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Abstract 

With the rapid development of the digital music industry, core challenges have emerged concerning the insufficient 

accuracy of main melody extraction and the poor style classification effect of multi-track MIDI files. To address these 

issues, this study proposes a novel model based on an improved Skyline algorithm and an optimized BP neural network. 

The method first standardizes MIDI data into a Time-Pitch-Intensity feature matrix. An improved Skyline algorithm is 

then used to integrate pitch saliency calculation with temporal continuity screening, enhancing the anti-interference ability 

for multi-track melodies. For music style classification, an optimized BP network with Adaptive Moment Estimation 

(Adam) gradient optimization and Residual Connection (ResConnect) is designed to improve learning efficiency and 

accuracy. Experimental results demonstrated that the proposed model surpassed comparative models in overall 

performance, with a classical-style main melody extraction accuracy of 94.6% and a 2-track separation accuracy of 95.2%. 

The experiments were benchmarked on the Lakh MIDI Dataset and MuseScore MIDI Library. The model also exhibits 

superior robustness against noise interference and faster convergence speed. This study provides reliable technical support 

for applications like music creation assistance and copyright retrieval. 

Keywords: Multi-Track MIDI; Skyline Algorithm; BP Neural Network; Main Melody Extraction; Music Classification. 

 

1. Introduction 

With the continuous evolution of digital music technology, the Musical Instrument Digital Interface (MIDI) format 

has become a core data carrier in music creation, film and television music, and game sound design due to its structured 

instruction encoding, high editing flexibility, and low storage footprint [1]. The digital music industry is moving towards 

intelligence and refinement, and the efficient processing of massive multi-track MIDI files has become a key indicator 

for measuring the level of digital music intelligence [2]. However, this development faces two core technical challenges: 

the insufficient accuracy of Main Melody Extraction (MME) in multi-track MIDI and the poor performance of Music 

Style Classification (MSC) based on melody features [3, 4]. The overlapping and interweaving of main melody and 

accompaniment tracks in polyphonic music often lead to feature confusion during automated extraction, while the subtle 

differences in melody features between various music styles are difficult to capture by existing classification methods. 

In MME, traditional approaches such as the Skyline Algorithm (Skyline) primarily rely on the "highest pitch priority" 

decision logic. This method is suitable for monaural scenarios but is highly susceptible to interference from non-

dominant melodies in polyphonic multi-track structures, leading to extraction deviations [5]. To overcome these 

limitations, the academic community has conducted extensive research, introducing deep learning frameworks and 
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feature fusion models. For instance, Park et al. [6] proposed a two-stage deep learning framework to improve the 

accuracy of MME and reduce model parameters. Similarly, Zhao et al. [7] used Convolutional Neural Networks (CNNs) 

to extract melody features, optimizing recognition performance through triplet samples and orthogonal experiments. 

Despite these advancements, the bottleneck of multi-track anti-interference remains a critical challenge. The core concept 

of the Skyline has also been refined for multidimensional data filtering in other domains, showing high efficiency and 

robustness. However, its application to complex multi-track music still requires further innovation to properly handle 

polyphonic interference [8-10]. 

For MSC, existing research often employs traditional machine learning models such as Support Vector Machine 
(SVM) and K-Nearest Neighbors (KNN), which have limited generalization ability in dealing with the non-linear 
mapping relationship of melody features [11, 13]. More recent research has explored advanced neural networks. Hui 
[14] et al. applied recurrent neural networks for feature extraction from sequence data to protect cultural heritage, 

achieving significant accuracy improvements. Wijaya et al. [15] proposed a feature extraction and classification method 
based on Bidirectional Long Short-Term Memory (Bi-LSTM) and Mel-frequency cepstral coefficients, achieving an 
accuracy rate of over 93% on experimental datasets. Additionally, Xie et al. [10] addressed the weak ability of CNNs by 
proposing an improved 1D gated convolutional network combined with a self-attention mechanism, which effectively 
improved classification accuracy. Although these deep learning methods have shown promising results, they still face 
challenges in effectively capturing subtle nonlinear features and improving convergence speed, as well as maintaining 

feature integrity in deeper network architectures. The Back Propagation (BP) neural network, with its powerful self-
learning and generalization abilities, has been widely used in music classification. However, its training efficiency and 
robustness in handling complex, multi-dimensional melody features can be further optimized [16-18]. 

In summary, despite the progress made by deep learning and feature fusion models, the core issues of weak anti-
interference in multi-track MIDI MME and the limited non-linear feature capture of traditional music classification 
models have not been fully resolved [19]. Therefore, a more targeted and integrated approach is necessary, one that 

structurally enhances feature extraction's robustness while significantly boosting the non-linear learning capability for 
classification. In response to these shortcomings, this study proposes a novel IS-OBP model that combines an Improved 
Skyline and an Optimized BP neural network. This combination is motivated by the known weaknesses of each 
component: the Skyline's susceptibility to multi-track interference, and the basic BP network's slow convergence and 
limited capability to capture subtle non-linear features compared to advanced deep networks. The main novelty lies in 
the construction of a hybrid framework (IS-OBP), which structurally solves the bottleneck of multi-track anti-

interference in MME and significantly improves the learning efficiency of classification through specific network 
optimization. The key innovations of this research lie in two aspects: (1) The construction of an improved Skyline model 
that integrates pitch saliency calculation and temporal continuity screening to enhance the anti-interference ability of 
multi-track melodies; (2) The design of an optimized BP network with Adaptive Moment Estimation (Adam) gradient 
optimization and Residual Connection (ResConnect), aiming to improve the efficiency of non-linear feature learning, 
thereby achieving dual optimization of classification accuracy and convergence speed. This study aims to address the 

technical bottleneck of efficient multi-track MIDI processing and MSC, providing reliable technical support for 
applications like music creation assistance and copyright retrieval. 

The remainder of this article is structured as follows: Section 2 presents the methods and materials, including MIDI 
data preprocessing and the detailed design of the proposed improved Skyline-based MME model and the optimized BP 
network-based classification model. Section 3 discusses the results of performance evaluation and simulation application 
effects of the proposed model. Section 4 summarizes the conclusions and outlines future research directions. 

2. Material and Methods  

2.1. MIDI Data Preprocessing and Feature Encoding 

MIDI files store music information in the form of multi-track instruction streams, but there are issues with redundant 
percussion events, asynchronous timelines, and differences in feature dimensions in the raw data. The heterogeneity of 

these technical aspects will directly affect the subsequent models' ability to capture effective melodic features and form 
invisible barriers in the dimension of cultural dissemination [20]. Different creative circles have their own expression 
habits, such as classical music tending towards rigorous traditional notation, while electronic music is more of an 
improvisational sampling logic. This results in a fragmented distribution of style indicators such as the characteristic 
mode pitch of ethnic music and the dynamics of popular music in the original data. If not handled properly, it is highly 
likely to form a ''data island'', hindering the advancement of cross-style music research and integrated creation. Therefore, 

the standardized preprocessing of MIDI data is a necessary operation for technical specifications and carries the key link 
of digital music culture inheritance and cross-domain circulation. The filtering of redundant percussion events and the 
unified calibration of the timeline during the preprocessing process is essentially the construction of a universal set of 
music “grammar rules”. It preserves the core characteristics of various styles, such as the pitch continuity of classical 
music and the rhythmic complexity of jazz, while resolving the understanding barriers caused by formal differences. 
This standard enables ethnic music MIDI data from remote areas to be included in the same analysis framework as urban 

electronic music materials. This provides the possibility of quantitative comparison for music anthropology research, 
and also allows non-professional creators to reuse diverse style materials through standardized interfaces, promoting the 
democratization process of music creation. The standardized conversion of pitch and intensity further achieves the 
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generalizability of musical emotional expression. By unifying dimensions, the common semantics of 
“strength=emotional emphasis” in different cultural backgrounds are highlighted, laying a data foundation for emotional 
resonance in cross-cultural music communication. The coupling of this technological operation with social value is a 

typical manifestation of the cultural diversity of music technology services in the digital age. Based on this, this study 
constructs a standardized input space and first carries out structured preprocessing of MIDI data. The specific process is 
shown in Figure 1. 
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Figure 1. MIDI data preprocessing flowchart 

In Figure 1, the preprocessing process takes a Standard MIDI File (SMF) as input, first parsing the header block 
information (including format type, track number, time reference) and track block events. It further filters out invalid 
events such as percussion channels (channel 10) and System Exclusive (SysEx) information through a judgment 
mechanism, while retaining valid note parameters [21]. Subsequently, based on the timeline synchronization algorithm, 
the multi-track data are aligned to a unified time reference, and core features such as pitch, duration, and intensity are 

extracted [22]. The above preprocessing operations provide standardized basic data for subsequent MMEs through 
systematic denoising and formatting, effectively avoiding the interference of raw data heterogeneity on model 
performance. The pitch standardization formula is shown in Equation 1. 

min

max min

ˆ
p p

p
p p





  (1) 

In Equation 1, 𝑝̂ is the normalized pitch value, ranging from 0 to 1. 𝑝 is the original pitch parameter extracted from 

the MIDI file, with values ranging from 0-127, corresponding to piano key pitch. 𝑝𝑚𝑖𝑛  and 𝑝𝑚𝑎𝑥  are the minimum and 

maximum values of all pitches in the dataset. This formula eliminates the dimensional differences in pitch through  

𝑚𝑖𝑛 − 𝑚𝑎𝑥 normalization, allowing for direct comparison of pitch features between different tracks and providing 

standardized input for subsequent multi track time alignment. The standardized formula for strength is shown in Equation 

2. 

min

max min

126 1ˆ i i
i

i i


  


  (2) 

In Equation 2, 𝑖̂ is the quantified force value, ranging from 1 to 127. 𝑖 is the original force parameter extracted from 

the MIDI file. 𝑖𝑚𝑖𝑛  and 𝑖𝑚𝑎𝑥  are the minimum and maximum values of all forces in the dataset. The formula normalizes 

the intensity to levels 1-127 through linear mapping, preserving the relative differences in the original intensity and 

adapting to the intensity response range of MIDI devices. The formula for converting absolute time is shown in Equation 

3. 

1 Δk k kt t t    (3) 

In Equation 3, 𝑡𝑘 is the absolute time of the k-th MIDI event, measured in ticks. 𝑡𝑘−1 is the absolute time of the k-1-

th event. Δ𝑡𝑘 is the incremental time/time difference (Delta Time, delta) of the k-th event relative to the previous event, 

which is the relative time interval stored in the MIDI file. This formula converts the discrete relative time in multiple 

tracks into absolute time on a unified timeline, achieving time synchronization between different tracks and laying the 

foundation for aligning the time dimension of subsequent feature matrices. Ultimately, the pre-processed features will 

undergo quantization conversion through encoding mechanisms, forming a standardized feature matrix of “time pitch 

intensity”. The specific mechanism of MIDI feature encoding is shown in Figure 2. 
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Figure 2. MIDI features encoding mechanism diagram 

In Figure 2, the pre-processed original parameters of pitch, duration, and intensity are used as inputs, and feature 

quantization conversion is completed through a three-level encoding process. The time dimension transforms discrete 

delta time into a unified scale timeline tick through absolute transformation. The pitch dimension maps the original 

values from 0-127 to the 0-1 interval using the min max  normalization formula. The intensity dimension is quantified 

on a scale of 1-127 levels [23]. The three are ultimately integrated into a 3D standardized feature matrix of “Time-Pitch-

Intensity (TPI)”. The formula for the MIDI feature encoding composite index is shown in Equation 4. 

'

1 2 3E w t w p w d        (4) 

In Equation 4, E  is the comprehensive eigenvalue of the encoded “TPI” 3D feature matrix, used to quantify the 

effectiveness of the encoded features. t is the unit tick value converted by time discretization, corresponding to the scale 

on the unified time axis. 𝑝′ is the pitch value normalized by min max , with a range of 0-1. d is the quantified strength 

level, ranging from 1 to 127. 𝑤1, 𝑤2, and 𝑤3 are the weight coefficients of time, pitch, and intensity features in the 

encoding process, used to balance the contribution of different dimensional features to MME. Through the above MIDI 

feature encoding mechanism, the dynamic distribution of each feature on the timeline can be intuitively presented, 

providing structured and comparable feature input for the subsequent improvement of Skyline's MME. 

2.2. MME Model Based on Improved Skyline 

After MIDI data preprocessing and feature encoding, a standardized feature matrix called “TPI” has been constructed. 

However, the interweaving of the main melody and accompaniment in multi-track polyphonic structures still leads to 

feature confusion. The traditional Skyline's “highest pitch priority” rule is susceptible to interference from non-main 

melody sounds [24]. Therefore, this study adopts an improved Skyline to achieve precise extraction, breaking through 

the limitations of single-track extraction by integrating pitch saliency calculation, time continuity screening, and a multi-

track clustering strategy. The specific improvement process is shown in Figure 3. 
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Figure 3. Flowchart of improved Skyline (Source from: https://yesicon.app/) 
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In Figure 3, the process takes the standardized feature matrix of multiple tracks as input, and first uses the pitch 
saliency calculation module to fuse the frequency proportion and intensity mean, dynamically adjust the balance 
coefficient, and select high importance pitches [25]. The formula for calculating the weight of pitch saliency is shown 

in Equation 5. 

( ) (1 )p pI p a f a s       (5) 

In Equation 5, 𝐼(𝑝) is the saliency index of pitch 𝑝, used to quantify the importance of that pitch in the main melody. 

a is the balance coefficient used to adjust the contribution weights of frequency and force. 𝑓𝑝 is the frequency proportion 

of pitch 𝑝 in all notes. 𝑠𝑝 is the mean intensity of pitch 𝑝, calculated based on standardized intensity values. This formula 

breaks through the traditional single judgment logic of “highest pitch priority” by integrating frequency and intensity 

characteristics. After passing through the time continuity screening module, the variance of the time interval between 

adjacent notes is calculated, and continuous segments with variance less than the threshold are retained to filter out 

discrete notes. The formula for time interval variance is shown in Equation 6. 

2 2

1

1
(Δ )

n

k
k

t
n

 


     (6) 

In Equation 6, 𝜎2 is the time interval variance of the candidate pitch sequence, used to measure the continuity of the 

sequence. Δ𝑡𝑘 is the time interval (in ticks) between the k-th adjacent note. 𝜇 is the mean of all intervals. n is the total 

number of intervals. The smaller the variance, the more continuous the distribution of note time, and the more likely it 

is to belong to the main melody. Finally, after entering the multi-track fusion stage, the candidate sequences of each 

track are integrated through preliminary clustering. Multi-track fusion, as the core link to solve multi track polyphonic 

interference, directly affects the integrity and accuracy of MME. Its specific mechanism is shown in Figure 4. 
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Figure 4. Multi-track melody fusion mechanism 

In Figure 4, it visually presents the multi-track candidate sequence integration process of Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN). Firstly, the multi-track candidate melody sequence (such as Track1-
Track3) obtained through pitch saliency calculation and time continuity screening is used as input. The sequence 
similarity is quantified through Euclidean distance calculation (neighborhood radius 𝜀=25 ticks), and clustering regions 

are generated through core point determination [26]. The similarity calculation of multi track melody segments is shown 
in Equation 7. 

1 2Δ ΔS t p       (7) 

In Equation 7, S is the comprehensive similarity between two multi track melody segments (the smaller the value, the 

more similar the segments). Δ𝑡 and Δ𝑝 are the time interval difference and pitch difference of the corresponding notes 

in the two segments. Δ𝑡 is calculated by the absolute time difference between two segments on a unified timeline. 𝜔1 

and 𝜔2 are weight coefficients for time difference and pitch difference, used to balance the influence of time continuity 

and pitch correlation on similarity.They are dynamically adjusted based on the time stability and pitch dominance of the 

main melody in multi-track polyphonic music. The coefficients 𝜔1 and 𝜔2 are vital for harmonizing the influence of 

temporal continuity and pitch correlation on segment similarity. These parameters are determined through an empirical 

optimization process on a validation dataset, utilizing the controlled variable method to find the balance that maximizes 

MME accuracy. The optimal set, found to best reflect the characteristics of the main melody, is 𝑤1 = 0.6 and 𝑤2 = 0.4, 

giving slightly higher priority to time continuity. The expression for cluster density evaluation is shown in Equation 8. 

n
D


   (8) 
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In Equation 8, D represents the neighborhood density of a melody segment in DBSCAN clustering (the larger the 
value, the more likely the segment is to become a core point). n is the number of melody segments within the 
neighborhood that meet the similarity threshold. 𝜀 is the neighborhood radius, representing the maximum time range for 

determining the correlation of fragments. This formula is used to screen core clustering regions and support the 
aggregation of effective melody segments in multi-track fusion. The process includes noise filtering (removing outliers) 
and invalid clustering removal (clusters with sample size <2 are deleted). It ultimately generates the final main melody 
after multi-track fusion by calculating the time pitch mean sequence of effective clustering, solving the interference 
problem of multi-track interweaving in polyphonic music. 

2.3. Music Classification Model Based on Optimized BP Network 

After completing the standardization processing of MIDI data and multi-track MME, accurately classifying music 

styles based on extracted melody features has become a new core issue. The existing classification methods based on 
SVM and KNN are difficult to accurately capture the nonlinear feature differences of different styles of melodies, and 
their generalization ability is insufficient when dividing multiple categories [27]. Therefore, this study introduces BP to 
construct a classification model, and the mapping relationship between its input layer and MIDI melody features is 
shown in Figure 5. 
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Figure 5. Mapping relationship between MIDI melody features and BP network input layer 

In Figure 5, the 7-dimensional key melody features extracted from MIDI data, including timbre characteristics, 
average speed, and range, are first pre-processed through MIDI instrument numbering encoding, timeline normalization, 

Min-Max normalization, and other operations. These indicators are then mapped through specific logic to correspond to 
the seven neurons in the input layer of the BP network [28]. This mapping relationship lays the foundation for the 
subsequent learning and classification of MIDI melody features by BP networks. Subsequently, the BP structure 
continues to achieve the transformation from melody features to style categories through hierarchical transmission, 
providing a basic model framework for music classification. However, there is still room for improvement in 
convergence efficiency and generalization ability. The optimized BP process is shown in Figure 6. 
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Figure 6. Optimized BP network process 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1176 

 

In Figure 6, in response to the slow convergence speed and easy gradient vanishing of the basic BP network, 

this study upgrades the mechanism in the BP stage by introducing the Adam gradient optimization mechanism 

[29]. This mechanism starts with an initial learning rate of 0.001 and dynamically adjusts the update step size 

through an attenuation coefficient of 0.9. Specifically, it is to capture the historical gradient trend using the first-

order moment (momentum term) of the gradient, and adaptively adjust the parameter update amplitude using the 

second-order moment (square gradient term). The formula for updating first-order momentum is shown in Equation 

9. 

1 1 1(1 )t t tg          (9) 

In Equation 9, 𝜇𝑡 is the first-order momentum at time t, which is used to capture the historical trend of gradients and 

alleviate the problem of gradient oscillations in BP network training. 𝛾1 is the momentum decay coefficient, which 

controls the contribution weight of historical momentum. 𝜇𝑡−1  is the first-order momentum at time 𝑡 − 1. g𝑡  is the 

gradient at time t, calculated from the 7-dimensional main melody features using a loss function, reflecting the direction 

and magnitude of the current parameter update. The formula for updating second-order moments is shown in Equation 

10. 

2

2 1 2(1 )t t tg          (10) 

In Equation 10, 𝜈𝑡 is the second-order moment at time t, which is used to adaptively adjust the learning rate and solve 

the problem of large gradient differences in different feature dimensions. 𝛾2 is the second-order moment attenuation 

coefficient. 𝜈𝑡−1 is the second-order moment at time 𝑡 − 1. g𝑡
2 is the square of the gradient at time t, used to measure the 

magnitude of the current gradient. The parameter update equation is shown in Equation 11. 

1

t

t t

t


  

 
  


  (11) 

In Equation 11, 𝜃𝑡 and 𝜃𝑡−1 are the network parameters at time t and t-1. 𝜂 is the learning rate, with an initial value 

of 0.001, which dynamically decays with iteration. √𝜈𝑡 is the square root of the second-order moment, used to scale the 

learning rate. 𝛾 is an extremely small constant, avoiding a denominator of 0. 
𝜇𝑡

√𝜈𝑡+𝛾
 combines first-order momentum and 

second-order moment to obtain an adaptive parameter update step size, effectively alleviating the problem of gradient 

vanishing and improving the learning efficiency of BP network for the nonlinear relationship of MIDI melody features. 

The above process achieves precise correction of weight iteration direction, effectively alleviates the problem of gradient 

vanishing, and significantly improves the convergence efficiency of the model. However, this gradient optimization only 

improves the dynamic characteristics of training and fails to solve the integrity loss problem of hidden layer feature 

transfer in deep networks. Therefore, this study continues to introduce the ResConnect design to further enhance feature 

flow through structural optimization, as shown in Figure 7. 
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Figure 7. ResConnect mechanism 

Figure 7 clearly presents the residual path between the two hidden layers. After the output of hidden layer 1 is 

activated by ReLU, it undergoes nonlinear transformation through weight matrix 𝑊2 and is directly connected to the 

addition node through identity mapping. It is then overlaid with the transformed features to form the input of hidden 

layer 2 [30]. This mechanism preserves shallow effective melody features, reduces feature loss in deep networks, 

enhances the transfer efficiency of 7-dimensional main melody features between layers, and provides structural support 

for improving MSC accuracy. The proposed model is named MIDI-MMFE and IS-OBP. To ensure the clarity and ease 

of reference for the technical details presented throughout Section 2, Table 1 provides a comprehensive summary of the 

main mathematical symbols and parameters utilized in Equations 1 to 11. 
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Table 1. Summary of Key Symbols and Parameters 

Symbol Description 
Related 

Section/Formula 

𝑝̂ Normalized pitch value, ranging from 0 to 1 Equation 1 

𝑖̂ Quantified force value, ranging from 1 to 127 Equation 2 

𝑡𝑘 Absolute time of the k-th MIDI event, measured in ticks Equation 3 

E Comprehensive eigenvalue of the encoded “TPI” 3D feature matrix, used to quantify the effectiveness of the encoded features Equation 4 

I(p) Saliency index of pitch p, used to quantify the importance of that pitch in the main melody Equation 5 

𝜎2 Time interval variance of the candidate pitch sequence, used to measure the continuity of the sequence Equation 6 

S Comprehensive similarity between two multi track melody segments (the smaller the value, the more similar the segments) Equation 7 

D 
Represents the neighborhood density of a melody segment in DBSCAN clustering (the larger the value, the more likely the 

segment is to become a core point) 
Equation 8 

𝜇𝑡 
The first-order momentum at time t, which is used to capture the historical trend of gradients and alleviate the problem of 

gradient oscillations in BP network training. 
Equation 9 

𝜈𝑡 
The second-order moment at time t, which is used to adaptively adjust the learning rate and solve the problem of large gradient 

differences in different feature dimensions. 
Equation 10 

𝜃𝑡 The network parameters at time t. Equation 11 

3. Results 

3.1. Performance Evaluation and Analysis of IS-OBP Model 

Before presenting the performance evaluation, the experimental configuration and statistical validation methods are 

detailed. The Lakh MIDI Dataset is used, comprising over 100,000 files. For model training and testing, the dataset is 

split into an 80% training set and a 20% test set. To ensure the reliability and generalization capability of the results, all 

reported metrics, including those with standard deviations (±SD), represent the average performance across 10 

independent, randomized trials. Furthermore, the model's robustness is validated using 5-fold cross-validation on the 

training data. This rigorous statistical approach ensures that the performance metrics reflect the true capacity of the IS-

OBP model. 

To verify the comprehensive performance advantages of the IS-OBP model, the following three representative 

comparative models are selected for experiments: Traditional Skyline Algorithm + SVM (SA-SVM), Bi-LSTM, and 

CNN + Triplet Training (CNN-Triplet). The experimental data used are the Lakh MIDI Dataset, which contains over 

100,000 MIDI files covering 7 styles. After preprocessing (filtering redundant events, time synchronization, and feature 

normalization), it is used for testing. The hardware environment is an Intel i7-12700K CPU, NVIDIA RTX 3090 GPU, 

and the software is implemented based on Python 3.8 and TensorFlow 2.8. This study first verifies the extraction 

accuracy advantage of IS-OBP in multi-track scenarios by comparing the performance of MMEs, as shown in Figure 8. 
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Figure 8. Comparison of MME performance among various models 

In Figure 8 (a), the MME accuracy of the IS-OBP model is significantly higher than that of the comparison model at 

different track numbers. In the 2-track scenario, the accuracy of IS-OBP reaches 0.92, and remains at a high level of 0.76 

as the number of tracks increases to 8, with a gentle attenuation trend. The accuracy of the CNN-Triplet model decreases 
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from 0.85 for 2-track to 0.62 for 8-track. SA-SVM performs the worst, with only 0.52 at 8-track, verifying the multi-

track anti-interference advantage of IS-OBP. In Figure 8 (b), the Mean Squared Error (MSE) of IS-OBP extraction in 

various styles of music is significantly lower and more concentrated in distribution. In rock style, the median MSE is 

0.04, while in folk style it is as low as 0.03, with an average interquartile range of ≤0.02. The median of CNN-Triplet is 

generally between 0.06 and 0.08, while SA-SVM is between 0.07 and 0.09, and the error distributions of the two are 

more dispersed. IS-OBP has higher extraction accuracy and better stability. To verify the accuracy and generalization 

ability of IS-OBP in MSCs, this study compares the accuracy evaluation performance of 7 types of MSCs, as shown in 

Figure 9. 
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Figure 9. Comparison of accuracy of 7 types of MSCs in each model 

In Figure 9, IS-OBP demonstrates significant advantages in 7 types of MSC tasks, with accuracy rates of 0.94 and 

0.96 for classical and folk styles, and 0.92 and 0.90 for rock and metal styles, showing overall balanced performance. In 

the comparison model, SA-SVM has the lowest classification accuracy, only maintaining between 0.7 and 0.8. Bi-LSTM 

and CNN-Triplet fall between the two, with only good accuracy in folk music. This validates the ability of BP with 

Adam optimization and ResConnect to capture non-linear melodic features, especially for complex classical and folk 

styles, highlighting the accuracy advantage of the research model in multi-style classification. This study continues to 

verify the convergence speed and training efficiency of IS-OBP, as shown in Figure 10. 
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Figure 10. Comparison of convergence efficiency of various models 

In Figure 10 (a), the training loss of IS-OBP decreases the fastest, and after about 400 iterations, the loss drops below 

0.001 and remains stable. Bi-LSTM requires approximately 600 iterations to achieve the target loss, while CNN-Triplet 

requires around 800 iterations. SA-SVM is the slowest, taking about 1,500 iterations to meet the loss requirement. In 

Figure 10 (b), the convergence iterations of IS-OBP are about 400 times (with an error of ±30), which is much lower 

than Bi-LSTM's 600 times (±50), CNN-Triplet's 800 times (±60), and SA-SVM's 1500 times (±100), verifying its 

significant advantage in training efficiency. To further verify the robustness of IS-OBP under noise interference, this 
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study selects the Lakh MIDI Dataset and adds different intensities of noise (analog signal interference) after 

preprocessing, as shown in Figure 11. 

10 20 30 50

Noise intensity (%)

(a) Variation curve of melody extraction 

accuracy under different noise intensities

E
x

tr
ac

ti
o

n
 a

cc
u

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

1.0

0.7

40

0.8

0.9

10 20 30 50

Noise intensity (%)
(b) Variation curve of music genre classification 

cccuracy under different noise intensities

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

1.0

0.7

40

0.8

0.9

IS-OBP SA-SVM Bi-LSTM CNN-Triplet

 

Figure 11. Performance comparison of various models under noise interference 

In Figure 11 (a), the MME accuracy of IS-OBP is significantly higher than that of the comparison model under 

different noise intensities. When there is 0% noise, its accuracy is as high as 0.92, and it remains at 0.60 as the noise 

intensity increases to 50%. The overall downward trend is gentle. CNN-Triplet decreases from 0.87 to 0.55, while SA-

SVM decreases from 0.80 to 0.30, indicating a significant decline in accuracy. In Figure 11 (b), the classification 

accuracy of IS-OBP is 0.93 under 0% noise and can still reach 0.62 under 50% noise. Compared to other models, the 

accuracy of other models is significantly lower, with SA-SVM performing the worst, with an accuracy of only 0.25 

under 50% noise. This verifies the strong robustness of IS-OBP under noise interference. 

To validate the necessity of the specific optimizations integrated into the BP network, an ablation study is 

conducted to independently assess the contribution of the Adam optimizer and the ResConnect. The final 

classification accuracy and training convergence speed are measured across four network variants: (1) Base BP 

Network (control group); (2) BP + Adam; (3) BP + ResConnect; (4) IS-OBP. The specific results are shown in 

Table 2. 

Table 2. Ablation Study Results on Optimized BP Network Components 

Model Variant 
Training Accuracy  

(%) 

Training Time  

(seconds/epoch) 

Base BP Network 89.1 1.84 

BP + Adam 92.5 1.12 

BP + ResConnect 91.8 1.65 

IS-OBP 95.2 1.05 

In Table 2, BP+Adam variant significantly shortens training time (accelerating convergence), while the 

BP+ResConnect variant achieves a notable improvement in accuracy (from 89.1% to 91.8%), validating the residual 

structure's ability to deepen feature learning. The combined IS-OBP variant achieves the optimal balance between the 

highest accuracy (95.2%) and fastest convergence speed, thereby confirming the synergistic effects of the proposed 

architectural improvements. 

3.2. Simulation Application Effect and Analysis of IS-OBP Model 

To verify the actual performance of the IS-OBP model in batch MMEs of multi-style MIDI files in music editing 

assisted scenarios, especially the comprehensive performance of extraction efficiency and accuracy, this study conducts 

a special test. The experimental data are selected from the Lakh MIDI Dataset, and 60 files from each of seven styles, 

including rock, classical, and pop, are selected as test samples, as shown in Table 3. 
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Table 3. Performance Test Results of Batch Extraction of Main Melody in Music Editing Assisted Scenes 

Music 

Genre 

Time per 

Track(s) 

Extraction Accuracy 

(%) 

Batch Efficiency 

(tracks/min) 

Mislabeling Rate 

(%) 

Format Compatibility 

(score) 

Rock 0.82±0.12 92.3±1.5 73.1 3.2 4.8 

Classical 0.95±0.15 94.6±1.2 63.2 201. 4.9 

Pop 0.78±0.10 90.5±1.8 76.9 4.3 4.7 

Jazz 1.02±0.18 88.7±2.1 58.8 5.6 4.5 

Folk 0.85±0.13 93.1±1.4 70.6 3.5 4.8 

Electronic 0.75±0.09 89.2±1.7 80.0 4.9 4.6 

Metal 0.91±0.16 91.8±1.6 65.9 3.8 4.7 

In Table 3, IS-OBP shows stable performance in seven styles, including rock, classical, and pop. Among them, the 

accuracy of extracting classical style is the highest, reaching 94.6 ± 1.2%, the error labeling rate is only 2.1%, and the 

format compatibility score is 4.9 points. The electronic style batch processing has the best efficiency, at 80.0 

pieces/minute, with a single piece taking only 0.75 ± 0.09 seconds. Jazz style has a slightly lower extraction accuracy 

(88.7 ± 2.1%) and a slightly higher error labeling rate (5.6%) due to its complex structure, but overall it still maintains a 

practical level. The model combines high precision and efficiency in multi-style batch processing, adapting to the needs 

of music editing scenarios. This study continues to validate the practicality and reliability of IS-OBP for automatic style 

annotation of massive MIDI files on digital music platforms. The MuseScore MIDI Library selects 50 unlabeled files 

from 10 common styles, including rock, classical, and pop, as test samples, as shown in Table 4. 

Table 4. Performance Test Results of Music Style Automatic Labeling System 

Music Genre 
Annotation 

Accuracy (%) 

Genre Discriminability 

(F1 value) 

Time per Genre 

(s/genre) 

Multi-genre Annotation 

Accuracy (%) 

Annotation 

Consistency (score) 

Rock 91.5±2.0 0.90±0.03 12.3±1.2 88.7 4.6 

Classical 93.8±1.7 0.92±0.02 14.5±1.5 91.2 4.8 

Pop 90.2±2.2 0.89±0.04 11.8±1.0 87.5 4.5 

Jazz 87.6±2.5 0.86±0.05 15.2±1.8 84.3 4.3 

Folk 92.4±1.9 0.91±0.03 13.1±1.3 89.6 4.7 

Electronic 89.3±2.3 0.88±0.04 11.5±0.9 86.8 4.4 

Metal 90.7±2.1 0.89±0.03 13.8±1.4 88.1 4.5 

Blues 88.5±2.4 0.87±0.05 14.2±1.6 85.7 4.4 

Country 91.1±2.0 0.90±0.03 12.9±1.1 88.4 4.6 

World Music 86.9±2.6 0.85±0.06 16.3±1.9 83.2 4.2 

In Table 4, IS-OBP performs stably in all 10 music styles. The accuracy of classical style annotation is the highest, 

reaching 93.8 ± 1.7%, with a style discrimination (F1 value) of 0.92 ± 0.02 and annotation consistency of 4.8 points. 

The electronic style single-category annotation takes the shortest time, 11.5 ± 0.9 seconds. Due to the complexity of 

world music styles, the annotation accuracy is slightly lower (86.9 ± 2.6%), with an F1 value of 0.85 ± 0.06 and the 

longest time consumption (16.3 ± 1.9 seconds). The accuracy of multi-style mixed annotation in the research model 

exceeds 83%, and the F1 value of style discrimination is mostly above 0.85, which verifies its reliability and adaptability 

in the automatic annotation of massive MIDI styles. This study further validates the practical application of IS-OBP in 

separating the main melody and accompaniment in multi-track mixing-assisted scenes. The Lakh MIDI Dataset is 

selected to screen 50 pieces of 2-track to 8-track polyphonic files each (including multi-track structures such as drums 

and bass), as shown in Table 5. 

Table 5. Multi-track Mixing-assisted Scene Separation Performance Test 

Number of 

Tracks (tracks) 

Separation 

Accuracy (%) 

Accompaniment 

Retention Rate (%) 

Mixing Efficiency 

Improvement (%) 

Sound Quality 

Score (score) 

Average Time 

(s/track) 

2 95.2±1.2 96.8±0.9 42.5 4.8 0.78 

3 93.7±1.5 95.6±1.1 38.7 4.7 0.85 

4 91.5±1.8 94.2±1.3 35.2 4.6 0.92 

5 89.3±2.1 92.5±1.6 32.8 4.5 1.01 

6 87.6±2.3 90.8±1.8 29.4 4.3 1.10 

7 85.4±2.5 89.3±2.0 26.1 4.2 1.23 

8 83.2±2.7 87.5±2.2 22.3 4.0 1.35 
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In Table 5, IS-OBP performs stably in the 2-8 track scene, with the highest separation accuracy (95.2 ± 1.2%) at track 

2, an accompaniment retention rate of 96.8 ± 0.9%, mixing efficiency improvement of 42.5%, and sound quality rating 

of 4.8 points. As the number of tracks increases, the separation accuracy and accompaniment retention rate gradually 

decrease, but they can still reach 83.2 ± 2.7% and 87.5 ± 2.2% at 8 tracks, with a 22.3% improvement in mixing efficiency 

and a sound quality score of 4.0. The average time consumption of the research model increases from 0.78 s to 1.35 s 

with the increase of the audio track, which meets the actual needs. Overall, the model can still maintain high separation 

accuracy and accompaniment integrity in multi-track scenes, which can effectively improve mixing efficiency. This 

study finally verifies the effectiveness of IS-OBP in assisting teaching with melody feature analysis of MIDI exercises 

of different difficulty levels in music education scenarios. The experimental data are selected from MIDI Practice Files 

and MAESTRO Dataset v3.0.0, as shown in Table 6. 

Table 6. Performance Test of Melody Analysis in Music Education Scenarios 

Difficulty Level 
Rhythm Deviation 

Rate (%) 

Pitch Accuracy 

(%) 

Difficulty Matching 

Degree (score) 

Feedback 

Completeness (%) 

Misjudgment Rate 

(%) 

Elementary (Single Track) 2.1±0.5 98.7±0.3 4.9 97.2 0.8 

Intermediate (2-3 Tracks) 3.5±0.7 96.5±0.6 4.7 94.5 1.5 

Upper-Intermediate (4 Tracks) 4.8±1.0 94.2±0.8 4.5 91.3 2.3 

Advanced (5-6 Tracks) 6.2±1.2 91.5±1.0 4.3 88.1 3.1 

Professional (7 Tracks) 7.5±1.5 89.3±1.2 4.0 85.7 4.0 

Master (8 Tracks) 8.9±1.8 86.5±1.5 3.8 82.3 5.2 

In Table 6, the performance of IS-OBP shows a regular variation with increasing difficulty. At the beginner level 

(single track), the lowest rhythm deviation rate is only 2.1 ± 0.5%, and the highest pitch accuracy can reach 98.7 ± 0.3%, 

which highly meets the high-precision needs of beginners for basic training. As the difficulty increases to the master 

level (track 8), although the rhythm deviation rate increases to 8.9 ± 1.8% and the pitch accuracy drops to 86.5 ± 1.5%, 

it can still maintain a feedback completeness of 82.3%, providing an effective reference for advanced learners. Overall, 

the research model maintains effective analytical ability in all difficulty levels and is suitable for the needs of music 

teaching scenarios. 

4. Discussion 

The advantages demonstrated by the constructed IS-OBP model in the MME and MSC tasks of MIDI stem from key 

2D advancements in traditional processing methods, effectively addressing the core technical challenges of feature 

confusion in polyphony and the difficulty of capturing subtle non-linear melodic style differences. The robust MME 

performance, particularly its resistance to increased track complexity, is a direct result of the Improved Skyline. The 

traditional Skyline is constrained by the "highest pitch priority" decision logic, making it highly susceptible to 

interference from loud accompaniment notes in multi-track structures. The IS-OBP approach transcends this limitation 

by integrating pitch saliency and temporal continuity screening to dynamically select melodically significant candidate 

notes, moving away from a single, static pitch criterion. Crucially, the final Multi-Track Fusion via DBSCAN clustering, 

which aggregates segments based on a comprehensive time-pitch similarity metric, is key to successfully solving the 

problem of multi-track interweaving in polyphonic music. This structural improvement ensures the integrity and stability 

of the main melody sequence, allowing the model to maintain an MME accuracy of 0.76 even under 8-track complexity, 

far exceeding the severe performance degradation of comparative models such as SA-SVM (0.52 at 8-track). Prior work 

on multi-track feature handling, such as Liu's [24] survey on multi-track music generation models, provided a 

methodological reference for the effectiveness of robust feature processing and style restoration in complex MIDI 

environments, supporting the value of this enhanced anti-interference approach [24]. 

In contrast, for MSC, the optimized BP network provides a significant leap in both accuracy and training efficiency 

compared to existing models. Traditional methods like SVM and KNN have insufficient generalization capability for 

accurately capturing the subtle, non-linear feature differences between musical styles, and advanced networks like Bi-

LSTM often struggle with slow convergence. The performance gain in IS-OBP is specifically attributed to two structural 

and algorithmic innovations: first, the implementation of the Adam gradient optimization mechanism effectively 

alleviates the problem of gradient vanishing and significantly improves the learning efficiency of the model for nonlinear 

MIDI melody features. In 400 iterations, this mechanism achieves stable loss, much faster than compared deep learning 

models. This confirms findings by Li et al. [28] who demonstrated the effectiveness of optimized BP in improving model 

accuracy, providing methodological insights for classification studies [28]. Second, the introduction of ResConnect 

enhances feature flow between hidden layers, preserving the integrity of the 7-dimensional main melody features and 

mitigating feature loss typically associated with deep networks. This structural optimization provides key support for 

highly balanced classification accuracy of complex styles such as classical (0.94) and folk (0.96). In addition, the model 



HighTech and Innovation Journal         Vol. 6, No. 4, December, 2025 

1182 

 

has strong robustness in noise interference testing. At 50% noise intensity, the accuracy of MME remains at 0.60, and 

the classification accuracy remains at 0.62. Compared with the sharp decline of SA-SVM (MME 0.30, MSC 0.25), it 

demonstrates superior practical reliability, thus verifying its suitability for real-world digital music processing 

environments. 

Despite these technological breakthroughs and demonstrated practical value in multi-scenario applications, this study 

still presents limitations. The decrease in accuracy for complex multi-track processing above 8-tracks (with separation 

accuracy dropping to 83.2% at 8 tracks) suggests an insufficient adaptability of the neighborhood radius (ϵ) in the multi-

track DBSCAN clustering strategy to high-density tracks. The generalization degree of MSCs is relatively low. For 

example, the accuracy of world music annotation is 86.9%, reflecting the problem of insufficient coverage of these niche 

style samples in the training dataset. Future research will directly address these shortcomings by combining "dynamic 

clustering strategies" to optimize the DBSCAN neighborhood radius adaptively and implementing "niche style data 

augmentation" techniques to further expand the applicability. Specifically, the adaptive optimization of the DBSCAN 

neighborhood radius will be explored through local density estimation techniques. Unlike the fixed ϵ for all tracks, ϵ can 

be dynamically set based on the temporal pitch characteristics of local segments, allowing clustering mechanisms to 

better adapt to the inherent fast note density changes in complex polyphony (such as highly dense accompaniment and 

sparse main melody). Furthermore, improving the generalization ability for niche music styles (like World Music) 

requires expanding the feature space representation. This will involve implementing data augmentation strategies such 

as Mixup or Generative Adversarial Networks (GANs) to synthesize high-quality, diverse, and underrepresented style 

samples, thereby alleviating the problem of insufficient sample coverage in the training dataset. In summary, the IS-OBP 

model has broken through the bottleneck of traditional methods through technological innovation and provided a new 

paradigm for the intelligent processing of digital music. This practical value validates the effectiveness of the 

"technology optimization scenario adaptation" path in promoting the upgrading of the digital music industry. 

5. Conclusion 

In the context of the intelligent development of digital music technology, the insufficient MME accuracy and poor 

MSC effect of multi-track MIDI files have become prominent challenges. Therefore, this study constructed an IS-OBP 

model based on improved Skyline and optimized BP network, aiming to improve the performance of melody processing 

and classification in multi-track scenes. The research method constructed a standardized feature matrix through MIDI 

data preprocessing, used an improved Skyline fusion of pitch saliency calculation and temporal continuity screening to 

extract the main melody, and combined Adam gradient optimization and ResConnect BP to achieve style classification. 

In performance validation, the advantages of IS-OBP were significant. In multi-track extraction, the accuracy of 2 tracks 

reached 0.92, while the accuracy of 8 tracks remained at 0.76, significantly higher than the comparison model. Among 

the 7 categories of style classification, the accuracy of classical and folk music was as high as 0.94 and 0.96, and could 

converge after about 400 iterations. In the music-editing scene, the accuracy of classical extraction was 94.6 ± 1.2%, and 

the efficiency of electronic style batch processing was 80 pieces/minute. In automatic annotation, the accuracy of the 

classical style was 93.8 ± 1.7%. In multi-track mixing, the accuracy of 2-track separation was as high as 95.2 ± 1.2%. 

The rhythm deviation of its primary difficulty in educational settings was only 2.1 ± 0.5%. In summary, this study 

validates the advantages of IS-OBP in multi-track anti-interference, classification accuracy, efficiency, and robustness, 

and adapts it to various practical scenarios. However, there are still shortcomings in the research model, such as a 

significant decrease in accuracy in complex multi-track processing above 8 tracks, and insufficient generalization to 

niche MSCs. The follow-up work will optimize the multi-track clustering strategy, expand the niche style dataset, and 

further enhance the adaptability of the model. Specifically, this includes utilizing local density estimation for adaptive 

DBSCAN radius tuning and employing synthetic data augmentation (e.g., Mixup or GANs) to improve the model's 

representation learning for complex and niche musical styles. 
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