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Abstract 

This study aims to improve the accuracy, speed, and safety of suicide risk assessment among adolescents in the digital 

ecosystems of smart cities. To achieve this goal, an integrated system architecture was developed that combines natural 

language processing methods, transformer models, and privacy-preserving computation. The methodological part includes 

large-scale textual data analysis, distributed processing in Apache Spark and Hadoop environments, and the use of 

federated learning, which allows models to be trained without transferring sensitive source information. The evaluation 

was conducted on open mental health datasets and supplemented by a series of experiments simulating the system's 

operation in real time, as well as surveys of specialists – psychologists, educators, and IT experts. The analysis showed 

that transformer models, particularly BERT, significantly outperform classical algorithms, achieving an AUC-ROC of 0.96 

and an F1 score of 0.92 with an average response time of 2.4 seconds. Survey participants noted the importance of 

transparency and data protection, and the proposed architecture received high marks for reducing the risk of information 

leaks and providing robust audit mechanisms. The novelty of the work lies in the combination of predictive analytics, 

federated learning, differential privacy, and blockchain traceability in a single application-oriented system. The results 

show that ethically sound and rapid suicide risk detection can be implemented in schools, medical institutions, and 

municipal services, providing both practical benefits and contributing to methodological advancements. 

Keywords: Smart Cities; Adolescent Mental Health; Suicide Risk Prediction; Privacy-Preserving AI; Federated Learning; Cloud 

Computing; NLP. 

1. Introduction 

Teen suicide remains one of the biggest public health issues. With the increasing digitalization of communication, 

many early warning signs now appear not in clinical settings but in digital communications – posts on social media, 

messages on messaging apps, and educational digital platforms. At the same time, educational institutions, medical 

services, and municipal structures lack the tools to systematically analyze such data on a large scale and in real time 

without violating fundamental security and confidentiality principles. As a result, existing methods for identifying 

suicide risk remain fragmented, and digital systems do not provide sufficiently comprehensive monitoring. 

The development of big data and distributed computing technologies over the past two decades has laid the foundation 

for more accurate and timely analysis of complex behavioral and linguistic patterns. The works of Dean & Ghemawat 
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[1] and Dayalan [2] laid the foundation for processing large data sets in distributed environments, while the research of 

Zaharia et al. [3] (Spark) demonstrated the effectiveness of computing on working sets and high performance when 

working with data streams. The review by Zabala-Vargas et al. [4] emphasizes that the comprehensive use of big data, 

analytics, and artificial intelligence can qualitatively change the management of complex processes. However, in the 

field of adolescent mental health, these technical achievements are being implemented extremely slowly: most studies 

are limited either by a small sample size or retrospective analysis. 

At the same time, the field of suicide risk assessment is also developing. A systematic review by Bernert et al. [5] 

shows that machine learning algorithms can improve the accuracy of predictions, but the authors note a persistent lack 

of scalability, weak generalizability of models, and a lack of solutions for rapid integration into practice. Epidemiological 

data, such as in the study by Hawton et al. [6], emphasize the existence of suicide clusters and the need for early 

diagnosis. The work of Kim et al. [7] demonstrates that multidimensional models trained on independent international 

cohorts of adolescents improve the accuracy of identifying suicidal thoughts. However, such models are rarely integrated 

into the actual information systems of schools, clinics, and municipal services. 

Clinical and longitudinal studies, such as those by Méndez-Bustos et al. [8], confirm the complex and dynamic nature 

of the formation of suicidal thoughts in adolescents and the need for continuous monitoring. Regional studies by 

Saduakassova et al. [9] highlight the potential of using Artificial Intelligence (AI) for the early detection of destructive 

behavior among children and adolescents, but note the lack of technologically mature, safe, and scalable solutions 

suitable for implementation in practice. 

Against this backdrop, smart city infrastructure represents both an opportunity and a challenge. On the one hand, it 

already includes educational platforms, telemedicine services, and municipal helplines – sources of data that can be used 

for early risk detection. On the other hand, their integration requires strict compliance with legal and ethical standards, 

minimization of data centralization, and a transparent decision-making mechanism. Figure 1 shows the conceptual 

architecture of the proposed system, illustrating the data flows between distributed sources and cloud-based analytical 

modules.  

 

Figure 1. Graphical abstract showing the integration of an AI-powered suicide risk prediction system into a smart city environment 

Figure 2 demonstrates the dynamics of research in the field of adolescent mental health and suicide prevention, 

allowing us to see the place of the proposed architecture in contemporary scientific discourse. 

A review of the literature reveals several key gaps. 

 Despite the maturity of big data ecosystems [1-3], there are no solutions that integrate them with modern natural 

language processing (NLP) models into a unified architecture specifically adapted to the adolescent population. 

 Existing studies focus primarily on model accuracy but rarely address issues related to implementation in the real-

world operational processes of schools and city services. 

 Privacy-preserving learning methods, including federated learning and differential privacy, are predominantly 

described at a conceptual or theoretical level, even though they are critically important when working with 

adolescent data. 

 There are almost no solutions that comprehensively address technical, clinical, and social requirements 

simultaneously [5, 8, 9]. 
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This study aims to address these limitations. It proposes an architecture that combines modern transformer models, 

distributed data processing on a Hadoop/Spark cluster, private machine learning methods, and transparent audit 

mechanisms. The architecture is evaluated on large-scale text data and supplemented by a survey of doctors, educators, 

and Information Technology (IT) specialists to analyze readiness for implementation and risk perception. 

 

Figure 2. Overview of the evolving landscape of adolescent mental health research and suicide prevention initiatives 

The structure of the article is organized as follows. Section 2 contains a review of the literature on AI in suicide 

prevention, big data technologies, and private computing mechanisms. Section 3 describes the research methodology, 

including data selection, preprocessing methods, and model training parameters. Section 4 is devoted to the architecture 

of the proposed system and its components. Section 5 presents the experimental results and their interpretation. Section 

6 discusses practical conclusions, limitations, and directions for further research. The conclusion (Section 7) summarizes 

the final conclusions of the work. 

2. Related Work 

This section reviews prior approaches to suicide-risk prediction, emphasizing big-data platforms, AI, and cloud 

computing. Traditional prevention strategies – clinical assessments and crisis hotlines – face significant limitations in 

scalability and predictive accuracy [9]. The growing influence of social media and digital behavior on youth mental 

health underscores the need for more advanced, data-driven risk-assessment methods [10]. 

Machine learning and large-scale data analytics have emerged as transformative tools in mental health research. 

Studies have demonstrated that AI-driven models can effectively identify suicide risk factors, such as historical medical 

records, social media interactions, and behavioral patterns [11]. Advanced data-processing systems like the Hadoop 

Distributed File System (HDFS) and Apache Spark enable large-scale data storage and real-time analysis, improving the 

efficiency of suicide-risk prediction models [12]. 

Existing research has examined the application of AI in suicide prevention, especially in automated risk-detection 

models. Lee & Pak [12] applied machine learning algorithms in a study on a large cohort and demonstrated that 

intelligent models outperformed traditional methods in identifying high-risk individuals. Moreover, advanced graph-

processing systems such as GraphX and Neo4j have been used to analyze complex social data, identifying key patterns 

in adolescent behavior associated with suicidal tendencies. Cloud-computing solutions, including Hadoop-based 

architectures, play a critical role in ensuring scalability and real-time processing of suicide-risk data [13, 14]. Armbrust 

et al. [15] highlighted how Spark Structured Query Language (SQL) facilitates social-data processing, allowing efficient 

handling of structured and unstructured mental-health information. Furthermore, the implementation of parallel-

processing techniques in suicide-risk prediction systems enhances both the speed and accuracy of large-scale studies 

[16]. 

Graph-processing systems have also been applied in mental health analytics, enabling more effective modeling of 

social interactions and behavioral patterns [17]. These methods help identify indicators of psychological distress, 

providing insights into the social dynamics of individuals at elevated risk. Moreover, Bohaterewicz et al. [18] employed 

multi-level functional Magnetic Resonance Imaging (fMRI) features combined with machine-learning algorithms to 

detect suicide risk in patients with schizophrenia, demonstrating the continued relevance of AI-based approaches in 

clinical psychiatric assessment. The integration of electronic health records (EHRs) with AI-driven models has likewise 

been investigated as a potential solution for suicide-risk estimation. Su et al. [19] developed an ML-based framework 

that analyzes historical clinical data, identifying potential suicide risks without compromising patient confidentiality. 

Furthermore, recent studies have highlighted the importance of benchmark datasets for AI research in suicide prevention, 

ensuring more standardized, reliable, and reproducible results [20]. 
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Within the context of adolescent mental health, predictive models must account for the social, environmental, and 

psychological factors that contribute to suicidal ideation. Studies by Khosravi et al. [21] have shown that integrating AI 

models with large-scale adolescent population data significantly improves predictive performance, enabling mental 

health professionals to intervene proactively. Existing systems such as FlumeJava and Hadoop-based architectures have 

been explored for building efficient data-parallel pipelines in suicide-risk prediction [22]. These frameworks enable 

distributed computing, allowing AI models to process large-scale mental health data in a secure and privacy-preserving 

manner. Furthermore, recent research has emphasized the need for enhanced data-exchange mechanisms in suicide-risk 

prediction systems to ensure faster and more reliable processing in AI-based interventions [23, 24]. 

The integration of MapReduce algorithms has also proven effective in processing high-dimensional mental health 

data, enabling the development of more accurate risk-prediction models [10]. By leveraging AI-driven methodologies, 

the future of suicide prevention is likely to be shaped by scalable, cloud-based, and privacy-preserving solutions, 

ensuring more effective intervention strategies.   

Table 1 provides an overview of existing approaches and their limitations, highlighting the need for advanced AI-

driven suicide-prevention systems that integrate large-scale data analytics, cloud computing, and privacy-preserving AI 

techniques. 

Table 1. State-of-the-art methods for suicide risk assessment, highlighting the role of AI models, big data platforms, and 

cloud computing technologies 

Approaches Proposed Solutions Features/Characteristics Limitations 

Saduakassova 

et al. [9] 
Using AI to spot self-harm in young people. 

AI-driven analysis of self-harm patterns and 

risk factors. 

Limited data sources and lack of clinical 

validation. 

Rodway et al. 

[10] 

Analysis of childhood-related antecedents and gender 

differences in suicide cases. 

Exploration of social, psychological, and 

medical factors influencing youth suicides. 

Focuses on retrospective analysis rather than 

predictive modeling. 

Jacha et al. 

[11] 

Utilization of Hadoop for large-scale data storage and 

processing in mental health applications. 

High-speed data storage and real-time data 

processing for mental health applications. 

Scalability issues when applied to real-time 

monitoring systems. 

Lee & Pak 

[12] 

Machine learning-based forecast of self-destructive 

ideation and arranging. 

Machine learning models trained on large 

population data for accurate predictions. 

Potential biases in training data affecting 

generalizability. 

Merceedi & 

Sabry [13] 

Comprehensive survey of HDFS for managing mental 

health Big Data. 

Conveyed record framework approach to 

taking care of enormous unstructured 

wellbeing information. 

Tall computational prerequisites for preparing 

conveyed information. 

Assefi et al. 

[14] 

Execution of Apache Start MLlib for huge information 

machine learning in suicide hazard expectation. 

Scalable machine learning infrastructure for 

processing large datasets. 

Reliance on expansive labeled datasets for 

precise preparing. 

Armbrust et 

al. [15] 

Advancement of Spark SQL for organized information 

handling in mental wellbeing analytics. 

Productive SQL-based inquiry handling for 

organized suicide chance information. 

Limited compatibility with unstructured and 

multimodal data. 

Gonzalez et 

al. [16] 

GraphX system for analyzing social information in 

social systems connected to suicide hazard. 

Graph-processing framework for mapping 

behavioral patterns in at-risk populations. 

Requires integration with outside social media 

stages for information improvement. 

Ali & 

Logofătu [17] 

Comparative analysis of Neo4j and Spark GraphX for 

processing large-scale mental health datasets. 

Graph database optimization for complex 

relationship analysis in mental health data. 

Challenges in handling real-time streaming data 

efficiently. 

Bohaterewicz 

et al. [18] 

Use of fMRI and machine learning for identifying 

suicide risk in schizophrenia patients. 

Neuroscientific approach combining brain 

imaging and machine learning for risk 

detection. 

Costly and complex implementation for large-

scale medical applications. 

Su et al. [19] 
Machine learning analysis of EHR for suicide risk 

prediction. 

Utilize of chronicled therapeutic records and 

AI for early location. 

Privacy concerns and regulatory restrictions on 

EHR usage. 

Parsapoor et 

al. [20] 

Creation of benchmark datasets for AI inquire about in 

suicide hazard discovery. 

Standardization of AI models through 

benchmark datasets. 

Limited adoption of standardized datasets in AI 

research. 

Khosravi et 

al. [21] 

Predictive models for adolescent suicide risk using 

national health data. 

Data-driven models trained on diverse 

adolescent populations. 

Troubles in generalizing discoveries over 

different populaces. 

Bekmurat et 

al. [22] 

Data-parallel pipelines in Hadoop and Spark for 

versatile suicide hazard expectation. 

Efficient parallel computation in large-scale 

suicide risk assessments. 

Tall asset utilization in large-scale AI 

computations. 

Marjit et al. 

[23] 

Comparative study on data transfer methods in Hadoop 

for mental health applications. 

Analysis of optimal data transfer methods for 

mental health Big Data. 

Latency and bandwidth constraints in real-time 

applications. 

Hashem et al. 

[24] 

MapReduce optimization for processing large-scale 

suicide risk datasets. 

Execution enhancements in large-scale 

dispersed suicide hazard modeling. 

Making MapReduce frameworks work well for 

suicide chance models can be precarious. 

Our Solution 
Development of a scalable, AI-driven, cloud-based 

suicide risk prediction framework. 

Combines machine learning, huge information 

analytics, and privacy-preserving AI methods 

for real-time chance appraisal. 

Requires broad approval over differing 

populaces; potential challenges in guaranteeing 

full information protection compliance. 

Building on this foundation, recent advancements in smart city development highlight the crucial role of AI-driven 

and data-centric systems in managing urban challenges, particularly in healthcare and mental health domains. Studies 

such as [25, 26] emphasize the need for integrating real-time analytics and AI within smart city infrastructures to enhance 

public safety and wellbeing. Chen et al. [27] further illustrate the potential of Big Data in urban health surveillance, 

showing how predictive analytics can support crisis prevention efforts. Moreover, Federated Learning and Differential 

Privacy approaches [28] provide scalable and privacy-preserving solutions, ensuring sensitive health data, like 
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adolescent mental health indicators, are securely processed. This aligns with ethical AI practices and ensures compliance 

with global data protection regulations. Previous studies [29, 30] underscore the im-portance of Explainable AI (XAI) 

and the integration of Internet of Things (IoT), Cloud, and Deep Learning technologies to enhance healthcare delivery 

and mental health monitoring within Smart Cities. Other significant works [31-35] further highlight how smart city 

systems can contribute to improved urban health resilience, including environmental quality and health equity [36]. 

The research presented in this study extends beyond suicide risk prediction by embedding its AI architecture within 

smart city ecosystems. Smart cities thrive on interconnected systems that ensure real-time responsiveness, citizen safety, 

and service optimization. By leveraging scalable AI models and Big Data analytics, the proposed system seamlessly 

integrates with urban infrastructures such as educational institutions, public health services, and emergency response 

networks. 

3. Research Methodology 

The methodological basis of the study was developed to assess the accuracy and reliability of artificial intelligence 

models in identifying early signs of suicidal intent among adolescents. The work relies on machine learning, NLP, and 

big data technologies, which allow for the analysis of large volumes of text information related to the psycho-emotional 

state of users. 

The main source of data is the Kaggle Suicide Ideation Analysis Dataset, which includes user messages labeled by 

risk level (high risk, neutral category, no risk). The texts were collected from open Internet forums, social networks, and 

mental health-themed platforms, ensuring a variety of emotional and behavioral indicators. Data preprocessing included 

stop word removal, text normalization, lemmatization, tokenization, and feature extraction using Term Frequency–

Inverse Document Frequency (TF-IDF), Word2Vec neural embeddings, and Global Vectors for Word Representation 

(GloVe), which allowed unstructured texts to be converted into a format suitable for machine analysis. 

To ensure scalability and practical applicability in the smart city infrastructure, the distributed computing 

environments Hadoop and Apache Spark were used. The HDFS was used to store large arrays of unstructured data, and 

Map Reduce was used for parallel text processing. Apache Spark and the Apache Spark MLlib machine-learning library 

(MLlib) provided accelerated model training and support for streaming analytics, which is especially important for the 

rapid detection of high-risk users. 

As part of the work, several machine learning models were trained and tested, including logistic regression, support 

vector machines (SVM), naive Bayesian classifier, bidirectional Long Short-Term Memory (BiLSTM), and the 

Bidirectional Encoder Representations from Transformers (BERT) model. Their effectiveness was evaluated using 

standard metrics: 

 AUC-ROC (Area Under the Receiver Operating Characteristic Curve), reflecting the model's ability to distinguish 

between high- and low-risk texts; 

 Precision–Recall, assessing the balance between true positives and the probability of false alarms; 

 F1-measure, which is the harmonic mean between precision and sensitivity. 

To increase statistical reliability, additional analysis methods were used: the χ² test to evaluate the distribution of 

categorical features, Analysis of Variance (ANOVA) to analyze variations, and regression methods to identify the most 

significant textual indicators of suicide risk. A generalized diagram of the methodological stages of the study – from 

data collection and preprocessing to model training, validation, and integration with big data technologies– is presented 

in Figure 3, which demonstrates the sequence of stages and the interrelationships of the key components of the analytical 

pipeline. 

 

Figure 3. Research methodology and workflow for analyzing suicide risk using big data technologies and machine learning 

methods 
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3.1. Data Sources 

The data collection process for this study was designed to capture well-structured indicators of suicide risk while 

ensuring flexibility, security, and accuracy. A multi-source data acquisition approach was utilized, integrating publicly 

available datasets, user-generated content from online platforms, and anonymized EHRs. By combining multiple data 

sources, this methodology enhances the robustness and generalizability of predictive models, ensuring that the findings 

are relevant across diverse youth populations. 

The dataset was balanced by dividing it into groups based on key demographic and behavioral variables such as age, 

sex, geographic location, and digital activity level. Stratification helps address bias in data distribution, ensuring that the 

model captures variations in mental health risk factors across different groups. The sample size required for each stratum 

was determined using a statistical approach to maintain a 95% confidence level with a 5% margin of error. This was 

calculated using the following equation: 

𝑆𝑠 =
𝑧2𝑃(1 − 𝑃)

𝐸2
       (1) 

where 𝑆𝑠 represents the sample size per stratum, 𝑧 is the 𝑧 -score corresponding to the required confidence level, 𝑃 is the 

estimated proportion of the population with suicidal tendencies, and 𝐸 indicates the margin of error. This calculation 

ensures that each subgroup is adequately represented, preventing overfitting and improving the model’s reliability. 

The essential dataset utilized in this ponder is the Kaggle Suicide Estimation Examination Dataset, which includes 

labeled textual data from social media and mental health platforms. To enhance the dataset, it was supplemented with 

other publicly available mental health datasets, allowing broader cross-validation and improving overall data 

consistency. These datasets contain records from emergency helplines, mental health forums, and online support groups. 

The data were further categorized into multiple strata, including different age groups, sex categories, and levels of online 

activity. This stratification ensures that the dataset is representative of diverse adolescent populations and does not 

introduce bias toward any specific subgroup. Each subgroup was assigned a balanced weight to correct for potential 

sampling biases, calculated using the following equation: 

𝑊𝑖 =
𝑁𝑖

𝑁
   (2) 

where 𝑊𝑖 is the weight assigned to subgroup i, 𝑁𝑖  is the number of data points in subgroup i, and 𝑁 is the total dataset 

size. This approach ensures fairness in model training, reducing bias towards overrepresented categories. 

A substantial amount of work was undertaken to prepare the textual data, ensuring that it was consistent, accurate, 

and suitable for machine-learning applications. This involved cleaning the content by removing irregular characters, 

emojis, and extraneous elements. The raw text was then segmented into smaller, structured units while preserving the 

original meaning. To extract the most informative features, TF-IDF and Word2Vec were employed, which enabled the 

machine-learning models to analyze the data effectively. One major challenge encountered was handling missing or 

imbalanced data. To address this, an oversampling technique was used to balance the proportions of suicidal and non-

suicidal content. To estimate the probability that a text sample indicated suicidal intent, the following equation was 

applied: 

𝑃𝑏 = ∑(

𝑆

𝑖=0

𝑃𝑠)𝑖 + (𝐴𝑠)𝑖                                    (3) 

where 𝑖 denotes the index of each stratum in the stratified sample, and 𝑆 represents the total number of strata, 𝑃𝑠 represents 

the total number of individuals in stratum, and 𝐴𝑠 denotes the number of correctly identified at-risk individuals. This 

probabilistic estimation ensures that the model accounts for variations in suicidal tendencies across different 

demographic groups. 

Given the large volume of textual data, big data processing frameworks such as Apache Hadoop and Apache Spark 

were utilized to enhance computational efficiency. Apache Hadoop was implemented for distributed storage and batch 

processing, allowing the dataset to be processed across multiple nodes efficiently. Apache Spark was used for real-time 

analytics, enabling continuous monitoring of new textual inputs. This significantly reduced the time required for data 

processing and model training. The efficiency of data processing was estimated using the following equation: 

 𝑇𝑝 =
𝐷𝑠

𝑅𝑝

   (4) 

where 𝑇𝑝 is the time required for processing, 𝐷𝑠 is the size of the dataset, and 𝑅𝑝 is the processing rate of the system. By 

leveraging real-time analytics, the system ensures continuous monitoring, improves suicide-risk detection accuracy, and 

reduces response times for early intervention. 
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The model evaluation process involved the use of multiple performance metrics to ensure that the predictions were 
both accurate and reliable. Standard metrics such as AUC-ROC, Precision–Recall, and F1-score were employed to assess 
overall performance. AUC-ROC was used to measure the model’s ability to distinguish between suicidal and non-

suicidal text inputs. Precision-Recall was applied to evaluate the balance between correctly classified suicidal cases and 
false positives, whereas the F1-score provided a harmonic mean between precision and recall. To assess the impact of 
different variables on suicide risk prediction, a multiple regression analysis was conducted. The dependent variable, 
representing suicide risk assessment, was modeled using independent variables such as behavioral patterns, social media 
engagement, and linguistic indicators of distress. The equation for multiple regression analysis is expressed as follows: 

𝐴𝑑 = (𝐸𝑓, 𝑈𝑒, 𝑂𝑓, 𝐸𝑡)  (5) 

where 𝐸𝑓 represents environmental factors, 𝑈𝑒 refers to user engagement patterns, 𝑂𝑓 accounts for additional 

influencing variables, and 𝐸𝑡 denotes the error term. 

This analysis allowed for a detailed understanding of how various risk factors contribute to suicidal tendencies. By 
integrating large-scale data systems with scalable machine learning models, this data-collection approach ensures that 

suicide-risk assessment is both effective and adaptable. The combination of structured stratification, preprocessing, real-
time processing, and rigorous statistical evaluation provides a foundation for a robust and interpretable suicide-risk 
prediction framework. This methodology not only enhances accuracy but also ensures that the models remain adaptable 
to emerging mental-health trends. 

3.2. Preprocessing 

The information analysis process was conducted using a combination of descriptive and inferential statistical methods 
to ensure a comprehensive and accurate evaluation of suicide-risk prediction models. Descriptive statistics provided an 
overview of the dataset’s structure, allowing for a deeper understanding of distribution patterns across different 
demographic and behavioral variables. Measures such as mean, median, mode, standard deviation, and frequency 

distributions were computed to examine central tendencies and variability within the dataset. This process helped identify 
key patterns and insights into the prevalence of suicidal tendencies across different population subgroups. 

Inferential statistical procedures were then applied to assess relationships between variables and to evaluate the 
effectiveness of the predictive models. The chi-square test was utilized to examine associations between categorical 
variables, such as gender and suicide-risk classification, providing insights into whether certain demographic groups 
exhibited higher tendencies toward self-harm. Furthermore, t-tests and ANOVA were conducted to compare group 

means, analyzing variations in suicide risk across different age categories and geographic regions. To further examine 
predictive accuracy, regression analysis was employed to assess how linguistic patterns, sentiment scores, and 
engagement levels influenced suicide-risk predictions. One of the critical components of the analysis was the calculation 
of the confidence interval, which provided a range of values within which the true population parameter was likely to 
fall. This was determined using the following equation: 

𝐶𝑖 =
𝑧𝜎

√𝑛
  (6) 

where 𝐶𝑖 refers to the confidence interval, 𝑧 is the standard 𝑧-score corresponding to the desired confidence level, 𝜎 

represents the standard deviation, and 𝑛 denotes the sample size used in the test. 

To further refine the assessment of data dispersion, the margin of error was computed to determine the level of 
uncertainty in estimating the selection rates of AI-driven suicide-risk prediction models. The margin of error was 
calculated using the following equation: 

𝐸 = ∀𝛾 ×
𝜎2

𝑆𝑠

    (7) 

where ∀𝛾 refers to quintile values, and 𝑆𝑠 is the sample statistic. The margin of error played a crucial role in validating 

the precision of the model’s predictions, ensuring that variations in the dataset did not compromise the reliability of the 
results. Understanding the spread and consistency of data points within the dataset was essential for ensuring accurate 
predictions. To achieve this, the mean value was computed to represent the average suicide risk score among different 
subgroups. The mean was determined using the following equation: 

𝑋 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=0   (8) 

where 𝑋 denotes the mean value, and 𝑋𝑖 represents individual data points within the dataset. By computing the mean, 
the study identified central tendencies in suicide-risk assessments, enabling a more structured approach to model 
optimization. Additionally, the standard deviation was used to measure the degree of dispersion within the dataset, 
providing insights into the variability of suicide-risk estimates. The standard deviation was calculated using the following 
equation: 

𝜎 = √
1

𝑛
∑ (𝑛

𝑖=1 𝑋𝑖 − 𝑋)2  (9) 
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A smaller standard deviation indicated that most data points were close to the mean, implying higher consistency in 
the estimates. Conversely, a larger standard deviation suggested greater variability in suicide-risk classifications, 
highlighting the need for model refinement in specific cases. To complement the analysis of data dispersion, variance 

was used to measure the degree of deviation in suicide-risk scores. Variance was calculated using the following equation: 

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑ (𝑛

𝑖=1 𝑋𝑖 − 𝑋)2  (10) 

A small variance indicated that most suicide-risk estimates were closely aligned with the mean, whereas a larger 
variance revealed substantial differences in assessment outcomes. Understanding variance provided valuable insights 
into the consistency of the AI-driven prediction models and guided further refinements in classification accuracy. 
Throughout the analysis, the integration of machine learning with rigorous statistical evaluation ensured that the suicide-

risk prediction models were both effective and reliable. The application of descriptive statistics facilitated the 
identification of key risk factors, while inferential procedures provided a deeper understanding of the associations 
between variables. By incorporating regression analysis, the study determined the impact of various factors – including 
linguistic features, social media activity, and mental-health indicators – on suicide-risk classification. The combined use 
of confidence intervals, margin-of-error calculations, standard deviation, and variance allowed for a structured 
assessment of prediction accuracy, ensuring that the findings were statistically sound and generalizable. This approach 

not only validated the effectiveness of AI-driven models but also offered significant insights into how predictive analytics 
can be further enhanced for suicide-prevention efforts. The study’s reliance on statistical rigor and methodological 
precision reinforces the importance of integrating AI with mental-health analytics, paving the way for more advanced 
and scalable suicide-risk prediction systems. 

3.3. Model Architecture 

The data computation model is fundamental for analyzing patterns and relationships within the dataset, allowing for 
more accurate predictions of suicide risk. The application of statistical methods ensures that trends are identified, 
relationships between variables are examined, and key risk factors are assessed with high precision. To achieve this, 
various mathematical and probabilistic techniques were employed, including sampling concepts, regression modeling, 

and the examination of temporal changes. One of the essential methods used in this study was the chi-square test, which 
evaluates the independence of categorical variables within a contingency table. This test is particularly valuable for 
determining whether different demographic groups exhibit varying levels of suicide risk. The chi-square value is 

calculated using the following equation: 

𝑋2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

  (11) 

where 𝑂𝑖  represents the observed frequencies, and 𝐸𝑖 denotes the expected frequencies within each category. By applying 

this test, the study evaluates how factors such as age, gender, and online activity influence the likelihood of being 

classified as at risk for suicide. Significant differences between observed and expected frequencies indicate an 

association between these factors and suicide risk. To measure the standardized difference between two means, Cohen’s 

𝑑 was used. This effect-size measure is calculated using the following equation: 

𝑑 =
𝑋1 − 𝑋2

𝑠
   (12) 

where 𝑋1 and 𝑋2 are the means of two different groups, and 𝑠 is the pooled standard deviation. A positive effect size 

indicates a stronger association between certain risk factors and suicide tendencies, while a negative effect size suggests 

an inverse relationship. 

Another essential aspect of data analysis was assessing covariance, which helps determine the direction of the 

relationship between two continuous variables. Covariance is computed using the following equation: 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛
∑ (𝑛

𝑖=1 𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌‾)  (13) 

where 𝑋 and 𝑌 represent two different variables, such as sentiment scores and suicidal ideation risk, and 𝑋‾ and 𝑌‾  are 

their respective means. Negative covariance indicates that when one variable increases, the other tends to decrease, 

meaning they move in opposite directions. 

For example, an increase in positive sentiment in social media posts may be associated with a lower risk of suicide. 
Bayesian probability was also used to refine suicide-risk assessments as new data became available. The probability of 
an individual being classified as high risk was updated based on prior probabilities and new evidence, using Bayes’ 
theorem: 

𝑃(𝐴/𝐵) =
𝑃(

𝐵

𝐴
)𝑃(𝐴)

𝑃(𝐵)
   (14) 

where 𝑃(𝐴/𝐵) is the updated probability given the new data, 𝑃(𝐵/𝐴) is the likelihood of observing the new data given 

the initial probability, and 𝑃(𝐴) and 𝑃(𝐵) represent the prior probabilities. This method allows continuous updates to 

risk assessments, making it particularly useful in real-time suicide prevention systems. 
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𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛1+1)

2
− 𝑅1  (15) 

where 𝑛1 and 𝑛2 represent the sample sizes of the two groups, and 𝑅1 is the sum of ranks for the smaller sample. One 
key finding was that one group exhibited a lower suicide rate than the other. To examine how suicide rates differ across 
distinct groups, the Kruskal–Wallis test was utilized. This test is an advanced extension of the Mann–Whitney U test 
and enables comparison across three or more independent groups. It is particularly useful for assessing how different 
regions or demographic categories vary in terms of suicide risk. The test is expressed as follows: 

𝐻 =
12

𝑘(𝑘+1)
∑𝑟𝑖

2 − 3(𝑘 + 1)   (16) 

where 𝑘 denotes the number of groups, and 𝑟𝑖 represents the rank assigned to individual data points within each group. 

A higher 𝐻 value suggests significant differences in suicide risk across the compared categories. 

The study also examined how suicide risk patterns change over time. A Poisson probability model was used to 
estimate the likelihood of observing a specific number of suicide-related expressions in a given period. The probability 
distribution is given by: 

𝑃(𝑌 = 𝑦) =
𝑒−𝜆𝜆𝑦

𝑦!
  (17) 

where 𝑃(𝑌 = 𝑦) indicates the probability of observing y events, and 𝜆 is the event occurrence rate. This analysis allows 
for early detection of increases in suicide-related discussions, enabling timely interventions. To identify suicide-risk 
trends, an exponential smoothing model was applied, allowing for forecasts based on past observations. The equation 
for forecasting is given as follows: 

𝐹(𝑡) = 𝛼𝑌(𝑡) + (1 − 𝛼)𝐹(𝑡 − 1)  (18) 

where 𝐹(𝑡) is the forecasted value at time 𝑡, 𝑌(𝑡) is the actual observed value, and α is the smoothing factor. A larger α 
places greater weight on recent observations, whereas a smaller α emphasizes historical data. By integrating these 
statistical models and probability-based computations, the study ensures that suicide-risk assessments are both robust 
and dynamically updated. These methods provide deeper insights into the underlying factors influencing suicide risk, 
allowing for targeted interventions and improved decision-making within mental-health support systems. The application 
of these techniques enhances the accuracy of AI-driven suicide-prediction models, improving their ability to identify at-
risk individuals and anticipate potential crises.  

To ensure clarity and reproducibility of the mathematical expressions used in this study, all symbols and parameters 
appearing in the formulas are clearly defined below in Table 2. 

Table 2. Definition of mathematical symbols and parameters used in the study 

Symbol Definition 

𝑁 Required sample size for model evaluation within each stratum 

𝑍 Z–score corresponding to the selected confidence level 

𝑝 Expected proportion of individuals exhibiting suicide-risk indicators 

𝑒 Allowable margin of error for prediction estimates 

𝑋𝑖 Input text instance representing an individual digital message or record 

𝑓(⋅) Feature–extraction function converting raw text into numerical vectors 

𝑤 Weight coefficient associated with a selected feature 

𝑦 True class label indicating suicide–risk level (low, moderate, high) 

𝑦̂ Predicted class label generated by the model 

𝑇𝑃 Number of correctly predicted high–risk cases (true positives) 

𝐹𝑃 Number of incorrectly predicted high–risk cases (false positives) 

𝐹𝑁 Number of high–risk cases missed by the model (false negatives) 

𝑇𝑁 Number of correctly predicted non–risk cases (true negatives) 

𝑃 Precision metric 

𝑅 Recall metric 

𝐹1 Harmonic mean of precision and recall 

𝐴𝑈𝐶 Area under the ROC curve indicating discrimination ability 

𝛼 Adaptive decision threshold regulating alert sensitivity 

𝜆 Regularization coefficient preventing model overfitting 

𝜃 Vector of model parameters updated during federated learning rounds 

Δ𝜃 Aggregated anonymized gradient update exchanged across federated nodes 

𝐶(𝑡) Computational load distributed among nodes at time t 

𝑆(𝑡) System scalability function representing latency under data growth 
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These definitions ensure transparent and unambiguous interpretation of the mathematical notation used in Sections 3 

and 4. In accordance with the journal requirements, all symbols and performance parameters used in the evaluation 

formulas are defined prior to their application. Specifically, TP refers to true positives (correctly identified high-risk 

cases), TN refers to true negatives (correctly identified non-risk cases), FP denotes false positives (incorrect high-risk 

classifications), and FN denotes false negatives (missed high-risk cases). Precision = TP / (TP + FP) expresses the 

proportion of correct positive predictions, while Recall = TP / (TP + FN) reflects the proportion of correctly detected 

high-risk cases. The F1-score represents the harmonic mean of Precision and Recall, and AUC-ROC refers to the Area 

Under the Receiver Operating Characteristic Curve, which evaluates the model’s discriminative power. In k-fold cross-

validation, k denotes the number of folds and N represents the total sample size. 

3.4. Evaluation Metrics 

To evaluate the quality of the proposed suicide risk prediction model, a set of widely used classification metrics was 

employed, each of which reflects a specific aspect of the model's behavior. Accuracy shows the proportion of correctly 

classified cases and serves as a general indicator of model performance, however, its interpretation may be limited when 

the data is unbalanced. Precision represents the proportion of objects classified by the model as high risk that are actually 

positive cases. This metric is important in systems where excessive false alarms can reduce trust and overload response 

services. 

Recall (sensitivity) indicates how effectively the model identifies true high-risk cases. For suicide prevention tasks, 

high sensitivity is particularly critical as it minimizes the likelihood of failing to detect adolescents who are in a 

dangerous state. F1-measure, which is the harmonic mean between Precision and Recall, provides a balanced assessment 

of both metrics and is particularly useful when the dataset exhibits class imbalance. AUC-ROC evaluates the model's 

ability to distinguish between classes at different classification thresholds: the higher the AUC value, the more reliably 

the model separates the high-risk group from the rest. 

All metrics were calculated using stratified 5-fold cross-validation, which ensures the stability of the results and 

reduces the influence of random data partitions. The summary indicators are presented in Figure 4, which demonstrates 

the comparative behavior of the metrics and emphasizes the stability and reliability of the model. A detailed interpretation 

of the results is provided in Section 5. 

 

Figure 4. Summary diagram of the evaluation metrics for the suicide risk prediction model, illustrating the comparative 

behavior of Accuracy, Precision, Recall, F1-measure, and AUC-ROC 

4. AI-Driven Suicide Risk Prediction System 

The proposed AI-driven suicide-risk prediction framework presents a scalable and privacy-preserving approach to 

mental-health assessment. The framework integrates multiple advanced technologies, including machine learning, 

natural language processing, cloud computing, and federated learning, to ensure both accuracy and data security. By 

leveraging these components, the model provides real-time risk analysis while addressing ethical concerns related to 

handling sensitive mental-health data. At the core of the framework is an AI-based risk-prediction model that processes 

textual data obtained from various sources, such as social-media discussions, mental-health forums, and anonymized 

EHRs. The system applies advanced NLP techniques to extract relevant linguistic and psychological patterns associated 

with suicidal ideation. The predictive model, 𝐴𝐼𝑀𝐿 , can be mathematically represented as follows: 

𝐴𝐼𝑀𝐿 = {𝑃𝑛, 𝑇𝑠, 𝐴𝑡}  (19) 

where 𝑃𝑛 represents predictive accuracy, ensuring that the system correctly identifies individuals at high risk. 𝑇𝑠 denotes 

processing speed, indicating the system’s ability to generate risk scores nearly instantaneously. And 𝐴𝑇 represents 
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adaptability, allowing the model to improve its predictions as new information becomes available. A key challenge in 

suicide-risk prediction is maintaining data privacy while using distributed sources of information. To address this, the 

proposed approach employs federated learning, which allows models to be trained across multiple decentralized devices 

without sharing raw data. This method enhances privacy by ensuring that user information remains local, eliminating 

the need for centralized storage. The federated learning process can be expressed as follows: 

𝐹𝐿 = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑀𝑖  (20) 

where 𝐹𝐿 represents the federated learning model, 𝑀𝑖 is the local model trained on each individual device, and 𝑤𝑖  is the 

weight assigned to each model’s contribution. By aggregating locally trained models, the framework learns from diverse 

datasets while preserving individual privacy. 

To further improve privacy, differential privacy mechanisms are incorporated, adding noise to individual data points 

before they are processed. This ensures that even if an attacker gains access to the system, no identifiable user 

information can be extracted. The privacy-preserving function DP is expressed as follows: 

𝐷𝑃(𝑋) = 𝑋 + 𝑁(0, 𝜎2)       (21) 

where 𝑋 is the original data, and 𝑁(0, 𝜎2) represents Gaussian noise with variance 𝜎2, ensuring anonymity in the dataset.  

In addition to privacy mechanisms, cloud computing is employed to improve scalability and computational 

efficiency. The system is designed to operate on a distributed cloud infrastructure, allowing for real-time processing of 

large volumes of text data. Cloud-based storage and computing resources facilitate seamless integration with existing 

healthcare and educational institutions. The cloud infrastructure is modeled as follows: 

𝐶𝑠 = {𝐷𝑝, 𝑆𝑐 , 𝑅𝑡}   (22) 

where 𝐶𝑠 represents the cloud-based framework, 𝐷𝑝 denotes distributed processing, ensuring parallel computation of 

suicide-risk assessments, 𝑆𝑐 refers to secure cloud storage, ensuring encrypted access to sensitive information, and 𝑅𝑡 

indicates real-time analytics, allowing immediate feedback on emerging risk patterns. An additional layer of automation 

is provided through smart contracts, which enable secure, rule-based transactions for mental-health intervention services. 

These self-executing contracts facilitate automated responses to high-risk cases, ensuring that alerts are sent to relevant 

mental-health professionals when a critical risk threshold is identified. The smart-contract function 𝑆𝐶 is defined as: 

𝑆𝐶 = {𝐴𝑡, 𝐸𝑐, 𝑇𝑖}   (23) 

where 𝐴𝑡 represents automation, ensuring rapid execution of predefined mental-health support actions, 𝐸𝑐 denotes 

efficiency, streamlining risk-assessment workflows, and 𝑇𝑖 refers to reliability, reducing dependence on manual 

intervention. To ensure seamless system performance and consistent user access, the framework incorporates a user-

friendly interface that operates effectively across multiple platforms, including mobile and web applications. The user-

experience component 𝑈𝑐 is modeled as follows: 

𝑈𝑐 = {𝐶𝑛, 𝑈𝑦, 𝑆𝑛}   (24) 

where 𝐶𝑛 indicates customization, allowing users to adjust settings based on specific requirements, 𝑈𝑦 denotes usability, 

ensuring an intuitive interface, and 𝑆𝑛 represents user satisfaction, prioritizing accessibility and efficiency in mental-

health support. 

As shown in Figure 5, the suicide risk prediction system includes several key components that ensure comprehensive 

data processing and high accuracy of estimates. The central element of the architecture is the NLP module, which 

analyzes text messages and identifies linguistic features associated with emotional state and potential risk indicators. 

 

Figure 5. Conceptual architecture of an AI-supported suicide risk prediction system integrating heterogeneous data sources, 

big data technologies, and predictive analysis modules 
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To protect confidentiality, a specialized private learning mechanism is used, allowing data to be processed without 

transferring personal information to a central server. The cloud infrastructure ensures the scalability of the solution, 

resistance to increasing loads, and the ability to integrate with smart city services. Additional components automate the 

routing of the results, ensuring the timely transmission of risk signals to specialists and organizations responsible for 

psychological assistance. Together, these modules form a reliable and ethically sound architecture focused on the timely 

identification of adolescents at risk and ensuring access to the necessary forms of support. 

4.1. Hadoop-Driven Big Data Infrastructure for Suicide Risk Prediction 

The use of Hadoop-based infrastructure in suicide-risk prediction enables scalable and fault-tolerant processing of 

large-scale, unstructured mental-health data, particularly text-based inputs from social media, forums, and clinical 

sources [24]. Traditional data architectures struggle to process such high-velocity and high-volume information, making 

distributed systems essential. The HDFS and MapReduce provide the foundational framework to store and analyze 

suicide-related content effectively, ensuring that data pipelines remain responsive under heavy computational loads [37]. 

𝐻𝐷 = {𝐷𝑣, 𝑃𝑠, 𝐹𝑡}   (25) 

where, 𝐷𝑣 represents data volume, acknowledging the scale of input; 𝑃𝑠 denotes parallel scalability, the ability to process 

data simultaneously across multiple nodes; and 𝐹𝑡 signifies fault tolerance, ensuring continuity despite system failures. 

In advanced bioinformatics and smart-city systems, Hadoop has been shown to streamline high-throughput data 

operations [11, 37]. Moreover, its application in mental-health analytics offers similar advantages, particularly when 

combined with real-time extensions such as Apache Spark and Discretized Streams [38, 39]. These components provide 

tools for real-time suicide-risk analysis, enabling rapid, data-driven learning as new information becomes available. 

Additionally, interactive analytical processing, enabled by Hadoop’s MapReduce paradigm, aligns well with evolving 

models of mental-health risk prediction, where iterative model retraining and context-aware updates are essential [38]. 

Consequently, the proposed AI architecture, built on Hadoop, supports robust and ethically grounded mental-health 

assessment pipelines across diverse and distributed data environments [24, 39]. 

4.2. Security Distribution for Unassailable Transactions 

Ensuring the security of sensitive data is essential in any architecture dealing with mental health risk prediction. In 

the proposed system, blockchain decentralization provides a robust foundation by eliminating centralized control and 

enhancing trust, transparency, and fault tolerance. Without a central authority, the system avoids a single point of failure, 

which is a major vulnerability in traditional models [40]. 

Blockchain decentralization distributes transaction and model data across multiple independent nodes. This approach 

mitigates the risks of data breaches, fraud, and collusion, as it removes centralized control over sensitive information. 

The following model can describe the structure of decentralization: 

𝐷 = {𝐴𝑎, 𝐷𝑑, 𝑅𝑚}    (26) 

where 𝐴𝑎 denotes the absence of a central authority; 𝐷𝑑 refers to the distribution of transaction data; 𝑅𝑚 represents risk 

mitigation. 

Decentralization improves both system security and resilience. In a decentralized environment, each transaction must 

be validated across a network of nodes. This is accomplished through a consensus mechanism, which ensures that all 

participants agree on the validity of information before it is recorded in the ledger. The structure of this mechanism is as 

follows: 

𝐶𝑚 = {𝑀𝑎, 𝑁𝑛, 𝐿𝑎}  (27) 

where 𝑀𝑎 is majority agreement; 𝑁𝑛 denotes the network nodes; 𝐿𝑎 is ledger accuracy. 

This consensus process increases reliability by requiring validation from the majority of nodes, thus preventing 

unauthorized data manipulation. It also guarantees ledger integrity, which is critical for traceability and auditability in 

healthcare and mental health domains. 

The complete security model for decentralized data handling in the system is defined as: 

𝐷𝑚 = {𝑁𝑛, 𝐶𝑠, 𝑉𝑦} (28) 

where 𝑁𝑛 represents participating nodes in the blockchain network; 𝐶𝑠 refers to the consensus strategy; 𝑉𝑦 indicates 

vulnerability reduction. 

Together, the decentralization model (𝐷), consensus mechanism (𝐶𝑚), and distributed security framework (𝐷𝑚) 

establish a trusted and secure environment for AI-driven suicide risk prediction. These components help ensure that the 

system is resistant to tampering, data loss, and unauthorized access, making it suitable for large-scale deployment in 

mental health settings. 
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4.3. Safeguarding Sensitive Health and Behavioral Data 

In the context of AI-based suicide risk prediction systems, safeguarding sensitive mental health and behavioral data 

is of utmost importance. The integration of block-chain technology provides a robust layer of protection through 

advanced cryptographic algorithms that ensure data confidentiality, integrity, and access control [41, 42]. 

A central feature of this architecture is the encryption of data during both transmission and storage. Cryptographic 

protocols transform sensitive content into unreadable formats, preventing unauthorized access and preserving user 

privacy. This can be expressed as: 

𝐶𝑦 = {𝐸𝑛, 𝐷𝑡, 𝐴𝑐} (29) 

where 𝐸𝑛 denotes the encryption process; 𝐷𝑡 represents data transmission security; 𝐴𝑐 refers to strict access control. 

These cryptographic safeguards establish a multi-layered security framework that protects against breaches, 

tampering, or external threats [43, 44]. As applied in blockchain and distributed storage environments, such as the HDFS, 

cryptographic defenses enhance resilience and reliability in large-scale health informatics [41]. 

Recent studies also highlight the role of encryption in clinical risk prediction systems, where confidentiality is 

paramount [43]. Statistical models, including nonparametric tests and chisquare methods, depend heavily on the integrity 

of input data to generate reliable suicide risk assessments [44, 45]. Therefore, securing input data through encryption is 

essential for preserving ethical standards, model validity, and regulatory compliance in clinical AI applications. 

4.4. Automated Health Response Management Using Smart Contracts 

Smart contracts represent a transformative component of the proposed blockchain-based suicide risk assessment 

framework. Their core advantage lies in the automation of response protocols to high-risk situations, ensuring that critical 

mental health interventions are executed without delay or reliance on manual oversight. Unlike traditional systems that 

require human mediation and suffer from potential inconsistencies or delays, smart contracts automatically enforce 

predefined intervention actions when risk thresholds are detected [46]. 

The structure of smart contract functionality in this context can be described as: 

𝑆𝑐 = {𝐴𝑢, 𝑇𝑠, 𝑈𝑡}  (30) 

where: 𝐴𝑢 stands for automated execution, allowing real-time activation of support procedures; 𝑇𝑠 refers to transaction 

streamlining, optimizing communication between systems and caregivers; 𝑈𝑡 denotes user trust, enabled by the 

transparency and deterministic behavior of blockchain-based contracts. 

These attributes significantly enhance the reliability and responsiveness of mental health response systems, 

particularly in scenarios requiring immediate action. The transparent and decentralized nature of smart contracts ensures 

that the execution logic is visible and immutable. Once deployed, the contract cannot be altered or interrupted, which 

ensures a consistent and trusted process for triggering mental health alerts or notifying professionals. 

Moreover, the trustless nature of smart contracts reduces the need for third-party verification. Parties involved in the 

system, such as clinicians, institutions, or AI monitoring modules, can rely on the code to perform precisely as 

programmed. This supports scalable, secure, and ethically aligned deployment of suicide risk response systems in 

healthcare, education, and community platforms. 

4.5. Enhancing Trust and Transparency in AI-Driven Mental Health Systems 

Transparency and accountability are critical for the ethical deployment of AI-driven suicide risk detection systems. 

Blockchain technology provides a foundational infrastructure to achieve these objectives by ensuring real-time visibility 

and immutable audit trails of system activity [19, 20]. 

This transparency ensures that users, clinicians, and stakeholders can trust the reliability of AI-generated assessments 

and interventions. To model transparency within the system, the following formulation is defined: 

𝑇𝑟 = (∑ 𝑅𝑆
𝑖=1 𝑡𝐹𝑡)/(∑ 𝐼𝑆

𝑖=1 ℎ𝐹𝑡)  (31) 

where 𝑅𝑡 denotes real-time visibility, enabling instant access to activity logs; 𝐹𝑡 denotes system features or transactions 

being monitored; and 𝐼ℎ corresponds to the immutable history, ensuring that all activity logs are cryptographically 

recorded and tamper-proof. This balance between transparency and auditability strengthens the system’s credibility. 

In mental health contexts, such transparency is vital for ensuring accountability in the detection and intervention 

processes. AI models, often perceived as “black boxes," benefit from blockchain’s verifiable trail, allowing stakeholders 

to verify how predictions are made [47, 48]. Moreover, immutable logging helps detect bias or errors in model behavior, 

encouraging responsible AI usage. 
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By integrating blockchain, users gain confidence in knowing that their sensitive health data are not only protected 

but also traceable and verifiable [49, 50]. Institutions benefit from operational transparency, reducing reliance on opaque 

algorithms and fostering user engagement. Furthermore, healthcare professionals can review historical interactions with 

the system, ensuring that alerts and interventions are justified and consistent. 

As shown in Figure 6, the use of blockchain technology enhances the security and transparency of the AI-based 

suicide risk prediction system. The use of decentralized architecture eliminates the vulnerabilities characteristic of 

centralized data storage, thereby significantly reducing the likelihood of unauthorized access, falsification, or 

information leaks. 

Cryptographic mechanisms – including encryption, distributed access control, and digital signatures –protect 

sensitive mental health data at every stage of processing. Additional functionality is provided by smart contracts, which 

allow the necessary response procedures to be triggered automatically and transparently when significant risk patterns 

are identified [51, 52]. 

An important advantage of blockchain is the immutability of records: all model actions, including predictions, risk 

signals, and subsequent system responses, are recorded in the registry and available for real-time auditing. This builds a 

higher level of trust among healthcare professionals, data providers, and users themselves. Algorithm 1 describes the 

operational logic of the blockchain layer within the proposed architecture - from recording incoming events to integrity 

verification, privacy protection, and accountability throughout all stages of analysis. 

 

Figure 6. Integration of blockchain technology to ensure transparency, security, and accountability in the architecture of an 

AI-based suicide risk prediction system 

Algorithm 1. Enhancing trust and transparency using blockchain in AI-driven mental health systems 

1. Initialization {AI: Artificial Intelligence System; 𝐵: Blockchain; 𝑅𝑡: Real-time monitoring; 𝐼ℎ: Immutable 

history; 𝑉: Verification; 𝑆𝑡: Stakeholder; 𝛾: Trust signal}  

2. Input {Decision logs from AI system (𝐿), Stakeholder verification request (𝑉)}  

3. Output {Trust confirmation or inconsistency alert}  

4. AI system generates log 𝐿 and sends hash to 𝐵  

5. Set 𝑅𝑡 ≡ 𝐿 → 𝐵 

6. 𝐵 ↔ continuously updates 𝐼ℎ  

7. 𝑆𝑡 submits verification request 𝑉 → 𝐵 

8. Retrieve 𝐿′ ← 𝐼ℎ(𝐵) 

9. If 𝑽 = 𝑳′ then 

10. Do 𝛾 ≡ Trust Confirmed  

11. Else if 𝑉≠ 𝐿′ then 

12. Do γ≢ Flag Inconsistency  

13. End-if 

14. Record audit trail ⇒ append to 𝐵 

Algorithm 1 illustrates the mechanism for enhancing trust and transparency in AI-driven mental health systems 

through blockchain integration. In Step 1, key entities are initialized, including the AI system, blockchain infrastructure, 

stakeholders, and trust validation components. Step 2 begins the data capture process, where decision logs generated by 

the AI system are securely hashed and recorded on the blockchain. Steps 3 and 4 establish real-time visibility and link 

each event to an immutable trans-action history. In Step 5, stakeholder – such as mental health professionals or system 
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evaluators – submit verification requests to assess the integrity of recorded assessments or alerts. Step 6 retrieves the 

historical logs stored on the blockchain and performs integrity checks using consensus mechanisms. If the verification 

matches the stored log (Step 7), trust is affirmed and the system is validated as transparent and secure. In contrast, Step 

8 raises a flag if discrepancies are detected, indicating potential tampering or unauthorized changes. Steps 9 and 10 

ensure all interactions, including verifications and outcomes, are recorded back onto the blockchain to maintain a tamper-

proof audit trail. This approach guarantees that AI-driven mental health decisions remain accountable, traceable, and 

aligned with ethical and privacy standards, fostering user trust in sensitive healthcare environments. 

As shown in Figure 7, blockchain technology provides increased trust, transparency, and security in AI systems used 

to assess psycho-emotional states and suicide risks. The sequence of operations begins with the initialization stage, 

during which the main elements are set: decision logs, parameters for subsequent verification, and references to the 

corresponding blockchain records. This step forms the basis for further secure tracking of all operations. 

 

Figure 7. Blockchain-oriented approach to enhancing trust, data security, and process transparency in AI mental health 

support systems 

The next stage, log generation, records the decisions made by the artificial intelligence model during text analysis 

and risk assessment. Each decision is recorded as a secure log, which is cryptographically hashed and transferred to the 

blockchain for recording. The blockchain recording stage ensures that hashed records are added to the distributed ledger 

with a timestamp and in an immutable format. This guarantees that any actions of the model, including risk conclusions, 

cannot be retroactively changed or deleted, which increases the reliability and accountability of the system. 

This is followed by the verification stage, where a request is generated to confirm the authenticity of a specific model 

decision. The blockchain system compares the incoming request with the previously recorded hash, thereby confirming 

or refuting the immutability of the data. After performing verification procedures, the system compares the received logs 

with reference records. If the match is confirmed, the transaction is marked as verified, which indicates that the integrity 

of both the model and its predictions has been preserved. If a discrepancy is detected, a notification is automatically 
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generated about a possible attempt to change the data or a deviation of the model's behavior from the initial parameters. 

The final stage is audit logging, in which the verification result is recorded in the blockchain registry. This ensures 

transparency, accountability, and the possibility of subsequent independent analysis. 

Such a structured workflow creates a solid foundation for the ethical and reliable implementation of artificial 

intelligence systems, especially in sensitive areas such as monitoring the psycho-emotional state of adolescents. As 

shown in Figure 8, the process of predicting suicide risk using AI methods is a sequential analytical pipeline that 

combines the collection, processing, and interpretation of large amounts of text data. The first stage involves the 

formation of a data corpus: the information to be analyzed comes from social networks, online consultations, digital 

diaries, and clinical records [53-55]. 

 

Figure 8. Conceptual diagram of an AI-based suicide risk assessment pipeline, reflecting the role of NLP methods and 

machine learning models 

Next, the texts are preprocessed, including tokenization, lemmatization, stop word removal, and normalization. These 

operations ensure data uniformity and structure, which is critical for subsequent computational procedures [56]. The 

next step is feature engineering. At this stage, linguistic, syntactic, and semantic characteristics of the text are extracted 

that may reflect psychological markers of suicidal ideation: emotional coloring, cognitive patterns, the severity of self-

references, and other features of speech behavior [57]. 

The resulting features are transferred to deep neural network models. These include hybrid CNN-LSTM architectures 

and transformer models, which have demonstrated high efficiency in analyzing unstructured psycholinguistic data and 

predicting psycho-emotional states [53, 58]. The model training and validation phase incorporates labeled datasets to 

optimize performance, often using ensemble techniques to improve prediction robustness [55]. The risk assessment 

component evaluates the likelihood of suicide ideation, generating a probabilistic risk score that can guide clinical or 

emergency response actions. 
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Importantly, the system integrates privacy-aware components, such as data minimization and federated learning, to 

address ethical and legal concerns in mental health research. Blockchain-based immutability can be applied to ensure 

the traceability of risk predictions and model updates, safeguarding against unauthorized tampering [59]. These features 

enhance transparency and accountability within AI-powered mental health systems. Ultimately, the decision-making 

module synthesizes all outputs and determines whether intervention is required. The system can trigger alerts, refer 

individuals to mental health professionals, or log outcomes for clinical review. This closed-loop framework, grounded 

in machine learning and NLP, provides an innovative and scalable solution to adolescent suicide prevention [60]. 

5. Testing Process with Experimental Setup and Results 

This section presents the experimental testing process, detailing the survey methodology, participant distribution, and 

the evaluation of stakeholder willingness to adopt the proposed AI-driven suicide risk prediction system. 

5.1. Testing Process 

The model testing phase was organized taking into account the professional affiliation of the participants, which 

made it possible to assess the potential for cross-sector implementation of the system. Respondents were divided into 

several key groups: healthcare professionals, educators, IT experts, and representatives of administrative and regulatory 

bodies. This approach made it possible to identify differences in expectations, levels of trust, and readiness to use 

artificial intelligence technologies in each professional sector. 

As shown in Figure 9, the demographic structure of the respondents includes a wide range of specialists, which 

ensures the representativeness of the results and reflects the real multi-layered nature of the mental health system. The 

diversity of professional positions allows for a more in-depth assessment of the prospects for implementing the proposed 

architecture – from clinical practice to school support services and digital solutions at the city level. 

 

Figure 9. Analysis of survey results reflecting the positions and expectations of various stakeholder groups regarding the 

implementation and applicability of an AI-based suicide risk prediction system. 

Participants in the study were asked to express their opinions on the key limitations of existing mental health 

assessment systems, particularly with regard to identifying suicide risks in adolescents. The responses indicate that 

respondents are particularly concerned about personal data protection, the insufficient accuracy of analytical tools, and 

delays in decision-making in traditional monitoring methods. 

As shown in the survey results presented in Table 3, more than 64% of participants believe that the current systems 

do not provide a rapid response in real time and are not sufficiently transparent in terms of ethical principles and the 

rationale behind algorithmic decisions. To assess readiness for implementation of the proposed system, the study used a 

set of questions aimed at identifying specialists' attitudes toward the use of AI-based forecasting tools in their institutions. 

All respondents were required to answer these questions, which ensured the completeness of the views presented and a 

balanced reflection of the positions of various professional groups. 
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Table 3. Perceived limitations in current mental health systems 

Limitation Percentage of respondents (%) 

Lack of real-time response 64 

Data privacy concerns 58 

Limited predictive accuracy 53 

Delayed intervention mechanisms 49 

Lack of explainability in existing tools 42 

As shown in Table 4, 46% of participants expressed high interest in implementing the system, while another 29% 

demonstrated moderate willingness to consider using such tools. At the same time, 15% took a neutral position, and 10% 

of respondents opposed the integration of the system, motivating their decision with concerns related to compliance with 

ethical standards and data sovereignty issues. 

Table 4. Willingness to Adopt AI-Driven system 

Response Category Percentage of Respondents (%) 

Strongly willing 46 

Somewhat willing 29 

Neutral 15 

Unwilling 10 

These findings indicate that a significant portion of the professional community is open to integrating AI-powered 

mental health solutions. However, there remains a need to address the concerns of undecided and reluctant participants 

by enhancing system explainability and strengthening data-security assurances. The inclusion of blockchain technology 

for transparency and federated learning for privacy preservation were regarded positively by 72% of respondents, 

suggesting these features could bridge the trust gap in sensitive mental health applications. 

Further experimental validation was conducted by simulating the system in a controlled environment. This setup 

included real-time ingestion of anonymized mental health data streams into the prediction model, followed by risk 

scoring and simulated alert generation. The system’s response time, accuracy, and intervention triggers were evaluated 

using performance metrics such as AUC-ROC, Precision-Recall, and F1-score. The average processing latency remained 

under 2.4 seconds per transaction, demonstrating the model’s suitability for real-time applications. 

In addition, post-deployment usability was evaluated by observing interactions of mental health professionals with 

the system interface. The feedback emphasized intuitive design and informative visualization of risk assessments, which 

enhanced the decision-making process. Participants especially valued the audit trail feature, which allowed traceability 

of each AI decision through blockchain logging. In conclusion, it should be noted that the experimental phase 

convincingly confirms the practical feasibility and acceptability of the proposed system in conditions close to real-life 

operation. The results highlight the importance of three key factors: user trust, reliable data protection, and ease of use 

of the interface. It is the combination of these elements that determines whether AI-based solutions can become a 

sustainable part of the urban mental health support ecosystem. 

As shown in Figure 8, the distribution of final indicators during pilot testing demonstrates a balanced dynamic 

between user engagement and model effectiveness. The visual diagram reflects how representatives of various 

professional groups interacted with the system, how consistently it identified high-risk cases, and how its transparency 

was assessed from an ethical point of view. Thus, the data presented in Figure 8 reinforce the overall conclusion that the 

developed architecture is not only technically feasible but is also perceived by target stakeholders as a reliable and useful 

tool. 

5.2. Experimental Setup 

In this experimental setup, a structured and systematic methodology was applied to evaluate the feasibility and impact 

of the proposed AI-driven suicide risk prediction system. The study combined quantitative and qualitative approaches 

to ensure comprehensive insight into adoption attitudes, system expectations, and technical performance. Quantitative 

data were primarily gathered through structured online surveys administered via platforms such as Google Forms and 

Survey Monkey. These surveys were targeted toward mental health professionals, educators, IT personnel, and 

healthcare administrators. The questions focused on evaluating current mental health screening limitations, perceptions 

of AI ethics, and willingness to adopt AI-based risk systems. 
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To enhance the study’s contextual richness, qualitative data were collected through semi-structured interviews with 

selected experts from mental health organizations and educational institutions. Interviews were recorded, transcribed, 

and analyzed using NVivo 14 software to extract recurring themes such as ethical concerns, trust in AI, and usability of 

decision-support systems. 

In parallel, a simulated environment was created to test the real-time capability of the system. This involved feeding 

anonymized adolescent behavioral data into a deployed prediction model hosted on a secured cloud infrastructure. The 

system's performance was assessed through key metrics, including latency, accuracy, and scalability. Evaluation tools 

such as Python (Scikit-learn) and R were used to apply regression models, AUC-ROC curve analysis, and confusion 

matrix evaluations.  

To ensure data integrity, federated learning protocols and differential privacy methods were integrated into the 

system, which minimized the risk of personal information leaks and maintained the accuracy of calculations on 

distributed nodes. The participants' responses and key characteristics of the model's performance were visualized using 

Matplotlib and Tableau tools. The corresponding graphics are presented in Figures 7 and 8, which show both the results 

of the model's performance and the reaction of various professional groups to its implementation. 

All stages of the study were conducted in strict accordance with ethical requirements: personal identifiers were 

anonymized, and informed consent to participate was obtained from respondents. This comprehensive approach to 

organizing the experiment made it possible to confirm the effectiveness of the proposed architecture both from a 

technical point of view and from the perspective of stakeholder perception, which significantly enhances the reliability 

of the final conclusions. 

5.3. Survey Instrument 

In alignment with the experimental setup described in Section 5.2, the data collection process incorporated a 

structured and thoughtfully designed survey to assess perceptions and adoption intentions regarding the proposed AI-

driven suicide risk prediction system. The survey was developed using Google Forms and served as the primary tool for 

capturing large-scale quantitative feedback from relevant professionals, including healthcare providers, educators, IT 

specialists, and mental health policy stakeholders. 

The questionnaire was structured into multiple sections. The first section gathered demographic and professional 

background information, allowing for segmentation of responses. Subsequent sections focused on evaluating perceptions 

of current mental health risk assessment tools, concerns surrounding data privacy and system transparency, and the 

perceived value of features such as real-time processing, blockchain auditability, and federated learning privacy 

safeguards. 

To ensure clarity and reliability, the survey underwent a preliminary pilot phase with 15 domain experts. Their 

feedback informed revisions that enhanced question phrasing and reduced cognitive load, resulting in a streamlined 

instrument with an average completion time of under seven minutes. The final version of the questionnaire included 

Likert-scale items, multiple-choice responses, and binary yes/no formats to facilitate both statistical analysis and cross-

sectional comparison. The digital nature of the survey enabled wide dissemination across institutional mailing lists, 

academic forums, and healthcare networks. Participation was voluntary and fully anonymous. Informed consent was 

obtained electronically at the outset, ensuring ethical compliance with data protection principles. 

Data collected through the survey directly informed the visual results presented in Figures 7 and 8 and the statistical 

breakdowns in Tables 3 and 4. This instrument proved integral in capturing real-world stakeholder sentiment and gauging 

practical readiness for adopting AI-powered mental health assessment technologies in adolescent suicide prevention 

settings. 

5.4. Results 

In this section, the key outcomes of the experimental evaluation and survey analysis concerning the AI-driven suicide-

risk prediction system are presented. This assessment aimed to explore the system’s performance, stakeholder trust, and 

readiness for adoption, particularly in the context of mental health support for adolescents. The integration of federated 

learning, blockchain logging, and real-time processing was central to measuring technological effectiveness and ethical 

compliance. 

Based on survey results from diverse stakeholders – including healthcare professionals, educators, IT experts, and 

policymakers – strong support was observed for system components that prioritize data privacy and transparency. Over 

72% of respondents favored federated learning as a privacy-preserving approach, while 68% expressed confidence in 

blockchain logging as a mechanism for trust and accountability. Furthermore, 75% rated real-time risk detection as 

essential for effective intervention in suicide prevention strategies. 
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Experimental testing also confirmed the system’s technical performance through key metrics: 

 Predictive accuracy of suicide risk (AUC-ROC > 0.91); 

 Real-time intervention responsiveness (avg. latency: 2.4 seconds); 

 Reduction in false positives through ensemble modeling; 

 High stakeholder usability feedback for decision-support dashboard; 

 Positive ethical audit feedback based on traceability and consent mechanisms. 

Comparative Performance of AI Models 

To evaluate the effectiveness of various machine learning models for suicide risk prediction, a comparative analysis 

was conducted using the Kaggle Suicide Risk Dataset. Each model was trained and validated using an 80/20 train-test 

split, and evaluated with standard performance metrics including accuracy, precision, recall, F1-score, and AUC-ROC. 

As can be seen from the data presented in Table 5, transformer models, including BERT, demonstrate a noticeable 

superiority over traditional classifiers in terms of both prediction accuracy and robustness to data variability. Although 

logistic regression and support vector machines form a decent baseline, more complex architectures – such as BiLSTM 

and especially BERT – deliver significantly higher sensitivity and F1 scores. These metrics are crucial in systems focused 

on preventing suicidal behavior, where minimizing the number of missed high-risk cases is critical. 

Table 5. Comparative Performance of AI Models 

Model Accuracy Precision Recall F1-score AUC-ROC Notes 

Logistic Regression 0.84 0.82 0.83 0.82 0.88 Baseline 

SVM (Linear Kernel) 0.86 0.85 0.84 0.84 0.89 Good margin separation 

Naive Bayes 0.78 0.75 0.77 0.76 0.80 Fast but weak on recall 

BiLSTM 0.90 0.89 0.90 0.89 0.93 Deep sequence model 

BERT 0.92 0.91 0.93 0.92 0.96 Transformer-based, best AUC 

As shown in Figure 10, a comparative evaluation of machine learning algorithms demonstrates the clear superiority 

of the BERT model over traditional classifiers across all key metrics. The results confirm that the transformer architecture 

provides higher accuracy (0.92), F1-score (0.92), and AUC-ROC (0.96), making it particularly suitable for high-risk 

mental health monitoring tasks. 

These metric values indicate the model's ability not only to reliably distinguish between high- and low-risk groups, 

but also to remain stable when working with heterogeneous and emotionally charged texts. In the context of suicide 

prevention, where it is critical to minimize the number of missed dangerous cases, this quality of prediction is a 

significant advantage. 

 

Figure 10. Comparative evaluation of machine learning models for predicting suicide risk. The BERT model shows 

superiority across all metrics, including Accuracy (0.92), F1-score (0.92), and AUC-ROC (0.96), confirming its effectiveness 

for high-risk monitoring systems. Scalability and Big Data Processing Performance. 
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To verify the scalability and speed of the system, two stages of load testing were conducted. In the first stage– 

prototyping–a functional mock-up of the system was implemented on the Google Colab and Databricks platforms, which 

processed approximately 20,000 text records obtained from mental health resources. Apache Spark Structured Streaming 

was configured with a batch size of 5,000 records and a sliding window of 10 seconds. Processing latency and RAM 

usage metrics were recorded for different data volumes. The results of this stage are presented in Table 6, which shows 

the measured performance parameters with a sequential increase in load. 

In the second stage – simulating a distributed deployment – the Spark–Hadoop cluster architecture was recreated, 

including four worker nodes and one control node, each equipped with 4 virtual processors (vCPUs), 16 GB of RAM, 

and 100 GB of SSD storage. Streaming data was received via Apache Kafka, stored in HDFS with a replication factor 

of 2, and processed using Spark Structured Streaming. A summary visualization of the results is shown in Figure 11, 

where part (a) shows the dependence of processing time on the increase in the number of records, and part (b) shows the 

dynamics of RAM usage as the load increases. 

As can be seen from the data presented, the system stably processes incoming streams of up to 20,000 records with 

a delay of less than 6 seconds, which meets the requirements for rapid response in mental health support environments 

(e.g., school or clinical information systems). In addition, the results of distributed testing confirm the scalability of the 

proposed architecture: performance can be increased horizontally by adding worker nodes, and utilization. 

Table 6. Spark Streaming performance metrics on Google Colab/Databricks (prototype evaluation). 

Number of Records Batch Size Processing Time (s) Peak RAM Usage (GB) Notes 

5,000 1,000 1,2 1.9 Initial load 

10,000 2,500 2,6 2,8 Mid-point test 

15,000 5,000 4,0 3,6 Active sliding window 

20,000 5,000 5,8 4,2 Peak prototype load 

 

Figure 11. System scalability: (a) increase in processing time with increasing data volume; (b) RAM usage depending on load 

These results demonstrate that the proposed system is capable of handling real-time ingestion of up to 20,000 records 

with processing latency remaining below 6 seconds. This is sufficient for responsive mental health interventions in cloud 

environments such as schools or clinics. Furthermore, the simulated distributed setup indicates that the architecture is 

scalable and production-ready, allowing horizontal scaling through the addition of worker nodes and efficient stream 

ingestion via Kafka. 

Outcome Metrics and System Performance Results 

To comprehensively assess the practical applicability of the developed suicide risk prediction system, an analysis of 

the final indicators was conducted in four key areas: risk level dynamics, accuracy of case detection, prediction quality, 

and effectiveness of subsequent interventions. The summarized visual results are presented in Figure 12(a–d). 

In Figure 12a, the system’s ability to monitor suicide-risk trends over a five-month period is illustrated through 

fluctuations in risk scores. A decline in average risk during the initial phase, followed by moderate growth, demonstrates 

the model’s temporal sensitivity and capacity to respond to evolving psychological patterns among adolescents. These 

dynamics highlight the system’s potential for long-term monitoring and forecasting. Figure 12b shows the ratio between 

the number of correctly identified cases and the total volume of processed data. The system consistently identifies 

individuals from the high-risk group while maintaining an acceptable level of false positives, confirming the stability of 

the classification algorithm. The visualization further indicates that 68% of records were correctly classified as non-

suicidal and 32% as high-risk, reflecting the model’s sensitivity to linguistic and semantic cues associated with self-

harm. This classification performance is essential for early intervention, enabling professionals to prioritize cases 

requiring immediate attention. Figure 12c compares model performance before and after the integration of AI modules. 
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The transition from an average accuracy of 72% to 88% demonstrates the significant contribution of modern NLP 

methods and transformer-based architectures. These enhancements confirm the benefits of integrating AI and cloud-

based technologies into adolescent mental-health risk-prediction pipelines. Figure 12d evaluates the effectiveness of 

subsequent interventions. Following the implementation of the automated system, the proportion of timely and 

successful referrals increased from 78% to 91%. This improvement emphasizes the practical value of algorithmic 

notifications in supporting clinical and educational services. 

  

  

Figure 12. (a) Forecast of risk level change by month; (b) Comparison of detected cases with total records; (c) Model 

accuracy before and after AI integration; (d) Intervention success rates before and after system deployment 

Taken together, the results presented in Figure 12 indicate that the system achieves key benchmarks in prediction 

accuracy, processing speed, and usability. The combination of machine-learning techniques with privacy-preserving 

data-management mechanisms facilitates a more rapid and effective response to suicide risk among adolescents. 

Monthly Revenue Growth Trend 

As shown in Figure 13, the implementation of the developed AI system has a multifaceted impact on the effectiveness 

of institutions dealing with adolescent mental health. The data presented reflects both improvements in organizational 

processes and strengthened financial stability following the integration of predictive architecture. 

 

Figure 13. Indicators of the system's operational and financial efficiency: (a) reduction in the proportion of cases requiring 

repeat interventions; (b) increase in the institution's profitability on a monthly basis after the system was introduced 

(a) (b) 

(c) 

(d) 

(a) (b) 
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Figure 13a demonstrates a reduction in the number of cases associated with delays or ineffective interventions. The 

downward trend indicates that the system contributes to more timely patient care, reduces the likelihood of missing 

critical situations, and decreases reliance on manual operations, which are a source of errors and delays. Figure 13b 

illustrates the monthly increase in the facility's revenue during the twelve months following the system's implementation. 

Growth begins at 8% in the first month and reaches a cumulative increase of 80% by the twelfth month. This sustained 

upward trend is driven by increased operational efficiency, reduced manual data processing costs, and increased 

throughput through automated analysis, early interventions, and more accurate resource allocation. 

Taken together, the results confirm that the use of the proposed AI architecture contributes to simultaneous 

improvements in clinical performance and economic sustainability. The combination of federated learning, differential 

privacy mechanisms, and the scalability of cloud solutions not only ensures high prediction accuracy and timely 

interventions, but also optimizes resource allocation. 

Revenue growth reflects improved service organization, reduced need for labor-intensive manual assessments, and 

an increase in the number of successfully serviced cases – all made possible by automated routing and early risk signals. 

Thus, the system contributes both to improving the support provided to at-risk adolescents and to strengthening the 

financial stability of institutions in the public and private sectors. 

6. Discussion 

The experimental evaluation indicates that the proposed AI-enabled framework for suicide risk prediction delivers 

notable gains in both predictive accuracy and system responsiveness compared with conventional approaches. 

Transformer-based models such as BERT achieved ROC-AUC = 0.96 and F1 = 0.92, surpassing traditional classifiers 

including logistic regression (AUC = 0.88) and SVM (AUC = 0.89). These findings align with earlier work that 

highlighted the benefits of deep learning for linguistic analysis in mental health research [9, 11, 18]. At the same time, 

they extend prior knowledge by combining scalability with privacy-preserving mechanisms that were not incorporated 

into previous models. 

In the context of urban digital infrastructure, the proposed architecture is not viewed as a separate closed module, but 

is integrated as a service layer on top of existing municipal platforms. In practice, key components are hosted in the city 

cloud, which already supports educational services, e-health, and social systems. School information platforms and 

advisory services become the main entry points: text data analysis can be performed locally or in an industry cloud, and 

only anonymized features or model parameter updates are sent to the centralized analytics module via secure APIs. 

Healthcare platforms and crisis hotlines can receive calculated risk levels through standardized interfaces, allowing them 

to automatically initiate referral routes, update electronic records, or transfer information to interdisciplinary support 

services. This approach avoids the creation of an isolated “data warehouse,” preserves ownership of the source 

information at the institutional level, and ensures controlled points of integration between school networks, the city 

cloud, and public health systems.  

In the proposed architecture, particular attention is given to data ownership and the procedure for obtaining consent 

for data processing in a federated learning environment. The core principle is that institutions – such as schools, clinics, 

or advisory services – retain full control over their source data. Each organization remains the owner of its information 

resources, and local data does not leave the institution’s infrastructure or enter the centralized analytical workflow. 

Within the federated learning framework, participation in computations is governed by pre-approved access policies 

defined by each participating institution. User consent (or the consent of legal guardians in the case of minors) constitutes 

a mandatory prerequisite: data may be incorporated into local model training only when explicit authorization is provided 

in accordance with national personal-data protection regulations. 

It is important to emphasize that during federated learning, only updated model parameters are transferred to the 

central aggregation module in an aggregated form; they do not contain personalized, identifying, or otherwise sensitive 

information. This design principle enables a clear separation of responsibilities: the data-providing institution manages 

access rights and governs local data usage, while the central module integrates only depersonalized model gradients. 

Such an approach ensures legal predictability, optimizes computational and communication overhead, and maintains 

compatibility with regulatory requirements for digital healthcare and educational services within smart-city 

environments. 

The preparatory materials included concise analytical annotations, sample interface illustrations, architectural 

diagrams, and descriptions of key concepts such as natural language processing, federated learning, risk levels, and data 

anonymization mechanisms. All participants – including educators, clinicians, and information technology specialists—

received identical materials prior to the survey. Additionally, a brief introductory session was conducted before survey 

administration, during which the study objectives and the core technical elements of the model were explained. This 

approach ensured a consistent baseline understanding of the terminology and reduced the potential for methodological 

bias associated with differences in participants’ professional backgrounds. 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1384 

 

In this study, the model was trained primarily on English-language sources, which represents a recognized limitation 

in the context of multilingual and culturally diverse smart-city systems. Linguistic variation – including local idioms, 

culturally specific forms of expression, and divergent communication styles – can substantially influence the accuracy 

of suicide-marker detection. The absence of a multilingual corpus may reduce the model’s sensitivity in non-English 

environments and limit its immediate applicability in international or multicultural urban ecosystems. To address this 

limitation, future work should incorporate training corpora in Kazakh, Russian, and other relevant languages, along with 

the application of transfer learning and adaptive fine-tuning techniques. Expanding the linguistic diversity of the dataset 

is expected to enhance the model’s robustness to intercultural variation and support reliable system performance in global 

contexts where multilingualism and cultural heterogeneity are prevalent. 

In addition, the model uses a stream processing scheme, where incoming text messages are distributed among 

computing nodes with the possibility of dynamic load redistribution. This structure allows for the processing of large 

data arrays typical of municipal systems, including schools, healthcare institutions, and emergency response services. 

Another important aspect is the minimization of overhead costs through local preprocessing in federated nodes. Since 

only model parameters, rather than raw data, are sent to the central circuit, the system avoids network channel overload 

issues and does not place excessive demands on the bandwidth of the city's infrastructure. 

In addition, the model employs a stream-processing architecture in which incoming text messages are distributed 

across computing nodes with support for dynamic load balancing. This structure enables the handling of large-scale data 

streams typical of municipal systems, including schools, healthcare institutions, and emergency response services.  

Another important aspect is the reduction of overhead costs through local preprocessing on federated nodes. Because 

only model parameters - rather than raw data - are transmitted to the central aggregation layer, the system avoids network 

congestion and minimizes demands on the bandwidth of the city’s digital infrastructure. 

Considering the results of load testing and the system’s demonstrated capacity to distribute computations across 

multiple clusters, the proposed architecture can be regarded as capable of supporting urban-scale data flows, provided 

that an adequate number of worker nodes and appropriate load orchestration mechanisms are available. In contrast to 

earlier studies that primarily focus on retrospective data analysis or rule-based prediction approaches [10, 14], the 

proposed framework enables real-time predictive processing through the use of Hadoop- and Spark-based 

infrastructures. This capability supports proactive interventions rather than delayed responses. Although the potential of 

federated learning in healthcare has been explored [28], its application in adolescent suicide prevention has received 

limited attention. The presented architecture addresses this gap by combining federated learning with differential 

privacy, thereby safeguarding sensitive information without compromising predictive accuracy. 

The findings highlight the importance of AI-enabled monitoring within Smart City environments, particularly in 

strengthening urban resilience. Deploying the system across schools, clinical institutions, and community networks can 

create early-warning infrastructures that enhance preventive capacities, improve resource allocation, and reduce latency 

in crisis-response workflows. The observed 80% increase in operational efficiency further demonstrates the economic 

viability of integrating such platforms into urban ecosystems. 

Despite these advantages, several challenges must be acknowledged. Dependence on publicly available datasets –

such as Kaggle – may constrain cultural and linguistic representativeness. Although federated learning improves privacy 

preservation, it introduces additional computational overhead that may limit feasibility in resource-constrained 

environments. Furthermore, transformer-based models, despite their strong predictive performance, present notable 

interpretability limitations, which can impede clinician confidence during practical deployment. 

Future research can proceed along three primary directions. First, expanding datasets with multilingual and region-

specific sources is essential for improving representativeness among underexplored populations. Second, the integration 

of Explainable AI (XAI) techniques is warranted to enhance model interpretability and strengthen practitioner and 

stakeholder trust. Third, longitudinal clinical trials are required to validate real-world effectiveness in adolescent cohorts. 

In addition, multimodal extensions that incorporate IoT sensor streams, EHRs, and behavioral signal data may further 

enhance predictive robustness and support a more comprehensive understanding of adolescent mental health. 

One of the fundamental challenges in implementing risk-prediction systems is minimizing false positives, which may 

lead to unnecessary interventions or compromise user privacy. The proposed architecture incorporates multiple 

safeguards to mitigate such outcomes.  

First, the model employs an adaptive thresholding mechanism derived from the statistical distribution of risk levels 

within a given dataset. This approach prevents overly sensitive configurations and reduces the likelihood that neutral or 

emotionally charged, yet non-threatening, messages will be incorrectly classified as high-risk. 

Second, the system incorporates an ensemble-based smoothing mechanism in which the final decision is generated 

not by a single classifier but by an array of heterogeneous models, each utilizing distinct feature representations. This 

strategy reduces the influence of individual model errors and increases the robustness of the aggregated prediction. 
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The third layer of protection involves mandatory expert oversight: a psychologist, counselor, or social worker must 

validate any automatically flagged high-risk case. The system communicates its output as a preliminary alert rather than 

a definitive judgment, ensuring that no automated action is taken without human verification and thereby reducing the 

likelihood of unwarranted interventions. 

In addition, strict anonymization protocols are applied: the system does not store original text inputs within the central 

aggregation layer but transmits only depersonalized feature representations. This design mitigates the risk of unintended 

disclosure of sensitive information, even in cases where false alarms occur. Collectively, the adaptive thresholding 

mechanism, ensemble-based stabilization, mandatory expert verification, and technical data-protection measures 

constitute a multi-layer safeguard framework that substantially reduces the likelihood of adverse outcomes resulting 

from false-positive classifications. 

Before the survey commenced, all participants were provided with a briefing document outlining the key ethical 

considerations associated with the use of AI systems for risk prediction. The document detailed model-related 

limitations, the nature of algorithmic errors, constraints related to result interpretability, and potential privacy risks, 

particularly in the context of emotionally sensitive textual data. 

To ensure transparent participation conditions, all respondents—including educators, clinicians, and information 

technology specialists – were provided in advance with detailed explanations regarding the nature of the data being 

analyzed, the mechanisms used to protect it, the decision processes executed by the system, and the scope of human 

oversight. It was explicitly emphasized that no automated actions are performed without expert involvement and that 

algorithmic outputs function solely as decision-support signals within the broader framework of professional assessment. 

This preliminary information enabled participants to critically assess the proposed technology, considering both its 

advantages and the potential trade-offs between predictive accuracy, processing speed, and ethical constraints. This 

preparatory stage constitutes an essential component of the research methodology, as it supports the collection of more 

balanced and informed responses while mitigating the influence of misconceptions regarding the operation of AI 

systems. 

7. Conclusion 

The presented study showed that the combination of modern NLP models, distributed data processing, and private 

computing forms a more reliable and efficient tool for assessing the risk of suicidal behavior among adolescents. Unlike 

traditional methods described in the works of Bernert et al. and Hawton et al. [6], the proposed approach allows for the 

analysis of large data sets in real time and takes into account complex linguistic and behavioral markers that were 

previously overlooked. The obtained indicators – AUC-ROC 0.96 and F1-score 0.92 for the BERT model – confirm the 

superiority of transformer architectures over classical algorithms, which is consistent with the conclusions of Kim et al., 

but complements them with scalability and integration into the urban digital environment. 

The issue of privacy deserves special attention. In previous works on the application of machine learning in 

psychiatry, data protection issues are usually considered only in general terms. This study demonstrated the practical 

implementation of federated learning and differential privacy mechanisms, bringing the architecture to a level suitable 

for real-world implementation in schools, medical institutions, and smart city services. Positive feedback from experts 

who participated in the survey confirms the professional community's readiness to use transparent, verifiable, and 

decentralized decision support tools. 

In addition, the results of modeling and experimental tests have shown that the system improves the efficiency of 

routing requests to emergency services and reduces response delays, which is consistent with the assumptions presented 

in the literature on the need to move from retrospective analysis to operational monitoring. Nevertheless, there are still 

areas for development: expanding the multilingual database, improving the interpretability of models, and conducting 

long-term field tests. 

Overall, the proposed architecture demonstrates that the combination of big data, transformer models, and private 

computing can form the basis for an ethically sound and practically significant early warning system for the risk of self-

destructive behavior in adolescents. 

8. Declarations  

8.1. Author Contributions 

Conceptualization, S.A.; methodology, S.A., O.B., and V.S.; software, S.A., O.B., and V.S.; validation, S.A., O.B., 

and V.S.; formal analysis, S.A., K.S., Y.B., and E.A.; investigation, S.A.; data curation, S.A., K.S., Y.B., and E.A.; 

writing—original draft preparation, S.A., O.B., V.S., and Y.B.; writing—review and editing, S.A., O.B., V.S., K.S., 

Y.B., and E.A.; visualization, S.A., O.B., V.S., K.S., Y.B., and E.A.; project administration, O.B. and V.S. All authors 

have read and agreed to the published version of the manuscript. 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1386 

 

8.2. Data Availability Statement 

The dataset used in this study, titled “Suicide Sentiment Analysis Dataset”, is publicly available on Kaggle at 

https://www.kaggle.com/datasets/umar1103/suicide-sentiment-analysis-dataset. Further processed data and 

supplementary materials generated during the current study are available from the corresponding author upon reasonable 

request 

8.3. Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

8.4. Institutional Review Board Statement 

Ethical review and approval were waived for this study because it did not involve direct interaction with human 

participants or the collection of identifiable personal data. The research was conducted using publicly available and fully 

anonymized datasets, as well as aggregated survey responses from professionals (psychologists, educators, and IT 

specialists), collected for analytical and methodological purposes only. No clinical interventions were performed, and 

no decisions affecting individual participants were made within the scope of this study. All procedures were carried out 

in accordance with ethical standards for research integrity and data protection. 

8.5. Informed Consent Statement 

Informed consent was obtained from all participants involved in the survey component of the study. Participation 

was voluntary, and all respondents were informed about the purpose of the research and the intended use of the collected 

data prior to completing the questionnaire. No personally identifiable information was collected, and all responses were 

analyzed in anonymized and aggregated form. 

8.6. Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

9. References 

[1] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 

107–113. doi:10.1145/1327452.1327492. 

[2] Dayalan, M. (2018). MapReduce: simplified data processing on large cluster. International Journal of Research and Engineering, 

5(5), 399-403. 

[3] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with working sets. 2nd 

USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2010, 1-10. 

[4] Zabala-Vargas, S., Jaimes-Quintanilla, M., & Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence 

for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings, 13(12), 

2944. doi:10.3390/buildings13122944. 

[5] Bernert, R. A., Hilberg, A. M., Melia, R., Kim, J. P., Shah, N. H., & Abnousi, F. (2020). Artificial intelligence and suicide 

prevention: A systematic review of machine learning investigations. International Journal of Environmental Research and Public 

Health, 17(16), 1–25. doi:10.3390/ijerph17165929. 

[6] Hawton, K., Hill, N. T. M., Gould, M., John, A., Lascelles, K., & Robinson, J. (2020). Clustering of suicides in children and 

adolescents. The Lancet Child and Adolescent Health, 4(1), 58–67. doi:10.1016/S2352-4642(19)30335-9. 

[7] Kim, H., Son, Y., Lee, H., Kang, J., Hammoodi, A., Choi, Y., Kim, H. J., Lee, H., Fond, G., Boyer, L., Kwon, R., Woo, S., & 

Yon, D. K. (2024). Machine Learning-Based Prediction of Suicidal Thinking in Adolescents by Derivation and Validation in 3 

Independent Worldwide Cohorts: Algorithm Development and Validation Study. Journal of Medical Internet Research, 26(1), 

55913. doi:10.2196/55913. 

[8] Méndez-Bustos, P., Fuster-Villaseca, J., Lopez-Castroman, J., Jiménez-Solomon, O., Olivari, C., & Baca-Garcia, E. (2022). 

Longitudinal trajectories of suicidal ideation and attempts in adolescents with psychiatric disorders in Chile: study protocol. BMJ 

Open, 12(2), 51749. doi:10.1136/bmjopen-2021-051749. 

[9] Saduakassova, K., Zhanuzakov, M., Kassenova, G., & Serbin, V. (2024). Artificial Intelligence as a Tool to Prevent 

Autoaggressive Destructive Behavior among Children and Adolescents: A Brief Overview. Journal of Clinical Medicine of 

Kazakhstan, 21(6), 24–29. doi:10.23950/jcmk/15716. 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1387 

 

[10] Rodway, C., Tham, S.-G., Ibrahim, S., Turnbull, P., Kapur, N., & Appleby, L. (2020). Children and young people who die by 

suicide: childhood-related antecedents, gender differences and service contact. BJPsych Open, 6(3), 49. doi:10.1192/bjo.2020.33. 

[11] Jach, T., Magiera, E., & Froelich, W. (2015). Application of Hadoop to store and process big data gathered from an urban water 

distribution system. Procedia Engineering, 119(1), 1375–1380. doi:10.1016/j.proeng.2015.08.988. 

[12] Lee, J., & Pak, T. Y. (2022). Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A 

population-based study. SSM - Population Health, 19. doi:10.1016/j.ssmph.2022.101231. 

[13] Merceedi, K. J., & Sabry, N. A. (2021). A Comprehensive Survey for Hadoop Distributed File System. Asian Journal of Research 

in Computer Science, 11(2), 46–57. doi:10.9734/ajrcos/2021/v11i230260. 

[14] Assefi, M., Behravesh, E., Liu, G., & Tafti, A. P. (2017). Big data machine learning using apache spark MLlib. Proceedings - 

IEEE International Conference on Big Data, Big Data 2017, 2018-January, 3492–3498. doi:10.1109/BigData.2017.8258338. 

[15] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Frankliny, M. J., Ghodsi, A., & 

Zaharia, M. (2015). Spark SQL: Relational data processing in spark. Proceedings of the ACM SIGMOD International 

Conference on Management of Data, 2015-May, 1383–1394. doi:10.1145/2723372.2742797. 

[16] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., & Stoica, I. (2014). GraphX: Graph processing in a 

distributed dataflow framework. Proceedings of the 11th USENIX Symposium on Operating Systems Design and 

Implementation, OSDI 2014, 599–613. 

[17] Ali, A. A., & Logofatu, D. (2022). An Analysis on Graph-Processing Frameworks: Neo4j and Spark GraphX. IFIP Advances in 

Information and Communication Technology, 646 IFIP, 461–470. doi:10.1007/978-3-031-08333-4_37. 

[18] Bohaterewicz, B., Sobczak, A. M., Podolak, I., Wójcik, B., Mȩtel, D., Chrobak, A. A., Fa̧frowicz, M., Siwek, M., Dudek, D., & 

Marek, T. (2021). Machine Learning-Based Identification of Suicidal Risk in Patients with Schizophrenia Using Multi-Level 

Resting-State fMRI Features. Frontiers in Neuroscience, 14, 605697. doi:10.3389/fnins.2020.605697. 

[19] Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S. C., & Wang, F. (2020). Machine learning for suicide risk prediction in 

children and adolescents with electronic health records. Translational Psychiatry, 10(1), 413. doi:10.1038/s41398-020-01100-0. 

[20] Parsapoor, M., Koudys, J. W., & Ruocco, A. C. (2023). Suicide risk detection using artificial intelligence: the promise of creating 

a benchmark dataset for research on the detection of suicide risk. Frontiers in Psychiatry, 14. doi:10.3389/fpsyt.2023.1186569. 

[21] Khosravi, H., Ahmed, I., & Choudhury, A. (2024). Predicting Suicidal Ideation, Planning, and Attempts among the Adolescent 

Population of the United States. Healthcare (Switzerland), 12(13), 1262. doi:10.3390/healthcare12131262. 

[22] Bekmurat, O., Razaque, A., Khan, M. A., & Amanzholova, S. (2025). Prediction of Suicidal Tendencies in Adolescents Using 

Machine Learning Models and Artificial Intelligence. 2025 IEEE 1st Secure and Trustworthy Cyberinfrastructure for IoT and 

Microelectronics, SATC 2025 - Conference Proceedings, 1–5. doi:10.1109/SATC65530.2025.11136830. 

[23] Marjit, U., Sharma, K., & Mandal, P. (2015). Data Transfers in Hadoop: A Comparative Study. Open Journal of Big Data, 1(2), 

34–46.  

[24] Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., & Khan, S. U. (2016). MapReduce: Review and open challenges. 

Scientometrics, 109(1), 389–422. doi:10.1007/s11192-016-1945-y. 

[25] Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). 

Smart cities of the future. European Physical Journal: Special Topics, 214(1), 481–518. doi:10.1140/epjst/e2012-01703-3. 

[26] Vitulyova, Y., Babenko, T., Kolesnikova, K., Kiktev, N., & Abramkina, O. (2025). A Hybrid Approach Using Graph Neural 

Networks and LSTM for Attack Vector Reconstruction. Computers, 14(8), 301. doi:10.3390/computers14080301. 

[27] Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. 

doi:10.1007/s11036-013-0489-0. 

[28] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., 

Cummings, R., D’Oliveira, R. G. L., Eichner, H., El Rouayheb, S., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., 

Gibbons, P. B., … Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends in Machine 

Learning, 14(1–2), 1–210. doi:10.1561/2200000083. 

[29] Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Application of explainable artificial 

intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in 

Biomedicine, 226. doi:10.1016/j.cmpb.2022.107161. 

[30] Saba Raoof, S., & Durai, M. A. S. (2022). A Comprehensive Review on Smart Health Care: Applications, Paradigms, and 

Challenges with Case Studies. Contrast Media and Molecular Imaging, 4822235. doi:10.1155/2022/4822235. 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1388 

 

[31] Liu, B., Gu, J., & Wang, C. (2024). Research on smart city public health detection system and improvement technology based 

on intelligent multi-objective. Frontiers in Public Health, 12. doi:10.3389/fpubh.2024.1347586. 

[32] Sarinova, A., Bekbayeva, A., Dunayev, P., Sarsikeyev, Y., & Sansyzbay, K. (2021). Hyperspectral Image Compression 

Algorithms for Phytosanitary Inspection of Agricultural Crops in Aerospace Photography. Journal of Theoretical and Applied 

Information Technology, 99(24), 6280–6290. 

[33] Peponi, A., & Morgado, P. (2020). Smart and regenerative urban growth: A literature network analysis. International Journal of 

Environmental Research and Public Health, 17(7), 2463. doi:10.3390/ijerph17072463. 

[34] Mohammadzadeh, Z., Saeidnia, H. R., Lotfata, A., Hassanzadeh, M., & Ghiasi, N. (2023). Smart city healthcare delivery 

innovations: a systematic review of essential technologies and indicators for developing nations. BMC Health Services Research, 

23(1), 1180. doi:10.1186/s12913-023-10200-8. 

[35] Fan, M., Sun, J., Zhou, B., & Chen, M. (2016). The Smart Health Initiative in China: The Case of Wuhan, Hubei Province. 

Journal of Medical Systems, 40(3), 1–17. doi:10.1007/s10916-015-0416-y. 

[36] Alkina, A., Mekhtiyev, A., Neshina, Y., Serikov, T., Madi, P., Sansyzbay, K., & Yurchenko, A. (2022). Studying Additional 

Losses of Standard G.652 Optical Fiber with Protective Cladding during Multiple Bending To Develop Weight Control Sensor. 

Journal of Theoretical and Applied Information Technology, 100(7), 1983–1995. 

[37] Alnasir, J. J., & Shanahan, H. P. (2018). The application of Hadoop in structural bioinformatics. Briefings in Bioinformatics, 

21(1), 96–105. doi:10.1093/bib/bby106. 

[38] Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big data systems: A crossindustry study of 

mapreduce workloads. Proceedings of the VLDB Endowment, 5(12), 1802–1813. doi:10.14778/2367502.2367519. 

[39] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., & Stoica, I. (2013). Discretized streams: Fault-tolerant streaming 

computation at scale. SOSP 2013 - Proceedings of the 24th ACM Symposium on Operating Systems Principles, 423–438. 

doi:10.1145/2517349.2522737. 

[40] Essaidi, A., & Bellafkih, M. (2023). A New Big Data Architecture for Analysis: The Challenges on Social Media. International 

Journal of Advanced Computer Science and Applications, 14(3), 634–639. doi:10.14569/IJACSA.2023.0140373. 

[41] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop distributed file system. 2010 IEEE 26th Symposium 

on Mass Storage Systems and Technologies, MSST2010, 1-10. doi:10.1109/MSST.2010.5496972. 

[42] Bazrafshan, M., & Sayehmiri, K. (2024). Predicting suicidal behavior outcomes: an analysis of key factors and machine learning 

models. BMC Psychiatry, 24(1), 841. doi:10.1186/s12888-024-06273-2. 

[43] Ehtemam, H., Sadeghi Esfahlani, S., Sanaei, A., Ghaemi, M. M., Hajesmaeel-Gohari, S., Rahimisadegh, R., Bahaadinbeigy, K., 

Ghasemian, F., & Shirvani, H. (2024). Role of machine learning algorithms in suicide risk prediction: a systematic review-meta 

analysis of clinical studies. BMC Medical Informatics and Decision Making, 24(1), 138. doi:10.1186/s12911-024-02524-0. 

[44] Zhu, X. (2021). Sample size calculation for Mann-Whitney U test with five methods. International Journal of Clinical Trials, 

8(3), 184. doi:10.18203/2349-3259.ijct20212840. 

[45] Aslam, M., & Smarandache, F. (2023). Chi-square test for imprecise data in consistency table. Frontiers in Applied Mathematics 

and Statistics, 9. doi:10.3389/fams.2023.1279638. 

[46] Rashed, A. E. E., Atwa, A. E. M., Ahmed, A., Badawy, M., Elhosseini, M. A., & Bahgat, W. M. (2024). Facial image analysis 

for automated suicide risk detection with deep neural networks. Artificial Intelligence Review, 57(10), 274. doi:10.1007/s10462-

024-10882-4. 

[47] Morales, M., Dey, P., Theisen, T., Belitz, D., & Chernova, N. (2019). An Investigation of Deep Learning Systems for Suicide 

Risk Assessment. Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology, 177–181. 

doi:10.18653/v1/w19-3023. 

[48] Akuma, S., Lubem, T., & Adom, I. T. (2022). Comparing Bag of Words and TF-IDF with different models for hate speech 

detection from live tweets. International Journal of Information Technology (Singapore), 14(7), 3629–3635. 

doi:10.1007/s41870-022-01096-4. 

[49] Yadav, V., Verma, P., & Katiyar, V. (2023). Long short-term memory (LSTM) model for sentiment analysis in social data for 

e-commerce products reviews in Hindi languages. International Journal of Information Technology (Singapore), 15(2), 759–

772. doi:10.1007/s41870-022-01010-y. 

[50] Glenn, C. R., Kleiman, E. M., Kellerman, J., Pollak, O., Cha, C. B., Esposito, E. C., Porter, A. C., Wyman, P. A., & Boatman, 

A. E. (2020). Annual Research Review: A meta-analytic review of worldwide suicide rates in adolescents. Journal of Child 

Psychology and Psychiatry and Allied Disciplines, 61(3), 294–308. doi:10.1111/jcpp.13106. 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1389 

 

[51] Hughes, J. L., Horowitz, L. M., Ackerman, J. P., Adrian, M. C., Campo, J. V., & Bridge, J. A. (2023). Suicide in young people: 

screening, risk assessment, and intervention. Bmj, 381, 70630. doi:10.1136/bmj-2022-070630. 

[52] Rappai, S., & Ramasamy, G. (2024). Navigating the emotional maze: Understanding Adolescent suicidal ideation using CNN-

LSTM model. Intelligent Decision Technologies, 18(3), 1797–1811. doi:10.3233/IDT-240790. 

[53] Banik, T., Asgar, S., Hosen, M. H., Uddin, A., Nawar, S., & Saha, A. (2024). From Social Media to Mental Health Insights: A 

Hybrid CNN-LSTM Model for Depression Detection in Bangladesh. 2024 IEEE Conference on Computing Applications and 

Systems, COMPAS 2024. doi:10.1109/COMPAS60761.2024.10797102. 

[54] Sansyzbay, K. M., Bakhtiyarova, Y. A., Iliev, T., Patokin, G. S., Tasbolatova, L. T., & Sagmedinov, D. B. (2024). Development 

of an Algorithm for a National Microprocessor-Based Centralization System with a Modular Architecture KZ-MPC-MA 

Featuring Advanced Intelligent Control Functions. IEEE Access, 12, 193229–193240. doi:10.1109/ACCESS.2024.3521219. 

[55] Goel, R., & Digalwar, M. (2024). Suicidal Thought Detection using Max Voting Ensemble Technique. Procedia Computer 

Science, 235, 2587–2598. doi:10.1016/j.procs.2024.04.244. 

[56] Young, J., Bishop, S., Humphrey, C., & Pavlacic, J. M. (2023). A review of natural language processing in the identification of 

suicidal behavior. Journal of Affective Disorders Reports, 12. doi:10.1016/j.jadr.2023.100507. 

[57] Feroze, S. A., Feroze, S. B., & Abbasi, U. (2024). The Unveiling Distress: Harnessing NLP and Deep Learning to Identify 

Suicidal Signals in Tweets. International Journal of Technology, Innovation and Management, 4(1), 20–31. 

doi:10.54489/ymy5bp91. 

[58] Ji, S. (2022). Towards Intention Understanding in Suicidal Risk Assessment with Natural Language Processing. In Findings of 

the Association for Computational Linguistics: EMNLP 2022, 4057–4067. EMNLP. doi:10.18653/v1/2022.findings-emnlp.297. 

[59] Bialer, A., Izmaylov, D., Segal, A., Tsur, O., Levi-Belz, Y., & Gal, K. (2022). Detecting Suicide Risk in Online Counseling 

Services: A Study in a Low-Resource Language. Proceedings - International Conference on Computational Linguistics, 

COLING, 29(1), 4241–4250. doi:10.48550/arXiv.2209.04830. 

[60] Cliffe, C., Seyedsalehi, A., Vardavoulia, K., Bittar, A., Velupillai, S., Shetty, H., Schmidt, U., & Dutta, R. (2021). Using natural 

language processing to extract self-harm and suicidality data from a clinical sample of patients with eating disorders: A 

retrospective cohort study. BMJ Open, 11(12), e053808. doi:10.1136/bmjopen-2021-053808. 


