
risk prediction models were both effective and reliable. The application of descriptive statistics facilitated the
identification of key risk factors, while inferential procedures provided a deeper understanding of the associations
between variables. By incorporating regression analysis, the study determined the impact of various factors — including
linguistic features, social media activity, and mental-health indicators — on suicide-risk classification. The combined use
of confidence intervals, margin-of-error calculations, standard deviation, and variance allowed for a structured
assessment of prediction accuracy, ensuring that the findings were statistically sound and generalizable. This approach
not only validated the effectiveness of Al-driven models but also offered significant insights into how predictive analytics
can be further enhanced for suicide-prevention efforts. The study’s reliance on statistical rigor and methodological
precision reinforces the importance of integrating Al with mental-health analytics, paving the way for more advanced
and scalable suicide-risk prediction systems.

3.3. Model Architecture

The data computation model is fundamental for analyzing patterns and relationships within the dataset, allowing for
more accurate predictions of suicide risk. The application of statistical methods ensures that trends are identified,
relationships between variables are examined, and key risk factors are assessed with high precision. To achieve this,
various mathematical and probabilistic techniques were employed, including sampling concepts, regression modeling,
and the examination of temporal changes. One of the essential methods used in this study was the chi-square test, which
evaluates the independence of categorical variables within a contingency table. This test is particularly valuable for
determining whether different demographic groups exhibit varying levels of suicide risk. The chi-square value is
calculated using the following equation:

(0; — Ey)?
E;
where 0, represents the observed frequencies, and E; denotes the expected frequencies within each category. By applying
this test, the study evaluates how factors such as age, gender, and online activity influence the likelihood of being
classified as at risk for suicide. Significant differences between observed and expected frequencies indicate an
association between these factors and suicide risk. To measure the standardized difference between two means, Cohen’s
d was used. This effect-size measure is calculated using the following equation:

X — X, (12)
S
where X, and X, are the means of two different groups, and s is the pooled standard deviation. A positive effect size
indicates a stronger association between certain risk factors and suicide tendencies, while a negative effect size suggests
an inverse relationship.

X2=Y 11

d=

Another essential aspect of data analysis was assessing covariance, which helps determine the direction of the
relationship between two continuous variables. Covariance is computed using the following equation:

Cov(X,Y) = ~ XL, (X; = X)(¥; = ) (13)

where X and Y represent two different variables, such as sentiment scores and suicidal ideation risk, and X and Y are
their respective means. Negative covariance indicates that when one variable increases, the other tends to decrease,
meaning they move in opposite directions.

For example, an increase in positive sentiment in social media posts may be associated with a lower risk of suicide.
Bayesian probability was also used to refine suicide-risk assessments as new data became available. The probability of
an individual being classified as high risk was updated based on prior probabilities and new evidence, using Bayes’
theorem:

p(asB) = "ar® (14)

P(B)

where P(A/B) is the updated probability given the new data, P(B/A) is the likelihood of observing the new data given
the initial probability, and P(A) and P(B) represent the prior probabilities. This method allows continuous updates to
risk assessments, making it particularly useful in real-time suicide prevention systems.
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ni(ni+1)

U = nlnz + - Rl (15)

where n; and n, represent the sample sizes of the two groups, and R; is the sum of ranks for the smaller sample. One
key finding was that one group exhibited a lower suicide rate than the other. To examine how suicide rates differ across
distinct groups, the Kruskal-Wallis test was utilized. This test is an advanced extension of the Mann—Whitney U test
and enables comparison across three or more independent groups. It is particularly useful for assessing how different
regions or demographic categories vary in terms of suicide risk. The test is expressed as follows:

L2 _y2_3(k+1) (16)

= kk+1)

where k denotes the number of groups, and r; represents the rank assigned to individual data points within each group.
A higher H value suggests significant differences in suicide risk across the compared categories.

The study also examined how suicide risk patterns change over time. A Poisson probability model was used to
estimate the likelihood of observing a specific number of suicide-related expressions in a given period. The probability
distribution is given by:

e~y

Py =y)=— (17)

where P(Y = y) indicates the probability of observing y events, and 4 is the event occurrence rate. This analysis allows
for early detection of increases in suicide-related discussions, enabling timely interventions. To identify suicide-risk
trends, an exponential smoothing model was applied, allowing for forecasts based on past observations. The equation
for forecasting is given as follows:

F)=a¥Y(t)+ (1 —-a)F(t—-1) (18)

where F(t) is the forecasted value at time t, Y (t) is the actual observed value, and a is the smoothing factor. A larger a
places greater weight on recent observations, whereas a smaller o emphasizes historical data. By integrating these
statistical models and probability-based computations, the study ensures that suicide-risk assessments are both robust
and dynamically updated. These methods provide deeper insights into the underlying factors influencing suicide risk,
allowing for targeted interventions and improved decision-making within mental-health support systems. The application
of these techniques enhances the accuracy of Al-driven suicide-prediction models, improving their ability to identify at-
risk individuals and anticipate potential crises.

To ensure clarity and reproducibility of the mathematical expressions used in this study, all symbols and parameters
appearing in the formulas are clearly defined below in Table 2.

Table 2. Definition of mathematical symbols and parameters used in the study

Symbol Definition
N Required sample size for model evaluation within each stratum
A Z-score corresponding to the selected confidence level
1 Expected proportion of individuals exhibiting suicide-risk indicators
e Allowable margin of error for prediction estimates
X; Input text instance representing an individual digital message or record

JiO) Feature—extraction function converting raw text into numerical vectors
w Weight coefficient associated with a selected feature
y True class label indicating suicide-risk level (low, moderate, high)
y Predicted class label generated by the model
TP Number of correctly predicted high-risk cases (true positives)
FP Number of incorrectly predicted high—risk cases (false positives)
FN Number of high-risk cases missed by the model (false negatives)
TN Number of correctly predicted non-risk cases (true negatives)
Precision metric
R Recall metric
F1 Harmonic mean of precision and recall
AUC Area under the ROC curve indicating discrimination ability
Adaptive decision threshold regulating alert sensitivity
A Regularization coefficient preventing model overfitting
6 Vector of model parameters updated during federated learning rounds
A6 Aggregated anonymized gradient update exchanged across federated nodes
Cc(t) Computational load distributed among nodes at time t
S(t) System scalability function representing latency under data growth
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These definitions ensure transparent and unambiguous interpretation of the mathematical notation used in Sections 3
and 4. In accordance with the journal requirements, all symbols and performance parameters used in the evaluation
formulas are defined prior to their application. Specifically, TP refers to true positives (correctly identified high-risk
cases), TN refers to true negatives (correctly identified non-risk cases), FP denotes false positives (incorrect high-risk
classifications), and FN denotes false negatives (missed high-risk cases). Precision = TP / (TP + FP) expresses the
proportion of correct positive predictions, while Recall = TP / (TP + FN) reflects the proportion of correctly detected
high-risk cases. The F1-score represents the harmonic mean of Precision and Recall, and AUC-ROC refers to the Area
Under the Receiver Operating Characteristic Curve, which evaluates the model’s discriminative power. In k-fold cross-
validation, k denotes the number of folds and N represents the total sample size.

3.4. Evaluation Metrics

To evaluate the quality of the proposed suicide risk prediction model, a set of widely used classification metrics was
employed, each of which reflects a specific aspect of the model's behavior. Accuracy shows the proportion of correctly
classified cases and serves as a general indicator of model performance, however, its interpretation may be limited when
the data is unbalanced. Precision represents the proportion of objects classified by the model as high risk that are actually
positive cases. This metric is important in systems where excessive false alarms can reduce trust and overload response
services.

Recall (sensitivity) indicates how effectively the model identifies true high-risk cases. For suicide prevention tasks,
high sensitivity is particularly critical as it minimizes the likelihood of failing to detect adolescents who are in a
dangerous state. F1-measure, which is the harmonic mean between Precision and Recall, provides a balanced assessment
of both metrics and is particularly useful when the dataset exhibits class imbalance. AUC-ROC evaluates the model's
ability to distinguish between classes at different classification thresholds: the higher the AUC value, the more reliably
the model separates the high-risk group from the rest.

All metrics were calculated using stratified 5-fold cross-validation, which ensures the stability of the results and
reduces the influence of random data partitions. The summary indicators are presented in Figure 4, which demonstrates
the comparative behavior of the metrics and emphasizes the stability and reliability of the model. A detailed interpretation
of the results is provided in Section 5.

1o Evaluation Metrics of the Al-Driven Suicide Risk Prediction Model

087 0.89

0.84 0.82 0.83
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Accuracy Precision Recall F1-Score AUC-ROC

Figure 4. Summary diagram of the evaluation metrics for the suicide risk prediction model, illustrating the comparative
behavior of Accuracy, Precision, Recall, F1-measure, and AUC-ROC

4. Al-Driven Suicide Risk Prediction System

The proposed Al-driven suicide-risk prediction framework presents a scalable and privacy-preserving approach to
mental-health assessment. The framework integrates multiple advanced technologies, including machine learning,
natural language processing, cloud computing, and federated learning, to ensure both accuracy and data security. By
leveraging these components, the model provides real-time risk analysis while addressing ethical concerns related to
handling sensitive mental-health data. At the core of the framework is an Al-based risk-prediction model that processes
textual data obtained from various sources, such as social-media discussions, mental-health forums, and anonymized
EHRs. The system applies advanced NLP techniques to extract relevant linguistic and psychological patterns associated
with suicidal ideation. The predictive model, Al,,,;,, can be mathematically represented as follows:

Aly;, = {Pn,Ts, At} (19)
where Pn represents predictive accuracy, ensuring that the system correctly identifies individuals at high risk. Ts denotes

processing speed, indicating the system’s ability to generate risk scores nearly instantaneously. And A, represents
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adaptability, allowing the model to improve its predictions as new information becomes available. A key challenge in
suicide-risk prediction is maintaining data privacy while using distributed sources of information. To address this, the
proposed approach employs federated learning, which allows models to be trained across multiple decentralized devices
without sharing raw data. This method enhances privacy by ensuring that user information remains local, eliminating
the need for centralized storage. The federated learning process can be expressed as follows:

FL =% w;-M; (20)

where FL represents the federated learning model, M; is the local model trained on each individual device, and w; is the
weight assigned to each model’s contribution. By aggregating locally trained models, the framework learns from diverse
datasets while preserving individual privacy.

To further improve privacy, differential privacy mechanisms are incorporated, adding noise to individual data points
before they are processed. This ensures that even if an attacker gains access to the system, no identifiable user
information can be extracted. The privacy-preserving function DP is expressed as follows:

DP(X) = X + N(0,02) (21)

where X is the original data, and N (0, o2) represents Gaussian noise with variance o2, ensuring anonymity in the dataset.

In addition to privacy mechanisms, cloud computing is employed to improve scalability and computational
efficiency. The system is designed to operate on a distributed cloud infrastructure, allowing for real-time processing of
large volumes of text data. Cloud-based storage and computing resources facilitate seamless integration with existing
healthcare and educational institutions. The cloud infrastructure is modeled as follows:

Cs ={D,,Sc. R} (22)

where C, represents the cloud-based framework, D, denotes distributed processing, ensuring parallel computation of
suicide-risk assessments, S, refers to secure cloud storage, ensuring encrypted access to sensitive information, and R;
indicates real-time analytics, allowing immediate feedback on emerging risk patterns. An additional layer of automation
is provided through smart contracts, which enable secure, rule-based transactions for mental-health intervention services.
These self-executing contracts facilitate automated responses to high-risk cases, ensuring that alerts are sent to relevant
mental-health professionals when a critical risk threshold is identified. The smart-contract function SC is defined as:

SC = {At, Ec, Ti} (23)

where At represents automation, ensuring rapid execution of predefined mental-health support actions, Ec denotes
efficiency, streamlining risk-assessment workflows, and Ti refers to reliability, reducing dependence on manual
intervention. To ensure seamless system performance and consistent user access, the framework incorporates a user-
friendly interface that operates effectively across multiple platforms, including mobile and web applications. The user-
experience component Uc is modeled as follows:

Uc = {Cn, Uy, Sn} (24)

where Cn indicates customization, allowing users to adjust settings based on specific requirements, Uy denotes usability,
ensuring an intuitive interface, and Sn represents user satisfaction, prioritizing accessibility and efficiency in mental-
health support.

As shown in Figure 5, the suicide risk prediction system includes several key components that ensure comprehensive
data processing and high accuracy of estimates. The central element of the architecture is the NLP module, which
analyzes text messages and identifies linguistic features associated with emotional state and potential risk indicators.

re Al-Driven Suicide Risk Prediction System \

Al-Driven Suicide Risk Prediction

[

NLP-Based Analysls Federated Leatning for Privacy ‘ Cloud Cemputing for Sealabiity [ Automated Intervention Mechanisins

“ ™ =
MNatral Language Processing (W(P) Data Security & Privacy Mechanms | (Cloud Computing & Scalabil

Text Data Processing [ Data Encryption & Seeurity ]

h. X

sessment & Intervention

[ Distributed Processing J [ Secure Cloud Storage J { Real-time Anafysis ] [ Real-time Riskc Alerts. ]

Figure 5. Conceptual architecture of an Al-supported suicide risk prediction system integrating heterogeneous data sources,
big data technologies, and predictive analysis modules
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To protect confidentiality, a specialized private learning mechanism is used, allowing data to be processed without
transferring personal information to a central server. The cloud infrastructure ensures the scalability of the solution,
resistance to increasing loads, and the ability to integrate with smart city services. Additional components automate the
routing of the results, ensuring the timely transmission of risk signals to specialists and organizations responsible for
psychological assistance. Together, these modules form a reliable and ethically sound architecture focused on the timely
identification of adolescents at risk and ensuring access to the necessary forms of support.

4.1. Hadoop-Driven Big Data Infrastructure for Suicide Risk Prediction

The use of Hadoop-based infrastructure in suicide-risk prediction enables scalable and fault-tolerant processing of
large-scale, unstructured mental-health data, particularly text-based inputs from social media, forums, and clinical
sources [24]. Traditional data architectures struggle to process such high-velocity and high-volume information, making
distributed systems essential. The HDFS and MapReduce provide the foundational framework to store and analyze
suicide-related content effectively, ensuring that data pipelines remain responsive under heavy computational loads [37].

HD = {Dv, Ps, Ft} (25)

where, Dv represents data volume, acknowledging the scale of input; Ps denotes parallel scalability, the ability to process
data simultaneously across multiple nodes; and Ft signifies fault tolerance, ensuring continuity despite system failures.
In advanced bioinformatics and smart-city systems, Hadoop has been shown to streamline high-throughput data
operations [11, 37]. Moreover, its application in mental-health analytics offers similar advantages, particularly when
combined with real-time extensions such as Apache Spark and Discretized Streams [38, 39]. These components provide
tools for real-time suicide-risk analysis, enabling rapid, data-driven learning as new information becomes available.
Additionally, interactive analytical processing, enabled by Hadoop’s MapReduce paradigm, aligns well with evolving
models of mental-health risk prediction, where iterative model retraining and context-aware updates are essential [38].
Consequently, the proposed Al architecture, built on Hadoop, supports robust and ethically grounded mental-health
assessment pipelines across diverse and distributed data environments [24, 39].

4.2. Security Distribution for Unassailable Transactions

Ensuring the security of sensitive data is essential in any architecture dealing with mental health risk prediction. In
the proposed system, blockchain decentralization provides a robust foundation by eliminating centralized control and
enhancing trust, transparency, and fault tolerance. Without a central authority, the system avoids a single point of failure,
which is a major vulnerability in traditional models [40].

Blockchain decentralization distributes transaction and model data across multiple independent nodes. This approach
mitigates the risks of data breaches, fraud, and collusion, as it removes centralized control over sensitive information.
The following model can describe the structure of decentralization:

D = {Aa,Dd, Rm} (26)
where Aa denotes the absence of a central authority; Dd refers to the distribution of transaction data; Rm represents risk
mitigation.

Decentralization improves both system security and resilience. In a decentralized environment, each transaction must
be validated across a network of nodes. This is accomplished through a consensus mechanism, which ensures that all
participants agree on the validity of information before it is recorded in the ledger. The structure of this mechanism is as
follows:

Cm = {Ma, Nn, La} (27)
where Ma is majority agreement; Nn denotes the network nodes; La is ledger accuracy.

This consensus process increases reliability by requiring validation from the majority of nodes, thus preventing

unauthorized data manipulation. It also guarantees ledger integrity, which is critical for traceability and auditability in
healthcare and mental health domains.

The complete security model for decentralized data handling in the system is defined as:
Dm = {Nn,Cs,Vy} (28)

where Nn represents participating nodes in the blockchain network; Cs refers to the consensus strategy; Vy indicates
vulnerability reduction.

Together, the decentralization model (D), consensus mechanism (Cm), and distributed security framework (Dm)
establish a trusted and secure environment for Al-driven suicide risk prediction. These components help ensure that the
system is resistant to tampering, data loss, and unauthorized access, making it suitable for large-scale deployment in
mental health settings.
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4.3. Safeguarding Sensitive Health and Behavioral Data

In the context of Al-based suicide risk prediction systems, safeguarding sensitive mental health and behavioral data
is of utmost importance. The integration of block-chain technology provides a robust layer of protection through
advanced cryptographic algorithms that ensure data confidentiality, integrity, and access control [41, 42].

A central feature of this architecture is the encryption of data during both transmission and storage. Cryptographic
protocols transform sensitive content into unreadable formats, preventing unauthorized access and preserving user
privacy. This can be expressed as:

Cy = {En, Dt, Ac} (29)
where En denotes the encryption process; Dt represents data transmission security; Ac refers to strict access control.

These cryptographic safeguards establish a multi-layered security framework that protects against breaches,
tampering, or external threats [43, 44]. As applied in blockchain and distributed storage environments, such as the HDFS,
cryptographic defenses enhance resilience and reliability in large-scale health informatics [41].

Recent studies also highlight the role of encryption in clinical risk prediction systems, where confidentiality is
paramount [43]. Statistical models, including nonparametric tests and chisquare methods, depend heavily on the integrity
of input data to generate reliable suicide risk assessments [44, 45]. Therefore, securing input data through encryption is
essential for preserving ethical standards, model validity, and regulatory compliance in clinical Al applications.

4.4. Automated Health Response Management Using Smart Contracts

Smart contracts represent a transformative component of the proposed blockchain-based suicide risk assessment
framework. Their core advantage lies in the automation of response protocols to high-risk situations, ensuring that critical
mental health interventions are executed without delay or reliance on manual oversight. Unlike traditional systems that
require human mediation and suffer from potential inconsistencies or delays, smart contracts automatically enforce
predefined intervention actions when risk thresholds are detected [46].

The structure of smart contract functionality in this context can be described as:
Sc = {Au, Ts, Ut} (30)

where: Au stands for automated execution, allowing real-time activation of support procedures; T's refers to transaction
streamlining, optimizing communication between systems and caregivers; Ut denotes user trust, enabled by the
transparency and deterministic behavior of blockchain-based contracts.

These attributes significantly enhance the reliability and responsiveness of mental health response systems,
particularly in scenarios requiring immediate action. The transparent and decentralized nature of smart contracts ensures
that the execution logic is visible and immutable. Once deployed, the contract cannot be altered or interrupted, which
ensures a consistent and trusted process for triggering mental health alerts or notifying professionals.

Moreover, the trustless nature of smart contracts reduces the need for third-party verification. Parties involved in the
system, such as clinicians, institutions, or Al monitoring modules, can rely on the code to perform precisely as
programmed. This supports scalable, secure, and ethically aligned deployment of suicide risk response systems in
healthcare, education, and community platforms.

4.5. Enhancing Trust and Transparency in Al-Driven Mental Health Systems

Transparency and accountability are critical for the ethical deployment of Al-driven suicide risk detection systems.
Blockchain technology provides a foundational infrastructure to achieve these objectives by ensuring real-time visibility
and immutable audit trails of system activity [19, 20].

This transparency ensures that users, clinicians, and stakeholders can trust the reliability of Al-generated assessments
and interventions. To model transparency within the system, the following formulation is defined:

Tr = (S5, R tFE)/ (S, 1 hFt) 31

where Rt denotes real-time visibility, enabling instant access to activity logs; Ft denotes system features or transactions
being monitored; and Ih corresponds to the immutable history, ensuring that all activity logs are cryptographically
recorded and tamper-proof. This balance between transparency and auditability strengthens the system’s credibility.

In mental health contexts, such transparency is vital for ensuring accountability in the detection and intervention
processes. Al models, often perceived as “black boxes," benefit from blockchain’s verifiable trail, allowing stakeholders
to verify how predictions are made [47, 48]. Moreover, immutable logging helps detect bias or errors in model behavior,
encouraging responsible Al usage.
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By integrating blockchain, users gain confidence in knowing that their sensitive health data are not only protected
but also traceable and verifiable [49, 50]. Institutions benefit from operational transparency, reducing reliance on opaque
algorithms and fostering user engagement. Furthermore, healthcare professionals can review historical interactions with
the system, ensuring that alerts and interventions are justified and consistent.

As shown in Figure 6, the use of blockchain technology enhances the security and transparency of the Al-based
suicide risk prediction system. The use of decentralized architecture eliminates the vulnerabilities characteristic of
centralized data storage, thereby significantly reducing the likelihood of unauthorized access, falsification, or
information leaks.

Cryptographic mechanisms — including encryption, distributed access control, and digital signatures —protect
sensitive mental health data at every stage of processing. Additional functionality is provided by smart contracts, which
allow the necessary response procedures to be triggered automatically and transparently when significant risk patterns
are identified [51, 52].

An important advantage of blockchain is the immutability of records: all model actions, including predictions, risk
signals, and subsequent system responses, are recorded in the registry and available for real-time auditing. This builds a
higher level of trust among healthcare professionals, data providers, and users themselves. Algorithm 1 describes the
operational logic of the blockchain layer within the proposed architecture - from recording incoming events to integrity
verification, privacy protection, and accountability throughout all stages of analysis.

Blockchain-Based Security
in

T s W

Smart Contracts for
Automated Interventions

- B Benefits for
Immutability and Security A ——
Transparency and Trust

Figure 6. Integration of blockchain technology to ensure transparency, security, and accountability in the architecture of an
Al-based suicide risk prediction system

| Distributed Security | | Cryptographic Techniques

Consortium Blockchain Network |

Algorithm 1. Enhancing trust and transparency using blockchain in Al-driven mental health systems

1. Initialization {AI: Artificial Intelligence System; B: Blockchain; Rt: Real-time monitoring; [h: Immutable
history; V: Verification; St: Stakeholder; y: Trust signal}

2. Input {Decision logs from AI system (L), Stakeholder verification request (V)}

3. Output {Trust confirmation or inconsistency alert}

4. AT system generates log L and sends hash to B

5. Set Rt=L-B

6. B e continuously updates Ih

7. St submits verification request V- B

8. Retrieve L « Ih(B)

9. If V = L' then

10. Do y = Trust Confirmed

11. Else if V# L' then

12. Do y# Flag Inconsistency

13. End-if

14. Record audit trail = append to B

Algorithm 1 illustrates the mechanism for enhancing trust and transparency in Al-driven mental health systems
through blockchain integration. In Step 1, key entities are initialized, including the Al system, blockchain infrastructure,
stakeholders, and trust validation components. Step 2 begins the data capture process, where decision logs generated by
the Al system are securely hashed and recorded on the blockchain. Steps 3 and 4 establish real-time visibility and link
each event to an immutable trans-action history. In Step 5, stakeholder — such as mental health professionals or system
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evaluators — submit verification requests to assess the integrity of recorded assessments or alerts. Step 6 retrieves the
historical logs stored on the blockchain and performs integrity checks using consensus mechanisms. If the verification
matches the stored log (Step 7), trust is affirmed and the system is validated as transparent and secure. In contrast, Step
8 raises a flag if discrepancies are detected, indicating potential tampering or unauthorized changes. Steps 9 and 10
ensure all interactions, including verifications and outcomes, are recorded back onto the blockchain to maintain a tamper-
proof audit trail. This approach guarantees that Al-driven mental health decisions remain accountable, traceable, and
aligned with ethical and privacy standards, fostering user trust in sensitive healthcare environments.

As shown in Figure 7, blockchain technology provides increased trust, transparency, and security in Al systems used
to assess psycho-emotional states and suicide risks. The sequence of operations begins with the initialization stage,
during which the main elements are set: decision logs, parameters for subsequent verification, and references to the
corresponding blockchain records. This step forms the basis for further secure tracking of all operations.

Start: Initialization
{Al,B,Rt, Ih, V, St, y}

Input: Al decision logs (L),
Verification request (V)

Al generates log (L) ‘

and sends hash to Blockchain (B)

I

Set real-time monitoring:
Rt=L —-B

Blockchain updates
immutable history (lh)

Stakeholder submits
verification request (V) — B

Retrieve L'+ Ih(B)

Flag Inconsistency: y # X

ﬂl’msl Confirmed: y = v

L/

Append audit trail to Blockchain

!

Qutput: Trust confirmation
or inconsistency alert

Figure 7. Blockchain-oriented approach to enhancing trust, data security, and process transparency in Al mental health
support systems

The next stage, log generation, records the decisions made by the artificial intelligence model during text analysis
and risk assessment. Each decision is recorded as a secure log, which is cryptographically hashed and transferred to the
blockchain for recording. The blockchain recording stage ensures that hashed records are added to the distributed ledger
with a timestamp and in an immutable format. This guarantees that any actions of the model, including risk conclusions,
cannot be retroactively changed or deleted, which increases the reliability and accountability of the system.

This is followed by the verification stage, where a request is generated to confirm the authenticity of a specific model
decision. The blockchain system compares the incoming request with the previously recorded hash, thereby confirming
or refuting the immutability of the data. After performing verification procedures, the system compares the received logs
with reference records. If the match is confirmed, the transaction is marked as verified, which indicates that the integrity
of both the model and its predictions has been preserved. If a discrepancy is detected, a notification is automatically
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generated about a possible attempt to change the data or a deviation of the model's behavior from the initial parameters.
The final stage is audit logging, in which the verification result is recorded in the blockchain registry. This ensures
transparency, accountability, and the possibility of subsequent independent analysis.

Such a structured workflow creates a solid foundation for the ethical and reliable implementation of artificial
intelligence systems, especially in sensitive areas such as monitoring the psycho-emotional state of adolescents. As
shown in Figure 8, the process of predicting suicide risk using Al methods is a sequential analytical pipeline that
combines the collection, processing, and interpretation of large amounts of text data. The first stage involves the
formation of a data corpus: the information to be analyzed comes from social networks, online consultations, digital
diaries, and clinical records [53-55].

Data Collection
(Social Media, EHR, Chat Logs)

l

Data Preprocessing
(Tokenization, Cleaning)

l

Feature Engineering
(Emotion, Time, Syntax)

l

ML Model
(CNN, LSTM, BERT)

l

Risk Assessment
(High / Medium / Low)

/

Decision Making
(Alert or Monitor)

l

Is Risk Acceptable?

SO

Early Intervention Go Back to
(Support Services) Risk Assessment

Figure 8. Conceptual diagram of an Al-based suicide risk assessment pipeline, reflecting the role of NLP methods and
machine learning models

Next, the texts are preprocessed, including tokenization, lemmatization, stop word removal, and normalization. These
operations ensure data uniformity and structure, which is critical for subsequent computational procedures [56]. The
next step is feature engineering. At this stage, linguistic, syntactic, and semantic characteristics of the text are extracted
that may reflect psychological markers of suicidal ideation: emotional coloring, cognitive patterns, the severity of self-
references, and other features of speech behavior [57].

The resulting features are transferred to deep neural network models. These include hybrid CNN-LSTM architectures
and transformer models, which have demonstrated high efficiency in analyzing unstructured psycholinguistic data and
predicting psycho-emotional states [53, 58]. The model training and validation phase incorporates labeled datasets to
optimize performance, often using ensemble techniques to improve prediction robustness [55]. The risk assessment
component evaluates the likelihood of suicide ideation, generating a probabilistic risk score that can guide clinical or
emergency response actions.
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Importantly, the system integrates privacy-aware components, such as data minimization and federated learning, to
address ethical and legal concerns in mental health research. Blockchain-based immutability can be applied to ensure
the traceability of risk predictions and model updates, safeguarding against unauthorized tampering [59]. These features
enhance transparency and accountability within Al-powered mental health systems. Ultimately, the decision-making
module synthesizes all outputs and determines whether intervention is required. The system can trigger alerts, refer
individuals to mental health professionals, or log outcomes for clinical review. This closed-loop framework, grounded
in machine learning and NLP, provides an innovative and scalable solution to adolescent suicide prevention [60].

5. Testing Process with Experimental Setup and Results

This section presents the experimental testing process, detailing the survey methodology, participant distribution, and
the evaluation of stakeholder willingness to adopt the proposed Al-driven suicide risk prediction system.

5.1. Testing Process

The model testing phase was organized taking into account the professional affiliation of the participants, which
made it possible to assess the potential for cross-sector implementation of the system. Respondents were divided into
several key groups: healthcare professionals, educators, IT experts, and representatives of administrative and regulatory
bodies. This approach made it possible to identify differences in expectations, levels of trust, and readiness to use
artificial intelligence technologies in each professional sector.

As shown in Figure 9, the demographic structure of the respondents includes a wide range of specialists, which
ensures the representativeness of the results and reflects the real multi-layered nature of the mental health system. The
diversity of professional positions allows for a more in-depth assessment of the prospects for implementing the proposed
architecture — from clinical practice to school support services and digital solutions at the city level.
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Figure 9. Analysis of survey results reflecting the positions and expectations of various stakeholder groups regarding the
implementation and applicability of an Al-based suicide risk prediction system.

Participants in the study were asked to express their opinions on the key limitations of existing mental health
assessment systems, particularly with regard to identifying suicide risks in adolescents. The responses indicate that
respondents are particularly concerned about personal data protection, the insufficient accuracy of analytical tools, and
delays in decision-making in traditional monitoring methods.

As shown in the survey results presented in Table 3, more than 64% of participants believe that the current systems
do not provide a rapid response in real time and are not sufficiently transparent in terms of ethical principles and the
rationale behind algorithmic decisions. To assess readiness for implementation of the proposed system, the study used a
set of questions aimed at identifying specialists' attitudes toward the use of Al-based forecasting tools in their institutions.
All respondents were required to answer these questions, which ensured the completeness of the views presented and a
balanced reflection of the positions of various professional groups.
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Table 3. Perceived limitations in current mental health systems

Limitation Percentage of respondents (%0)
Lack of real-time response 64
Data privacy concerns 58
Limited predictive accuracy 53
Delayed intervention mechanisms 49
Lack of explainability in existing tools 42

As shown in Table 4, 46% of participants expressed high interest in implementing the system, while another 29%
demonstrated moderate willingness to consider using such tools. At the same time, 15% took a neutral position, and 10%
of respondents opposed the integration of the system, motivating their decision with concerns related to compliance with
ethical standards and data sovereignty issues.

Table 4. Willingness to Adopt Al-Driven system

Response Category Percentage of Respondents (%6)
Strongly willing 46
Somewhat willing 29
Neutral 15
Unwilling 10

These findings indicate that a significant portion of the professional community is open to integrating Al-powered
mental health solutions. However, there remains a need to address the concerns of undecided and reluctant participants
by enhancing system explainability and strengthening data-security assurances. The inclusion of blockchain technology
for transparency and federated learning for privacy preservation were regarded positively by 72% of respondents,
suggesting these features could bridge the trust gap in sensitive mental health applications.

Further experimental validation was conducted by simulating the system in a controlled environment. This setup
included real-time ingestion of anonymized mental health data streams into the prediction model, followed by risk
scoring and simulated alert generation. The system’s response time, accuracy, and intervention triggers were evaluated
using performance metrics such as AUC-ROC, Precision-Recall, and F1-score. The average processing latency remained
under 2.4 seconds per transaction, demonstrating the model’s suitability for real-time applications.

In addition, post-deployment usability was evaluated by observing interactions of mental health professionals with
the system interface. The feedback emphasized intuitive design and informative visualization of risk assessments, which
enhanced the decision-making process. Participants especially valued the audit trail feature, which allowed traceability
of each Al decision through blockchain logging. In conclusion, it should be noted that the experimental phase
convincingly confirms the practical feasibility and acceptability of the proposed system in conditions close to real-life
operation. The results highlight the importance of three key factors: user trust, reliable data protection, and ease of use
of the interface. It is the combination of these elements that determines whether Al-based solutions can become a
sustainable part of the urban mental health support ecosystem.

As shown in Figure 8, the distribution of final indicators during pilot testing demonstrates a balanced dynamic
between user engagement and model effectiveness. The visual diagram reflects how representatives of various
professional groups interacted with the system, how consistently it identified high-risk cases, and how its transparency
was assessed from an ethical point of view. Thus, the data presented in Figure 8 reinforce the overall conclusion that the
developed architecture is not only technically feasible but is also perceived by target stakeholders as a reliable and useful
tool.

5.2. Experimental Setup

In this experimental setup, a structured and systematic methodology was applied to evaluate the feasibility and impact
of the proposed Al-driven suicide risk prediction system. The study combined quantitative and qualitative approaches
to ensure comprehensive insight into adoption attitudes, system expectations, and technical performance. Quantitative
data were primarily gathered through structured online surveys administered via platforms such as Google Forms and
Survey Monkey. These surveys were targeted toward mental health professionals, educators, IT personnel, and
healthcare administrators. The questions focused on evaluating current mental health screening limitations, perceptions
of Al ethics, and willingness to adopt Al-based risk systems.
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To enhance the study’s contextual richness, qualitative data were collected through semi-structured interviews with
selected experts from mental health organizations and educational institutions. Interviews were recorded, transcribed,
and analyzed using NVivo 14 software to extract recurring themes such as ethical concerns, trust in Al, and usability of
decision-support systems.

In parallel, a simulated environment was created to test the real-time capability of the system. This involved feeding
anonymized adolescent behavioral data into a deployed prediction model hosted on a secured cloud infrastructure. The
system's performance was assessed through key metrics, including latency, accuracy, and scalability. Evaluation tools
such as Python (Scikit-learn) and R were used to apply regression models, AUC-ROC curve analysis, and confusion
matrix evaluations.

To ensure data integrity, federated learning protocols and differential privacy methods were integrated into the
system, which minimized the risk of personal information leaks and maintained the accuracy of calculations on
distributed nodes. The participants' responses and key characteristics of the model's performance were visualized using
Matplotlib and Tableau tools. The corresponding graphics are presented in Figures 7 and 8, which show both the results
of the model's performance and the reaction of various professional groups to its implementation.

All stages of the study were conducted in strict accordance with ethical requirements: personal identifiers were
anonymized, and informed consent to participate was obtained from respondents. This comprehensive approach to
organizing the experiment made it possible to confirm the effectiveness of the proposed architecture both from a
technical point of view and from the perspective of stakeholder perception, which significantly enhances the reliability
of the final conclusions.

5.3. Survey Instrument

In alignment with the experimental setup described in Section 5.2, the data collection process incorporated a
structured and thoughtfully designed survey to assess perceptions and adoption intentions regarding the proposed Al-
driven suicide risk prediction system. The survey was developed using Google Forms and served as the primary tool for
capturing large-scale quantitative feedback from relevant professionals, including healthcare providers, educators, IT
specialists, and mental health policy stakeholders.

The questionnaire was structured into multiple sections. The first section gathered demographic and professional
background information, allowing for segmentation of responses. Subsequent sections focused on evaluating perceptions
of current mental health risk assessment tools, concerns surrounding data privacy and system transparency, and the
perceived value of features such as real-time processing, blockchain auditability, and federated learning privacy
safeguards.

To ensure clarity and reliability, the survey underwent a preliminary pilot phase with 15 domain experts. Their
feedback informed revisions that enhanced question phrasing and reduced cognitive load, resulting in a streamlined
instrument with an average completion time of under seven minutes. The final version of the questionnaire included
Likert-scale items, multiple-choice responses, and binary yes/no formats to facilitate both statistical analysis and cross-
sectional comparison. The digital nature of the survey enabled wide dissemination across institutional mailing lists,
academic forums, and healthcare networks. Participation was voluntary and fully anonymous. Informed consent was
obtained electronically at the outset, ensuring ethical compliance with data protection principles.

Data collected through the survey directly informed the visual results presented in Figures 7 and 8 and the statistical
breakdowns in Tables 3 and 4. This instrument proved integral in capturing real-world stakeholder sentiment and gauging
practical readiness for adopting Al-powered mental health assessment technologies in adolescent suicide prevention
settings.

5.4. Results

In this section, the key outcomes of the experimental evaluation and survey analysis concerning the Al-driven suicide-
risk prediction system are presented. This assessment aimed to explore the system’s performance, stakeholder trust, and
readiness for adoption, particularly in the context of mental health support for adolescents. The integration of federated
learning, blockchain logging, and real-time processing was central to measuring technological effectiveness and ethical
compliance.

Based on survey results from diverse stakeholders — including healthcare professionals, educators, IT experts, and
policymakers — strong support was observed for system components that prioritize data privacy and transparency. Over
72% of respondents favored federated learning as a privacy-preserving approach, while 68% expressed confidence in
blockchain logging as a mechanism for trust and accountability. Furthermore, 75% rated real-time risk detection as
essential for effective intervention in suicide prevention strategies.
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Experimental testing also confirmed the system’s technical performance through key metrics:

¢ Predictive accuracy of suicide risk (AUC-ROC > 0.91);

Real-time intervention responsiveness (avg. latency: 2.4 seconds);

Reduction in false positives through ensemble modeling;

High stakeholder usability feedback for decision-support dashboard,;

Positive ethical audit feedback based on traceability and consent mechanisms.

Comparative Performance of Al Models

To evaluate the effectiveness of various machine learning models for suicide risk prediction, a comparative analysis
was conducted using the Kaggle Suicide Risk Dataset. Each model was trained and validated using an 80/20 train-test
split, and evaluated with standard performance metrics including accuracy, precision, recall, F1-score, and AUC-ROC.

As can be seen from the data presented in Table 5, transformer models, including BERT, demonstrate a noticeable
superiority over traditional classifiers in terms of both prediction accuracy and robustness to data variability. Although
logistic regression and support vector machines form a decent baseline, more complex architectures — such as BiLSTM
and especially BERT — deliver significantly higher sensitivity and F1 scores. These metrics are crucial in systems focused
on preventing suicidal behavior, where minimizing the number of missed high-risk cases is critical.

Table 5. Comparative Performance of Al Models

Model Accuracy  Precision  Recall Fl-score AUC-ROC Notes
Logistic Regression 0.84 0.82 0.83 0.82 0.88 Baseline
SVM (Linear Kernel) 0.86 0.85 0.84 0.84 0.89 Good margin separation
Naive Bayes 0.78 0.75 0.77 0.76 0.80 Fast but weak on recall
BiLSTM 0.90 0.89 0.90 0.89 0.93 Deep sequence model
BERT 0.92 091 0.93 0.92 0.96 Transformer-based, best AUC

As shown in Figure 10, a comparative evaluation of machine learning algorithms demonstrates the clear superiority
of the BERT model over traditional classifiers across all key metrics. The results confirm that the transformer architecture
provides higher accuracy (0.92), F1-score (0.92), and AUC-ROC (0.96), making it particularly suitable for high-risk
mental health monitoring tasks.

These metric values indicate the model's ability not only to reliably distinguish between high- and low-risk groups,
but also to remain stable when working with heterogeneous and emotionally charged texts. In the context of suicide
prevention, where it is critical to minimize the number of missed dangerous cases, this quality of prediction is a
significant advantage.
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Figure 10. Comparative evaluation of machine learning models for predicting suicide risk. The BERT model shows
superiority across all metrics, including Accuracy (0.92), F1-score (0.92), and AUC-ROC (0.96), confirming its effectiveness
for high-risk monitoring systems. Scalability and Big Data Processing Performance.
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To verify the scalability and speed of the system, two stages of load testing were conducted. In the first stage—
prototyping-a functional mock-up of the system was implemented on the Google Colab and Databricks platforms, which
processed approximately 20,000 text records obtained from mental health resources. Apache Spark Structured Streaming
was configured with a batch size of 5,000 records and a sliding window of 10 seconds. Processing latency and RAM
usage metrics were recorded for different data volumes. The results of this stage are presented in Table 6, which shows
the measured performance parameters with a sequential increase in load.

In the second stage — simulating a distributed deployment — the Spark—Hadoop cluster architecture was recreated,
including four worker nodes and one control node, each equipped with 4 virtual processors (vVCPUs), 16 GB of RAM,
and 100 GB of SSD storage. Streaming data was received via Apache Kafka, stored in HDFS with a replication factor
of 2, and processed using Spark Structured Streaming. A summary visualization of the results is shown in Figure 11,
where part (a) shows the dependence of processing time on the increase in the number of records, and part (b) shows the
dynamics of RAM usage as the load increases.

As can be seen from the data presented, the system stably processes incoming streams of up to 20,000 records with
a delay of less than 6 seconds, which meets the requirements for rapid response in mental health support environments
(e.g., school or clinical information systems). In addition, the results of distributed testing confirm the scalability of the
proposed architecture: performance can be increased horizontally by adding worker nodes, and utilization.

Table 6. Spark Streaming performance metrics on Google Colab/Databricks (prototype evaluation).

Number of Records Batch Size  Processing Time (s)  Peak RAM Usage (GB) Notes
5,000 1,000 1,2 1.9 Initial load
10,000 2,500 2,6 2,8 Mid-point test
15,000 5,000 4,0 3,6 Active sliding window
20,000 5,000 58 4,2 Peak prototype load

Figure 11. System scalability: (a) increase in processing time with increasing data volume; (b) RAM usage depending on load

These results demonstrate that the proposed system is capable of handling real-time ingestion of up to 20,000 records
with processing latency remaining below 6 seconds. This is sufficient for responsive mental health interventions in cloud
environments such as schools or clinics. Furthermore, the simulated distributed setup indicates that the architecture is
scalable and production-ready, allowing horizontal scaling through the addition of worker nodes and efficient stream
ingestion via Kafka.

Outcome Metrics and System Performance Results

To comprehensively assess the practical applicability of the developed suicide risk prediction system, an analysis of
the final indicators was conducted in four key areas: risk level dynamics, accuracy of case detection, prediction quality,
and effectiveness of subsequent interventions. The summarized visual results are presented in Figure 12(a—d).

In Figure 12a, the system’s ability to monitor suicide-risk trends over a five-month period is illustrated through
fluctuations in risk scores. A decline in average risk during the initial phase, followed by moderate growth, demonstrates
the model’s temporal sensitivity and capacity to respond to evolving psychological patterns among adolescents. These
dynamics highlight the system’s potential for long-term monitoring and forecasting. Figure 12b shows the ratio between
the number of correctly identified cases and the total volume of processed data. The system consistently identifies
individuals from the high-risk group while maintaining an acceptable level of false positives, confirming the stability of
the classification algorithm. The visualization further indicates that 68% of records were correctly classified as non-
suicidal and 32% as high-risk, reflecting the model’s sensitivity to linguistic and semantic cues associated with self-
harm. This classification performance is essential for early intervention, enabling professionals to prioritize cases
requiring immediate attention. Figure 12c compares model performance before and after the integration of Al modules.
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The transition from an average accuracy of 72% to 88% demonstrates the significant contribution of modern NLP
methods and transformer-based architectures. These enhancements confirm the benefits of integrating Al and cloud-
based technologies into adolescent mental-health risk-prediction pipelines. Figure 12d evaluates the effectiveness of
subsequent interventions. Following the implementation of the automated system, the proportion of timely and
successful referrals increased from 78% to 91%. This improvement emphasizes the practical value of algorithmic
notifications in supporting clinical and educational services.
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(C)Figure 12. (a) Forecast of risk level change by month; (b) Comparison of detected cases with total records; (c) Model

accuracy before and after Al integration; (d) Intervention success rates before and after system deployment

Taken together, the results presented in Figure 12 indicate that the system achieves key benchmarks in prediction
accuracy, processing speed, and usability. The combination of machine-learning techniques with privacy-preserving
data-management mechanisms facilitates a more rapid and effective response to suicide risk among adolescents.

Monthly Revenue Growth Trend

As shown in Figure 13, the implementation of the developed Al system has a multifaceted impact on the effectiveness
of institutions dealing with adolescent mental health. The data presented reflects both improvements in organizational
processes and strengthened financial stability following the integration of predictive architecture.

(@ (b)
Figure 13. Indicators of the system's operational and financial efficiency: (a) reduction in the proportion of cases requiring
repeat interventions; (b) increase in the institution's profitability on a monthly basis after the system was introduced
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Figure 13a demonstrates a reduction in the number of cases associated with delays or ineffective interventions. The
downward trend indicates that the system contributes to more timely patient care, reduces the likelihood of missing
critical situations, and decreases reliance on manual operations, which are a source of errors and delays. Figure 13b
illustrates the monthly increase in the facility's revenue during the twelve months following the system's implementation.
Growth begins at 8% in the first month and reaches a cumulative increase of 80% by the twelfth month. This sustained
upward trend is driven by increased operational efficiency, reduced manual data processing costs, and increased
throughput through automated analysis, early interventions, and more accurate resource allocation.

Taken together, the results confirm that the use of the proposed Al architecture contributes to simultaneous
improvements in clinical performance and economic sustainability. The combination of federated learning, differential
privacy mechanisms, and the scalability of cloud solutions not only ensures high prediction accuracy and timely
interventions, but also optimizes resource allocation.

Revenue growth reflects improved service organization, reduced need for labor-intensive manual assessments, and
an increase in the number of successfully serviced cases — all made possible by automated routing and early risk signals.
Thus, the system contributes both to improving the support provided to at-risk adolescents and to strengthening the
financial stability of institutions in the public and private sectors.

6. Discussion

The experimental evaluation indicates that the proposed Al-enabled framework for suicide risk prediction delivers
notable gains in both predictive accuracy and system responsiveness compared with conventional approaches.
Transformer-based models such as BERT achieved ROC-AUC = 0.96 and F1 = 0.92, surpassing traditional classifiers
including logistic regression (AUC = 0.88) and SVM (AUC = 0.89). These findings align with earlier work that
highlighted the benefits of deep learning for linguistic analysis in mental health research [9, 11, 18]. At the same time,
they extend prior knowledge by combining scalability with privacy-preserving mechanisms that were not incorporated
into previous models.

In the context of urban digital infrastructure, the proposed architecture is not viewed as a separate closed module, but
is integrated as a service layer on top of existing municipal platforms. In practice, key components are hosted in the city
cloud, which already supports educational services, e-health, and social systems. School information platforms and
advisory services become the main entry points: text data analysis can be performed locally or in an industry cloud, and
only anonymized features or model parameter updates are sent to the centralized analytics module via secure APIs.
Healthcare platforms and crisis hotlines can receive calculated risk levels through standardized interfaces, allowing them
to automatically initiate referral routes, update electronic records, or transfer information to interdisciplinary support
services. This approach avoids the creation of an isolated “data warehouse,” preserves ownership of the source
information at the institutional level, and ensures controlled points of integration between school networks, the city
cloud, and public health systems.

In the proposed architecture, particular attention is given to data ownership and the procedure for obtaining consent
for data processing in a federated learning environment. The core principle is that institutions — such as schools, clinics,
or advisory services — retain full control over their source data. Each organization remains the owner of its information
resources, and local data does not leave the institution’s infrastructure or enter the centralized analytical workflow.
Within the federated learning framework, participation in computations is governed by pre-approved access policies
defined by each participating institution. User consent (or the consent of legal guardians in the case of minors) constitutes
a mandatory prerequisite: data may be incorporated into local model training only when explicit authorization is provided
in accordance with national personal-data protection regulations.

It is important to emphasize that during federated learning, only updated model parameters are transferred to the
central aggregation module in an aggregated form; they do not contain personalized, identifying, or otherwise sensitive
information. This design principle enables a clear separation of responsibilities: the data-providing institution manages
access rights and governs local data usage, while the central module integrates only depersonalized model gradients.
Such an approach ensures legal predictability, optimizes computational and communication overhead, and maintains
compatibility with regulatory requirements for digital healthcare and educational services within smart-city
environments.

The preparatory materials included concise analytical annotations, sample interface illustrations, architectural
diagrams, and descriptions of key concepts such as natural language processing, federated learning, risk levels, and data
anonymization mechanisms. All participants — including educators, clinicians, and information technology specialists—
received identical materials prior to the survey. Additionally, a brief introductory session was conducted before survey
administration, during which the study objectives and the core technical elements of the model were explained. This
approach ensured a consistent baseline understanding of the terminology and reduced the potential for methodological
bias associated with differences in participants’ professional backgrounds.
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In this study, the model was trained primarily on English-language sources, which represents a recognized limitation
in the context of multilingual and culturally diverse smart-city systems. Linguistic variation — including local idioms,
culturally specific forms of expression, and divergent communication styles — can substantially influence the accuracy
of suicide-marker detection. The absence of a multilingual corpus may reduce the model’s sensitivity in non-English
environments and limit its immediate applicability in international or multicultural urban ecosystems. To address this
limitation, future work should incorporate training corpora in Kazakh, Russian, and other relevant languages, along with
the application of transfer learning and adaptive fine-tuning techniques. Expanding the linguistic diversity of the dataset
is expected to enhance the model’s robustness to intercultural variation and support reliable system performance in global
contexts where multilingualism and cultural heterogeneity are prevalent.

In addition, the model uses a stream processing scheme, where incoming text messages are distributed among
computing nodes with the possibility of dynamic load redistribution. This structure allows for the processing of large
data arrays typical of municipal systems, including schools, healthcare institutions, and emergency response services.
Another important aspect is the minimization of overhead costs through local preprocessing in federated nodes. Since
only model parameters, rather than raw data, are sent to the central circuit, the system avoids network channel overload
issues and does not place excessive demands on the bandwidth of the city's infrastructure.

In addition, the model employs a stream-processing architecture in which incoming text messages are distributed
across computing nodes with support for dynamic load balancing. This structure enables the handling of large-scale data
streams typical of municipal systems, including schools, healthcare institutions, and emergency response services.
Another important aspect is the reduction of overhead costs through local preprocessing on federated nodes. Because
only model parameters - rather than raw data - are transmitted to the central aggregation layer, the system avoids network
congestion and minimizes demands on the bandwidth of the city’s digital infrastructure.

Considering the results of load testing and the system’s demonstrated capacity to distribute computations across
multiple clusters, the proposed architecture can be regarded as capable of supporting urban-scale data flows, provided
that an adequate number of worker nodes and appropriate load orchestration mechanisms are available. In contrast to
earlier studies that primarily focus on retrospective data analysis or rule-based prediction approaches [10, 14], the
proposed framework enables real-time predictive processing through the use of Hadoop- and Spark-based
infrastructures. This capability supports proactive interventions rather than delayed responses. Although the potential of
federated learning in healthcare has been explored [28], its application in adolescent suicide prevention has received
limited attention. The presented architecture addresses this gap by combining federated learning with differential
privacy, thereby safeguarding sensitive information without compromising predictive accuracy.

The findings highlight the importance of Al-enabled monitoring within Smart City environments, particularly in
strengthening urban resilience. Deploying the system across schools, clinical institutions, and community networks can
create early-warning infrastructures that enhance preventive capacities, improve resource allocation, and reduce latency
in crisis-response workflows. The observed 80% increase in operational efficiency further demonstrates the economic
viability of integrating such platforms into urban ecosystems.

Despite these advantages, several challenges must be acknowledged. Dependence on publicly available datasets —
such as Kaggle — may constrain cultural and linguistic representativeness. Although federated learning improves privacy
preservation, it introduces additional computational overhead that may limit feasibility in resource-constrained
environments. Furthermore, transformer-based models, despite their strong predictive performance, present notable
interpretability limitations, which can impede clinician confidence during practical deployment.

Future research can proceed along three primary directions. First, expanding datasets with multilingual and region-
specific sources is essential for improving representativeness among underexplored populations. Second, the integration
of Explainable Al (XAl) techniques is warranted to enhance model interpretability and strengthen practitioner and
stakeholder trust. Third, longitudinal clinical trials are required to validate real-world effectiveness in adolescent cohorts.
In addition, multimodal extensions that incorporate 10T sensor streams, EHRs, and behavioral signal data may further
enhance predictive robustness and support a more comprehensive understanding of adolescent mental health.

One of the fundamental challenges in implementing risk-prediction systems is minimizing false positives, which may
lead to unnecessary interventions or compromise user privacy. The proposed architecture incorporates multiple
safeguards to mitigate such outcomes.

First, the model employs an adaptive thresholding mechanism derived from the statistical distribution of risk levels
within a given dataset. This approach prevents overly sensitive configurations and reduces the likelihood that neutral or
emotionally charged, yet non-threatening, messages will be incorrectly classified as high-risk.

Second, the system incorporates an ensemble-based smoothing mechanism in which the final decision is generated
not by a single classifier but by an array of heterogeneous models, each utilizing distinct feature representations. This
strategy reduces the influence of individual model errors and increases the robustness of the aggregated prediction.
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The third layer of protection involves mandatory expert oversight: a psychologist, counselor, or social worker must
validate any automatically flagged high-risk case. The system communicates its output as a preliminary alert rather than
a definitive judgment, ensuring that no automated action is taken without human verification and thereby reducing the
likelihood of unwarranted interventions.

In addition, strict anonymization protocols are applied: the system does not store original text inputs within the central
aggregation layer but transmits only depersonalized feature representations. This design mitigates the risk of unintended
disclosure of sensitive information, even in cases where false alarms occur. Collectively, the adaptive thresholding
mechanism, ensemble-based stabilization, mandatory expert verification, and technical data-protection measures
constitute a multi-layer safeguard framework that substantially reduces the likelihood of adverse outcomes resulting
from false-positive classifications.

Before the survey commenced, all participants were provided with a briefing document outlining the key ethical
considerations associated with the use of Al systems for risk prediction. The document detailed model-related
limitations, the nature of algorithmic errors, constraints related to result interpretability, and potential privacy risks,
particularly in the context of emotionally sensitive textual data.

To ensure transparent participation conditions, all respondents—including educators, clinicians, and information
technology specialists — were provided in advance with detailed explanations regarding the nature of the data being
analyzed, the mechanisms used to protect it, the decision processes executed by the system, and the scope of human
oversight. It was explicitly emphasized that no automated actions are performed without expert involvement and that
algorithmic outputs function solely as decision-support signals within the broader framework of professional assessment.

This preliminary information enabled participants to critically assess the proposed technology, considering both its
advantages and the potential trade-offs between predictive accuracy, processing speed, and ethical constraints. This
preparatory stage constitutes an essential component of the research methodology, as it supports the collection of more
balanced and informed responses while mitigating the influence of misconceptions regarding the operation of Al
systems.

7. Conclusion

The presented study showed that the combination of modern NLP models, distributed data processing, and private
computing forms a more reliable and efficient tool for assessing the risk of suicidal behavior among adolescents. Unlike
traditional methods described in the works of Bernert et al. and Hawton et al. [6], the proposed approach allows for the
analysis of large data sets in real time and takes into account complex linguistic and behavioral markers that were
previously overlooked. The obtained indicators — AUC-ROC 0.96 and F1-score 0.92 for the BERT model — confirm the
superiority of transformer architectures over classical algorithms, which is consistent with the conclusions of Kim et al.,
but complements them with scalability and integration into the urban digital environment.

The issue of privacy deserves special attention. In previous works on the application of machine learning in
psychiatry, data protection issues are usually considered only in general terms. This study demonstrated the practical
implementation of federated learning and differential privacy mechanisms, bringing the architecture to a level suitable
for real-world implementation in schools, medical institutions, and smart city services. Positive feedback from experts
who participated in the survey confirms the professional community's readiness to use transparent, verifiable, and
decentralized decision support tools.

In addition, the results of modeling and experimental tests have shown that the system improves the efficiency of
routing requests to emergency services and reduces response delays, which is consistent with the assumptions presented
in the literature on the need to move from retrospective analysis to operational monitoring. Nevertheless, there are still
areas for development: expanding the multilingual database, improving the interpretability of models, and conducting
long-term field tests.

Overall, the proposed architecture demonstrates that the combination of big data, transformer models, and private
computing can form the basis for an ethically sound and practically significant early warning system for the risk of self-
destructive behavior in adolescents.
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