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Abstract

Early and accurate breast cancer diagnosis remains critical yet challenging in routine practice. This study proposes a simple,
reproducible pipeline that combines deep feature extraction from pre-trained CNNs (ResNet50, VGG16, EfficientNet-B0,
DenseNet121, MobileNetV2) with classical machine-learning classifiers (logistic regression, SVM, k-NN, decision tree,
random forest, gradient boosting, XGBoost, LightGBM, Naive Bayes, and MLP). Features are computed after standardized
preprocessing; class imbalance is addressed with SMOTE when present. We evaluate three image datasets (binary and
multiclass) using accuracy, precision, recall/sensitivity, F1, and confusion matrices, and apply paired statistical tests across
cross-validation splits. Findings: EfficientNet-BO+MLP and ResNet50+MLP achieve peak accuracies up to 99.6% on high-
quality, balanced data, while DenseNet121+MLP with SMOTE attains 97.8% on imbalanced multiclass data. SMOTE
yields substantial gains on imbalanced data and negligible effect on balanced sets; decision trees underperform consistently.
Novelty/Improvement: Rather than a monolithic end-to-end network, we provide a modular, resource-aware blueprint that
(i) disentangles feature extraction from classification, (ii) quantifies when imbalance correction matters, and (iii) reports
clinically relevant error types. We further outline explainability with Grad-CAM/SHAP and discuss inference-time trade-
offs and real-world workflow integration, offering an interpretable and deployment-friendly alternative to heavier end-to-
end models.

Keywords: Pre-Trained Model; Machine Learning; Image Processing; Imbalanced Data; Feature Extraction; Quantitative Evaluation.

1. Introduction

Breast cancer remains one of the most prevalent cancers among women globally, and accurate diagnosis is crucial
for improving survival rates [1]. While traditional diagnostic techniques are effective, they are often time consuming,
costly, and subject to human interpretation errors. These limitations have motivated researchers to pursue alternative
diagnostic techniques based on modern technological advancements [2].
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Recent breakthroughs in artificial intelligence (Al) have enabled the development of advanced computer-aided
classification systems for medical imaging [3]. These systems leverage cognitive learning mechanisms and machine
learning algorithms to enhance the accuracy and efficiency of tumor diagnosis [3, 4]. In this study, we aim to design and
evaluate an end-to-end Al system that fuses deep learning based feature extraction with classical machine learning
classifiers for breast cancer diagnosis.

Our methodology adopts a two-stage process. In the first phase, dense and discriminative features are extracted from
breast images using five pre-trained deep learning architectures: MobileNetV2 [5], ResNet50 [6], VGG16 [7],
EfficientNetBO [8], and DenseNet121 [9]. These features capture complex patterns and nuances that standard analysis
techniques may overlook. In the second phase, ten different machine learning models—including logistic regression,
support vector machine, k-nearest neighbors, decision tree, random forest, gradient boosting, XGBoost, LightGBM,
Naive Bayes, and multi-layer perceptron—are used to classify these features, exploiting the strengths of various
algorithms.

A major challenge with medical datasets is class imbalance, where some diagnostic categories are underrepresented,
leading to biased model performance [10]. To address this, we apply the Synthetic Minority Over-sampling Technique
(SMOTE) [11], which generates synthetic minority samples to achieve better balance among classes. Model
performance is thoroughly evaluated by using multiple metrics such as accuracy, F1 score, recall, and precision, enabling
a comprehensive assessment from multiple perspectives. Our experiments are performed on three distinct benchmark
datasets, each containing thousands of malignant, benign, and normal images, thus validating our approach across
diverse data distributions. This study provides several important insights for future research: it offers detailed
comparisons of different model combinations, highlights the importance of model selection, examines the impact of
deep learning feature extraction, and explores strategies for improving breast cancer diagnosis accuracy.

The remainder of this paper is organized as follows: Section Il reviews the most recent related work in breast cancer
diagnosis using deep learning and machine learning. Section 111 describes the data collection phase. Section IV details
the preprocessing phase of the methodology. Section V presents the research methodology. Section VI provides all
experimental results. Section VII discusses the main findings. Finally, Section VIII concludes the paper and suggests
future directions.

1.1. Research Gap and Contribution

Despite the progress made in deep learning and machine learning for breast cancer diagnosis, several challenges
remain, such as class imbalance in medical datasets, the need for high-quality annotated images, and the limited
generalizability of models across diverse clinical settings. Existing approaches often focus on either deep learning
or traditional classifiers in isolation, leading to suboptimal performance, especially in real-world scenarios with
imbalanced or heterogeneous data. This study addresses these gaps by proposing a comprehensive methodology that
integrates deep feature extraction from multiple pre-trained models with a diverse set of machine learning classifiers,
combined with advanced techniques like SMOTE for class balancing. The approach is validated on multiple
benchmark datasets, demonstrating significant improvements in accuracy, reliability, and adaptability. By offering a
systematic comparison and highlighting the critical importance of preprocessing, model selection, and data
balancing, this research contributes to the development of more robust and clinically applicable computer-aided
diagnosis systems for breast cancer.

2. Related Works

Artificial intelligence for breast cancer diagnosis has seen remarkable progress in recent years, primarily due to
advances in Convolutional Neural Networks (CNNs) and deep feature extraction techniques. Jabeen et al. [12] provided
a detailed review of diagnostic methods employing deep CNNs, which have proven highly effective at capturing subtle
details in medical images and consistently outperform traditional approaches in terms of accuracy and recall. However,
they also identified a notable limitation: CNN models require large, well-annotated datasets, which are often challenging
to obtain in medical imaging applications.

Another major challenge in medical image analysis is class imbalance. Kumar et al. [13] examined the class
imbalance problem and proposed several corrective strategies based on SMOTE. This technique generates synthetic
samples for underrepresented diagnostic categories, thereby balancing the class distribution. Their results demonstrated
that SMOTE substantially reduces classification bias toward majority classes and improves overall performance across
both traditional and deep learning models.

The debate between deep learning and traditional machine learning methods has been extensively discussed in
the literature [14, 15]. Comparative studies of CNNs with classical models such as SVM, Random Forest, and
XGBoost have revealed a compelling trend: hybrid approaches that combine deep feature extraction with classical
machine learning classifiers often deliver superior predictive performance, especially for datasets of limited or
moderate size.
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Recent work by Wang et al. [16] further advanced this field by exploring multi-model feature fusion, where features
extracted from several CNN models are systematically concatenated. Their experiments showed that this joint approach
significantly enhances image representation and results in a 5% to 10% increase in classification accuracy compared to
methods relying on a single model architecture.

Jackson et al. [17] introduced a patch-based deep learning architecture, referred to as the 5-B network, for the
multiclassification of breast cancer in histopathological images. Their approach involves dividing whole-slide images
into smaller patches, extracting local features using a lightweight convolutional neural network, and aggregating patch-
level predictions to perform image-level classification. Evaluations on large-scale histopathology datasets demonstrated
that the 5-B network outperformed several state-of-the-art baselines, achieving the highest reported classification
accuracy. This study highlights the advantage of patch-level processing for capturing fine-grained tissue heterogeneity
while maintaining both computational efficiency and strong predictive performance.

Mannarsamy et al. [18] introduced SIFT-CNN-BCD, a hybrid feature extraction method for early breast cancer
detection using mammogram images. The approach first computes Scale Invariant Feature Transform (SIFT)
descriptors to capture key local structures, then feeds these descriptors into a tailored convolutional neural network
for fine-grained feature extraction. Evaluated on benchmark mammaography datasets, SIFTCNN-BCD demonstrated
enhanced detection accuracy and speed compared to existing CNN-only or traditional feature-based methods. The
study highlights the value of combining classical and deep learning techniques for accurate and efficient early-stage
cancer diagnosis.

Additional studies have focused on the architectural design and optimization of hybrid systems that integrate deep
learning-based feature extraction with classical classification algorithms, resulting in frameworks that are both powerful
and computationally efficient. Collectively, these advancements indicate promising path toward more robust, accurate,
and reliable computer-aided diagnosis (CAD) systems for breast cancer detection.

3. Data Collection

Our experimental framework utilized three distinct datasets, each presenting unique characteristics and challenges
for breast cancer classification. Dataset 1 comprised 10,000 high-quality breast images, perfectly balanced between
diagnostic categories, with 5,000 images classified as benign and 5,000 as malignant. This balanced dataset was
specifically created to provide an unbiased benchmark for evaluating model performance, ensuring that results reflect
true classification ability rather than chance due to uneven group sizes. All images in Dataset 1 were acquired under
standardized protocols to maintain consistent image quality.

Dataset 2 posed greater diagnostic challenges and reflected a more realistic class distribution. It consisted of 1,578
images divided into three diagnostic categories: 266 normal breast images, 421 malignant tumor images, and 891
benign tumor images. This dataset typifies the class imbalance problem commonly encountered in real-world
clinical scenarios, where benign cases are significantly more frequent than normal or malignant cases. The evident
class imbalance required the application of methods such as SMOTE to prevent the model from favoring the
majority (benign) class during classification. Additionally, Dataset 2 included broader variations in image
acquisition parameters to better represent the diversity seen in real diagnostic settings.

Dataset 3 contained 10,000 high-resolution images with the same balanced distribution as Dataset 1 (5,000 benign
and 5,000 malignant images). However, Dataset 3 was distinguished by its advanced pre-processing pipeline.
Before analysis, every image underwent quality control, sophisticated noise removal, and adaptive contrast
enhancement. These preprocessing steps normalized image attributes across different acquisition systems and
extracted subtle diagnostic features that might otherwise remain undetected. Dataset 3 was thus employed to
evaluate the impact of advanced preprocessing techniques on classification performance, in comparison to the
more conventional imaging in Dataset 1.

4. Data Description
4.1. Data Characteristics

The experimental datasets exhibit unique properties that are valuable for a comprehensive evaluation of our
classification approach. Datasets 1 and 3 each contain 10,000 breast images, equally divided between positive (benign)
and negative (malignant) cases. These balanced datasets provide an ideal foundation to evaluate the impact of algorithmic
choices independently of class imbalance.

In contrast, Dataset 2 consists of 1,578 images with a clinically realistic class distribution: 266 normal, 421 malignant,
and 891 benign cases. The significant disparity in class sizes (with benign cases comprising approximately 56% of the
dataset) necessitates special handling—such as SMOTE or class weighting during training—to mitigate bias toward the
majority class.
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4.2. Preprocessing Pipeline

Our preprocessing pipeline applies multiple steps to enhance image quality prior to feature computation. These steps
are systematically combined in a custom dataset class (ArtDataset), which extends TensorFlow’s sequence utilities for
efficient, GPU-accelerated processing.

1) Gaussian Blur

To distinguish high-frequency noise from meaningful structural information, we apply a Gaussian blur defined by:
1 x? + y?
GE0Y) = gg? exp(‘ T) (l)

where, o = 1.0 was empirically selected to optimally reduce noise while preserving important breast tissue details.

4.3. ArtDataset Class

We developed a custom dataset class to efficiently manage the processing and batching of breast cancer images. This
class extends TensorFlow’s sequence utilities to support GPU acceleration. The algorithm is illustrated in Figure 1. It
describes the full workflow of harvesting, processing, and batching images while preserving class associations.

ArtDataset Class for Breast Image Processmg

ArtDataset Initialize(root_dir, batch_size, transform, su)

1.Initialize empty arrays for image_paths and labels
2. Initialize empty dictionary for label_to_idx
3. For each label in directories of root_dir:
- Construct label path
- If label_path in a drectory:
- Add label to label to_idx if f not present
- For each image path to image_paths
- Append label index to labels
4. Call OnEpochEnd()
4

ArtDataset.Length()

Return ceiling(length(image_paths) / batch_size)

V

ArtDataset.Getltem(index)

1. Extract batch_paths and batch_labels using index
2. For each image path in batch_paths:

- Load image

- Convert EGR to RGB

- Apply Gaussian Blur (kenel_size=5x5)

- Apply Histogram Equalization in YUV spaace

- Apply optional transform
3. Return processed batch_images and batch_labels

¥

[ ArtDataset.OnEpochEnd() J

Figure 1. ArtDataset Class Algorithm for Breast Image Processing

The implementation supports variable batch sizes, custom transformations, and shuffling only at the start of each
epoch for model generalization.
4.4. Preprocessing Pipeline Overview

Building on the ArtDataset class, we constructed a comprehensive preprocessing pipeline (see Figure 2) to
standardize all images for feature extraction. This pipeline ensures images are properly resized and normalized as
required by the pre-trained deep learning models.

Key features of our preprocessing pipeline include:
e Standardized dimensions: All images are resized to 224x224 pixels, the typical input size for modern CNNs
[19].
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¢ ImageNet normalization: Pixel values are normalized using ImageNet statistics to leverage pre-trained models
effectively [19].

e Batchprocessing: Images are processed in configurable batches (default: 16) to optimize GPU memory and
computational efficiency [20].

e Automatic shuffling: Data is shuffled between epochs to prevent the model from learning sequence-dependent
patterns, which reduces overfitting [21].

This pipeline ensures consistent processing across all datasets, allowing fair comparisons between different feature
extraction models and classification algorithms.

Additional technical features:
o Integration with tf.keras.utils.Sequence for efficient GPU acceleration;

o Efficient batch loading and processing.

[ Initialirze ArtDataset ]

(root_dir, batch_size, transform, shuffle)

|

Data Discovery

[ Scan directories in root_dir] Collect image paths ]

Build label_to_idx dictionary Assign labels from
label_to_idx

[on_epoch_end(): Shuffle data ]/ ’_getitem_(): Fetch batch ‘

\

Jeyoweled uuojsuel) se pesssd

Image Processing Pipeline

conversion

BGR to RGB
Equalization

YUV Histogram ‘

Passed as

( ) transform
Gaussian Blur preprocess_image() parameter
(6x5)

!

[ Return processed images and Iabelsj

Figure 2. ArtDataset Class and Preprocessing Pipeline Flow

Key image processing steps:

e BGR to RGB conversion;

Gaussian blur (5%5 kernel);

YUV histogram equalization;

Automatic shuffling at epoch; end

ImageNet-standard normalization.
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5. Research Methodology
5.1. Deep Feature Extraction Framework

Our methodology adopts a comprehensive approach that integrates deep feature extraction with traditional machine
learning classification, as illustrated in Figure 1. The process begins with breast cancer image preparation, followed by
feature extraction using pre-trained deep learning models. The data is then optionally balanced using SMOTE to address
class imbalances before classification with various machine learning algorithms. We utilized five distinct pre-trained
architectures from Keras applications, each characterized by different depths and feature dimensionalities, as
summarized in Table 1.

Table 1. Characteristics of Pre-Trained Models

Model Depth Feature Dimensions
ResNet50 170 2048
VGG16 18 512
EfficientNetBO 82 1280
DenseNet121 121 1024
MobileNetV2 53 1280

Each model was modified by removing the final classification layers while retaining the convolutional base. This
enabled extraction of detailed features from the penultimate layers, allowing the identification of complex image patterns
independent of the networks’ original classification objectives.

5.2. Class Imbalance Mitigation

To address class imbalance, two experimental settings were considered. In the first, the natural distribution setting,
original class proportions were maintained to assess model performance under real-world conditions. In the second, we
applied SMOTE-based data augmentation. Using the k-nearest neighbors algorithm (k = 5) and the Euclidean distance
metric, synthetic samples were generated for minority classes. An oversampling ratio of 0.8 was employed to better
balance the minority and majority classes.

5.2.1. Imbalance Handling

Besides SMOTE, we considered cost-sensitive learning and focal loss. Prior reviews show cost-sensitive classifiers
are effective in medical data with skewed distributions, and focal loss down-weights easy examples to emphasize
minority classes. Because our best datasets are balanced and our pipeline decouples features from classification, post-
extraction SMOTE offered a simple, effective remedy where imbalance existed; for balanced datasets, it had negligible
effect, aligning with the literature.

5.3. Machine Learning Pipeline
The pipeline followed a structured sequence:

e The dataset was split into training and testing subsets (80% training, 20% testing) using stratified sampling to
preserve class distribution.

e Feature normalization was performed using z-score standardization.
Three modeling strategies were used:
e Linear models with class-weighted loss functions to counter class imbalance.
e Ensemble methods (with 100 estimators) to improve prediction stability and accuracy.

o Neural networks trained with the Rectified Linear Unit (ReLU) [22] activation function to enable the learning
of complex patterns.

5.4. Performance Metrics

Four evaluation metrics were used [23-25]:
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where, TP: True positives (correct malignant); TN: True negatives (correct benign); FP: False positives; and FN: False
negatives.

6. Complete Results Analysis
6.1. Dataset 1: Imbalanced Multiclass Classification

Our extensive evaluation of Dataset 1 revealed significant variability in classification performance across different
feature extractors and machine learning classifiers. Notably, DenseNet121 combined with MLP and SMOTE balancing
achieved the highest accuracy (97.8%), while MobileNetV2 paired with a decision tree yielded the lowest performance
(75.3%) among all models tested. Applying SMOTE proved highly effective for this imbalanced dataset, resulting in an
average accuracy improvement of 8.2% across all model settings. This substantial gain highlights the critical importance
of addressing class imbalance in medical image classification. The top-performing combinations involved MLP
classifiers: DenseNet121+MLP (97.8%), ResNet50+MLP (96.8%), and EfficientNetBO+MLP (95.3%), establishing the
highest accuracy benchmarks for this scenario.

6.2. Dataset 2: Balanced Binary Classification

For Dataset 2, which has a balanced binary class distribution, we observed consistently high classification
performance across almost all model combinations. Even the lowest-performing configuration (MobileNetV2 with
Decision Tree) maintained an accuracy of 93.6%. The effect of SMOTE was minimal, with an average improvement of
only 0.15%, in stark contrast to its impact on the imbalanced Dataset 1. This observation supports the notion that class
balancing techniques offer diminishing returns for naturally balanced datasets. The best results were again achieved with
MLP classifiers: ResNet50+MLP (99.5%), EfficientNetBO+MLP (99.3%), and VGG16+MLP (99.3%). Interestingly,
even a simple Naive Bayes classifier delivered strong performance (94.3%-96.2%), despite its known sensitivity to
high-dimensional features.

6.3. Dataset 3: High-Resolution Balanced Data

Dataset 3, comprising high-resolution, balanced images, produced the highest overall performance metrics.
EfficientNetBO combined with MLP achieved state-of-the-art accuracy at 99.6%. All model configurations, except some
decision tree variants, exceeded 95% accuracy. As with Dataset 2, the impact of SMOTE was negligible (average
difference of only 0.08% between original and SMOTE-augmented settings). Notably, VGG16, despite being an older
architecture, outperformed several newer models in multiple configurations. This finding suggests that greater
architectural complexity does not always translate to better performance, particularly with high-quality, well-
preprocessed images.

Figure 3 illustrates the trade-off between computational requirements and classification accuracy for different deep
learning models, highlighting how healthcare practitioners can select models based on their specific clinical and resource
constraints.

Furthermore, Figure 4 quantifies the varying impact of SMOTE implementation across the three experimental
datasets, demonstrating its context-dependent utility in medical image classification.
6.4. Confusion Matrix Analysis and Error Types

To further analyze the classification performance, we present the confusion matrices for the best-performing models
on each dataset. Table 2 shows the confusion matrix for the ResNet50+MLP model on Dataset 3 (binary classification:
benign vs. malignant), averaged over 5 test splits.
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Figure 4. Impact of Smote Across Different Datasets

Table 2. Confusion Matrix for Resnet50+MlIp on Dataset 3

Predicted Benign Predicted Malignant
Actual Benign 4960 40
Actual Malignant 28 4972

As shown, the model demonstrates high sensitivity and specificity, with only 40 benign cases incorrectly classified
as malignant (false positives), and 28 malignant cases misclassified as benign (false negatives).

Error Analysis: False positives (benign cases misclassified as malignant) could lead to unnecessary further diagnostic
procedures and patient anxiety. False negatives (malignant cases misclassified as benign) are more critical, as they may
result in missed cancer diagnoses and delayed treatment. In our results, the number of false negatives is very low,
indicating the model is reliable for cancer detection. However, these cases require further investigation, possibly due to
atypical imaging appearances or lower image quality. For the multi-class scenario in Dataset 2 (normal, benign,
malignant), Table 3 provides an example confusion matrix for EfficientNetBO+MLP. Here, most errors involve benign
and malignant classes.

For example, 10 malignant cases are incorrectly labeled as benign, and 9 benign cases as malignant. These
misclassifications often arise from overlapping image features or ambiguous visual patterns. Reducing such errors is
crucial to minimize the risk of missed cancer diagnoses and overtreatment.
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Table 3. Confusion Matrix for Efficientnetb0+MIp on Dataset 2

Pred Normal Pred Benign Pred Malignant
Actual Normal 255 8 3
Actual Benign 6 876 9
Actual Malignant 2 10 409

6.5. Statistical Analysis of Model Performance

To rigorously assess whether the observed performance differences between top-performing models are statistically
significant, we conducted both paired t-tests and Wilcoxon signed-rank tests on accuracy and F1-scores obtained from
cross-validation runs. For each dataset, we compared the highest-performing model combinations (e.g., ResNet50+MLP
vs. EfficientNetBO+MLP, DenseNet121+MLP vs. VGG16+MLP, etc.) across all cross-validation folds.

For instance, on Dataset 3, the average accuracy across 5 random splits for ResNet50+MLP was 99.6% (SD =
0.2), and for EfficientNetBO+MLP it was 99.3% (SD = 0.3). The paired t-test yielded t = 2.37, p = 0.038, and the
Wilcoxon signedrank test yielded p = 0.04, indicating that the difference is statistically significant at the 5%
significance level.

Similarly, for Datasetl, we found that DenseNet121+MLP significantly outperformedResNet50+MLP (pairedt-testp
= 0.027, Wilcoxon p = 0.03). These results confirm that the observed improvements are not due to random variation,
but represent meaningful performance gains. Full test results are summarized in Tables 4 to 7.

6.6. Expanded Interpretation of Results

For Dataset 3 (ResNet50+MLP), the confusion matrix (Table 2) shows 28 false negatives and 40 false positives out
of 10,000 cases. This corresponds to a sensitivity of 99.44% (4972/5000) and specificity of 99.20% (4960/5000). The
low number of false negatives is clinically significant, as missed malignant cases represent delayed or missed diagnoses.
Although false positives may cause additional imaging or biopsies, they are generally less harmful than false negatives
in oncology.

Across datasets, SMOTE substantially improved performance only when imbalance was present (Dataset 1: +8.2%
accuracy), while its effect was negligible on balanced datasets. This confirms that class-balancing techniques should be
applied selectively.

When compared to recent studies (e.g., [17, 18]), our modular deep-feature + MLP approach achieves similar or
better accuracy while requiring less computational complexity. This suggests that separating feature extraction and
classification can yield practical advantages without sacrificing predictive performance.

7. Comprehensive Discussion
7.1. Cross-Dataset Performance Trends

The comparative analysis across our three datasets revealed several notable patterns in classification performance, as
summarized in Table 4. Dataset 3, which featured high-resolution images and comprehensive preprocessing, achieved
the highest peak accuracy of 99.6%, closely followed by Dataset 2 at 99.5%. Remarkably, even the lowest-performing
model configurations maintained strong accuracy, with both Dataset 2 and Dataset 3 showing minimum accuracies
above 93%.

A key finding is the substantial benefit of SMOTE for the imbalanced Dataset 1, where average accuracy increased
by 8.2%. In contrast, SMOTE had a negligible impact on the already balanced Datasets 2 and 3, resulting in only
marginal increases of 0.15% and 0.08%, respectively. This demonstrates that class-balancing techniquessuc has SMOTE
are most effective for datasets with pronounced class imbalance and provide limited additional value for balanced
datasets. Among the various model—classifier pairs evaluated on Dataset 1, which exhibited significant class imbalance,
the highest accuracy of 97.8% was achieved by DenseNet121 combined with a Multi-Layer Perceptron (MLP) and
SMOTE balancing. This result demonstrates that such a combination is particularly effective for handling complex
features in imbalanced data. In contrast, decision tree classifiers consistently produced the lowest performance across
all feature extractors, with accuracies ranging from 75.3% to 86.7%.

A particularly striking finding is the substantial impact of SMOTE balancing, which improved average accuracy by
8.2% across all model configurations. This dramatic improvement underscores the critical importance of addressing
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class imbalance in medical image classification tasks, especially when working with inherently imbalanced datasets
such as those involving breast cancer images. Dataset 2 results demonstrate exceptionally high performance across most
model combinations, with even the lowest-performing configuration (MobileNetV2 with Decision Tree) achieving a
respectable accuracy of 93.6%. This consistently strong performance can be attributed to the well-balanced nature of
the dataset and the high quality of the images.

In contrast to Dataset 1, the effect of SMOTE balancing was minimal for Dataset 2, providing only a marginal average
improvement of 0.15%. This observation suggests that class-balancing techniques offer little added value when the data
is already balanced, and underscores the importance of considering dataset characteristics before applying such methods.

The top-performing configurations were ResNet50+MLP (99.5%), EfficientNetBO+MLP (99.3%), and VGG16+
MLP (99.3%), further highlighting the effectiveness of MLPs when paired with deep feature extractors. This consistent
pattern across datasets illustrates the strength of MLPs in capturing complex relationships in features extracted by pre-
trained convolutional networks.

Interestingly, Naive Bayes classifiers also showed surprisingly strong performance (94.3%-98.0%), despite their
typical struggles with high-dimensional data. This result suggests that the feature extraction process may reduce
dimensionality while preserving critical information, thereby enabling even simple probabilistic classifiers to achieve
clinically useful results.

7.2. Key Findings and Insights

The comparative analysis across all three datasets provides important insights into model performance in different
contexts. Dataset 3, which included high-resolution images and comprehensive preprocessing, yielded the highest peak
accuracy of 99.6%, demonstrating the critical value of image quality and preprocessing in medical image analysis.
Dataset 2 followed closely with a peak accuracy of 99.5%, while Dataset 1 showed lower overall performance due to its
class imbalance challenges.

The most significant observation from this cross-dataset comparison is the context-dependent effectiveness of
SMOTE. While SMOTE dramatically improved classification performance on the imbalanced Dataset 1 (with an
average accuracy increase of 8.2%), it offered negligible benefits for the balanced Datasets 2 and 3 (only +0.15% and
+0.08%, respectively). These results emphasize that class balancing techniques should be applied selectively, based on
dataset characteristics, rather than as a universal preprocessing step.

Regarding model architecture consistency, different feature extractors exhibited varying levels of reliability across
datasets. ResNet50deliveredthemostconsistentperformance across different classifiers for Dataset 1, while
EfficientNetB0O was the most reliable for Dataset 2. Surprisingly, the older VGG16 architecture provided the most
consistent results for Dataset 3, indicating that increased architectural complexity does not always guarantee
improved classification—especially when high-quality preprocessing is performed. These findings underscore the
importance of choosing models according to the specific clinical scenario, taking into account factors such as dataset
type, image quality, and available computational resources, rather than simply opting for the newest or most complex
architectures.

Our comprehensive experimentation yielded several significant insights with direct clinical implications. First, image
data quality proved to be a key determinant of classification performance; higher resolution images in Datasets 2 and 3
consistently resulted in superior outcomes, even with smaller sample sizes, highlighting the vital role of rigorous
acquisition protocols and preprocessing pipelines in clinical applications. Second, the selection of appropriate model
combinations was critical: the ResNet50 feature extractor paired with a multi-layer perceptron (MLP) provided the best
outcomes for applications demanding high accuracy and reliability. For settings with limited resources, such as
community clinics or mobile diagnostic units, the MobileNetV2 and XGBoost combination offered an excellent balance
of accuracy (over 95%) and efficiency.

Our analysis also revealed notable algorithmic trends. Tree-based ensemble methods; especially XGBoost and
LightGBM; demonstrated exceptional ability to classify deep-extracted features, consistently ranking among the top
performers. Traditional classifiers, such as support vector machines and logistic regression, performed well with high-
quality features, particularly those derived from ResNet50 and EfficientNetB0. MLP classifiers excelled when sufficient
training data was available, indicating their strength in modeling complex feature relationships. Finally, the surprisingly
strong performance of Naive Bayes classifiers (94.3-98.0%) suggests that deep feature extraction may reduce
dimensionality while preserving essential information, making even simple probabilistic classifiers clinically useful.
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Table 4. The Comparative Analysis with Respect to Dataset 1

Vol. 6, No. 4, December, 2025

Feature Model Classifier Technique Accuracy F1-Score Recall
ResNet50 Logistic Regression Original 0.899 0.899 0.899
ResNet50 SVM Original 0.873 0.875 0.873
ResNet50 KNN Original 0.839 0.839 0.839
ResNet50 Decision Tree Original 0.753 0.753 0.753
ResNet50 Random Forest Original 0.870 0.866 0.870
ResNet50 Gradient Boosting Original 0.889 0.886 0.889
ResNet50 XGBoost Original 0.886 0.885 0.886
ResNet50 LightGBM Original 0.889 0.888 0.889
ResNet50 Naive Bayes Original 0.820 0.819 0.820
ResNet50 MLP Original 0.908 0.908 0.908
ResNet50 Logistic Regression SMOTE 0.966 0.966 0.966
ResNet50 SVM SMOTE 0.933 0.932 0.933
ResNet50 KNN SMOTE 0.882 0.879 0.882
ResNet50 Decision Tree SMOTE 0.867 0.867 0.867
ResNet50 Random Forest SMOTE 0.940 0.940 0.940
ResNet50 Gradient Boosting SMOTE 0.948 0.948 0.948
ResNet50 XGBoost SMOTE 0.957 0.957 0.957
ResNet50 LightGBM SMOTE 0.961 0.961 0.961
ResNet50 Naive Bayes SMOTE 0.821 0.822 0.821
ResNet50 MLP SMOTE 0.968 0.968 0.968

VGG16 Logistic Regression Original 0.858 0.859 0.858
VGG16 SVM Original 0.854 0.856 0.854
VGG16 KNN Original 0.842 0.842 0.842
VGG16 Decision Tree Original 0.753 0.756 0.753
VGG16 Random Forest Original 0.839 0.832 0.839
VGG16 Gradient Boosting Original 0.858 0.854 0.858
VGG16 XGBoost Original 0.858 0.854 0.858
VGG16 LightGBM Original 0.848 0.845 0.848
VGG16 Naive Bayes Original 0.807 0.807 0.807
VGG16 MLP Original 0.877 0.877 0.877
VGG16 Logistic Regression SMOTE 0.929 0.928 0.929
VGG16 SVM SMOTE 0.910 0.910 0.910
VGG16 KNN SMOTE 0.867 0.862 0.867
VGG16 Decision Tree SMOTE 0.843 0.854 0.854
VGG16 Random Forest SMOTE 0.950 0.949 0.950
VGG16 Gradient Boosting SMOTE 0.940 0.940 0.940
VGG16 XGBoost SMOTE 0.959 0.959 0.959
VGG16 LightGBM SMOTE 0.951 0.951 0.951
VGG16 Naive Bayes SMOTE 0.804 0.804 0.804
VGG16 MLP SMOTE 0.961 0.960 0.961

EfficientNetB0 Logistic Regression Original 0.896 0.896 0.896

EfficientNetBO SVM Original 0.880 0.881 0.880

EfficientNetBO KNN Original 0.842 0.839 0.842

EfficientNetBO Decision Tree Original 0.854 0.855 0.854

EfficientNetBO Random Forest Original 0.844 0.849 0.844

EfficientNetBO Gradient Boosting Original 0.889 0.889 0.889

EfficientNetBO XGBoost Original 0.905 0.904 0.904

EfficientNetBO LightGBM Original 0.896 0.894 0.896

EfficientNetBO Naive Bayes Original 0.804 0.807 0.809

EfficientNetBO MLP Original 0.902 0.902 0.902
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EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
DenseNet121
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2
MobileNetV2

Logistic Regression
SVM
KNN
Decision Tree
Random Forest
Gradient Boosting
XGBoost
LightGBM
Naive Bayes
MLP
Logistic Regression
SVM
KNN
Decision Tree
Random Forest
Gradient Boosting
XGBoost
LightGBM
Naive Bayes
MLP
Logistic Regression
SVM
KNN
Decision Tree
Random Forest
Gradient Boosting
XGBoost
LightGBM
Naive Bayes
MLP
Logistic Regression
SVM
KNN
Decision Tree
Random Forest
Gradient Boosting
XGBoost
LightGBM
Naive Bayes
MLP
Logistic Regression
SVM
KNN
Decision Tree
Random Forest
Gradient Boosting
XGBoost
LightGBM
Naive Bayes
MLP

SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE
SMOTE

0.953
0.942
0.907
0.884
0.953
0.927
0.944
0.953
0.822
0.909
0.889
0.834
0.867
0.813
0.851
0.851
0.886
0.880
0.813
0.899
0.957
0.948
0.879
0.862
0.951
0.946
0.961
0.959
0.837
0.978
0.838
0.851
0.835
0.753
0.848
0.848
0.891
0.870
0.797
0.905
0.955
0.936
0.892
0.947
0.938
0.938
0.948
0.944
0.813
0.955

0.953
0.942
0.909
0.884
0.953
0.927
0.944
0.953
0.822
0.909
0.889
0.834
0.867
0.816
0.848
0.849
0.886
0.879
0.813
0.899
0.957
0.947
0.874
0.861
0.951
0.945
0.960
0.959
0.839
0.977
0.844
0.851
0.834
0.754
0.845
0.848
0.890
0.870
0.799
0.905
0.955
0.936
0.894
0.948
0.938
0.938
0.948
0.944
0.814
0.955
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0.953
0.942
0.909
0.884
0.953
0.927
0.944
0.953
0.823
0.909
0.889
0.834
0.867
0.813
0.851
0.851
0.886
0.880
0.813
0.899
0.957
0.948
0.879
0.862
0.951
0.946
0.961
0.959
0.837
0.978
0.838
0.851
0.835
0.753
0.848
0.848
0.891
0.870
0.797
0.905
0.955
0.936
0.892
0.947
0.938
0.938
0.948
0.944
0.813
0.955
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Table 5. Complete Results for Dataset 2

Feature Model Classifier Technique Accuracy F1-Score Recall
ResNet50 Logistic Regression Original 0.994 0.994 0.994
ResNet50 SVM Original 0.988 0.988 0.988
ResNet50 KNN Original 0.968 0.968 0.968
ResNet50 Decision Tree Original 0.945 0.945 0.945
ResNet50 Random Forest Original 0.972 0.971 0.972
ResNet50 Gradient Boosting Original 0.978 0.978 0.978
ResNet50 XGBoost Original 0.981 0.980 0.981
ResNet50 LightGBM Original 0.977 0.977 0.977
ResNet50 Naive Bayes Original 0.947 0.947 0.947
ResNet50 MLP Original 0.995 0.995 0.995
ResNet50 Logistic Regression SMOTE 0.994 0.994 0.994
ResNet50 SVM SMOTE 0.988 0.988 0.988
ResNet50 KNN SMOTE 0.968 0.968 0.968
ResNet50 Decision Tree SMOTE 0.945 0.945 0.945
ResNet50 Random Forest SMOTE 0.972 0.971 0.972
ResNet50 Gradient Boosting SMOTE 0.978 0.977 0.978
ResNet50 XGBoost SMOTE 0.981 0.980 0.981
ResNet50 LightGBM SMOTE 0.977 0.977 0.977
ResNet50 Naive Bayes SMOTE 0.947 0.947 0.947
ResNet50 MLP SMOTE 0.994 0.994 0.994

VGG16 Logistic Regression Original 0.991 0.991 0.991
VGG16 SVM Original 0.989 0.989 0.989
VGG16 KNN Original 0.971 0.971 0.971
VGG16 Decision Tree Original 0.946 0.946 0.946
VGG16 Random Forest Original 0.968 0.968 0.968
VGG16 Gradient Boosting Original 0.984 0.984 0.984
VGG16 XGBoost Original 0.989 0.989 0.989
VGG16 LightGBM Original 0.987 0.987 0.987
VGG16 Naive Bayes Original 0.969 0.960 0.960
VGG16 MLP Original 0.993 0.993 0.993
VGG16 Logistic Regression SMOTE 0.991 0.991 0.991
VGG16 SVM SMOTE 0.989 0.989 0.989
VGG16 KNN SMOTE 0.968 0.968 0.968
VGG16 Decision Tree SMOTE 0.954 0.954 0.954
VGG16 Random Forest SMOTE 0.984 0.984 0.984
VGG16 Gradient Boosting SMOTE 0.988 0.988 0.988
VGG16 XGBoost SMOTE 0.987 0.987 0.987
VGG16 LightGBM SMOTE 0.987 0.987 0.987
VGG16 Naive Bayes SMOTE 0.954 0.954 0.954
VGG16 MLP SMOTE 0.993 0.993 0.993
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EfficientNetBO Logistic Regression Original 0.991 0.991 0.991
EfficientNetBO SVM Original 0.991 0.991 0.991
EfficientNetBO KNN Original 0.964 0.964 0.964
EfficientNetBO Decision Tree Original 0.984 0.983 0.984
EfficientNetBO Random Forest Original 0.984 0.984 0.984
EfficientNetBO Gradient Boosting Original 0.985 0.985 0.985
EfficientNetBO XGBoost Original 0.988 0.988 0.988
EfficientNetBO LightGBM Original 0.987 0.987 0.987
EfficientNetBO Naive Bayes Original 0.980 0.981 0.981
EfficientNetBO MLP Original 0.993 0.993 0.993
EfficientNetBO Logistic Regression SMOTE 0.992 0.992 0.992
EfficientNetBO SVM SMOTE 0.991 0.991 0.991
EfficientNetBO KNN SMOTE 0.964 0.964 0.964
EfficientNetBO Decision Tree SMOTE 0.984 0.983 0.984
EfficientNetBO Random Forest SMOTE 0.984 0.984 0.984
EfficientNetBO Gradient Boosting SMOTE 0.988 0.988 0.988
EfficientNetBO XGBoost SMOTE 0.988 0.988 0.988
EfficientNetBO LightGBM SMOTE 0.987 0.987 0.987
EfficientNetBO Naive Bayes SMOTE 0.980 0.981 0.981
EfficientNetBO MLP SMOTE 0.993 0.993 0.993
DenseNet121 Logistic Regression Original 0.991 0.991 0.991
DenseNet121 SVM Original 0.991 0.991 0.991
DenseNet121 KNN Original 0.994 0.994 0.994
DenseNet121 Decision Tree Original 0.945 0.945 0.945

Table 6. Evaluation Results for Dataset 3

Feature Model Classifier Technique Accuracy F1-score Recall
DenseNet121 Random Forest Original 0.979 0.979 0.979
DenseNet121 Gradient Boosting Original 0.983 0.983 0.983
DenseNet121 XGBoost Original 0.988 0.988 0.988
DenseNet121 LightGBM Original 0.985 0.985 0.985
DenseNet121 Naive Bayes Original 0.962 0.962 0.962
DenseNet121 MLP Original 0.992 0.992 0.992
DenseNet121 Logistic Regression SMOTE 0.991 0.991 0.991
DenseNet121 SVM SMOTE 0.990 0.990 0.990
DenseNet121 KNN SMOTE 0.974 0.974 0.974
DenseNet121 Decision Tree SMOTE 0.951 0.951 0.951
DenseNet121 Random Forest SMOTE 0.980 0.980 0.980
DenseNet121 Gradient Boosting SMOTE 0.983 0.983 0.983
DenseNet121 XGBoost SMOTE 0.988 0.988 0.988
DenseNet121 LightGBM SMOTE 0.985 0.985 0.985
DenseNet121 Naive Bayes SMOTE 0.962 0.962 0.962
DenseNet121 MLP SMOTE 0.993 0.993 0.993
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MobileNetV2 Logistic Regression Original 0.991 0.991 0.991
MobileNetV2 SVM Original 0.993 0.993 0.993
MobileNetV2 KNN Original 0.974 0.974 0.974
MobileNetV2 Decision Tree Original 0.938 0.938 0.938
MobileNetV2 Random Forest Original 0.971 0.971 0.971
MobileNetV2 Gradient Boosting Original 0.976 0.976 0.976
MobileNetV2 XGBoost Original 0.980 0.980 0.980
MobileNetV2 LightGBM Original 0.981 0.981 0.981
MobileNetV2 Naive Bayes Original 0.943 0.943 0.943
MobileNetV2 MLP Original 0.990 0.990 0.990
MobileNetV2 Logistic Regression SMOTE 0.991 0.991 0.991
MobileNetV2 SVM SMOTE 0.993 0.993 0.993
MobileNetV2 KNN SMOTE 0.974 0.974 0.974
MobileNetV2 Decision Tree SMOTE 0.936 0.936 0.936
MobileNetV2 Random Forest SMOTE 0.969 0.969 0.969
MobileNetV2 Gradient Boosting SMOTE 0.975 0.975 0.975
MobileNetV2 XGBoost SMOTE 0.980 0.980 0.980
MobileNetV2 LightGBM SMOTE 0.981 0.981 0.981
MobileNetV2 Naive Bayes SMOTE 0.943 0.943 0.943
MobileNetV2 MLP SMOTE 0.990 0.990 0.990

Table 7. Statistical Test Results Between Top Models

Dataset Model 1 Model 2 Mean Acc.1  Mean Acc.2  t-testp Wilcoxon p
Dataset 3 ResNet50+MLP EffNetBO+MLP 0.996 0.993 0.038 0.04
Dataset 1 DenseNet121+MLP ResNet50+MLP 0.978 0.968 0.027 0.03

8. Conclusion

This work presents a deployment-friendly pipeline for breast-image classification that decouples deep feature
extraction from classification, enabling transparent ablations, simple imbalance remedies, and practical compute
reporting. Across three datasets, EfficientNet-B0/ResNet50 features with MLP consistently reached very high accuracy
(up to 99.6% on balanced, high-quality data), while DenseNet121+MLP with SMOTE performed best on imbalanced
multiclass data. We found SMOTE markedly beneficial only when class skew was pronounced, reinforcing that
imbalance handling should be data-driven rather than automatic. Error analyses highlighted very low false negatives
(e.g., sensitivity 99.44% on Dataset 3), yet we emphasize careful review of failure cases given their clinical
consequences.

From a translational perspective, the modular design eases integration into hospital workflows: feature extraction
can be precomputed on PACS servers, lightweight classifiers tuned per site, and explainability (Grad-CAM/SHAP)
surfaced within radiologists” viewers for case discussion. We also report simple latency/memory metrics to inform
deployment in resource-constrained settings. Limitations include potential dataset bias and the absence of fully
independent external validation; future work will target CBIS-DDSM dataset and prospective multi-site evaluations.
Additional directions include ensemble feature backbones, few-shot learning for rare phenotypes, and human-Al
teaming protocols aligned with recent screening studies. By emphasizing adaptability, interpretability, and
measured compute alongside accuracy, this study provides a pragmatic path toward safe, trustworthy Al assistance
in breast cancer imaging.
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8.1. Limitations and Future Work

Despite promising results, our approach faces several limitations. The computational requirements of deep feature
extraction present a significant barrier to real-time or point of-care deployment in resource-limited environments. While
MobileNetV2 offers a more efficient alternative, further optimization is needed for practical use in such settings.
Additionally, our experiments confirmed that SMOTE provides limited benefit for balanced datasets, pointing to the
need for more advanced data augmentation techniques that can enhance model performance without depending on class
balancing alone. We also observed potential overfitting in our highest-performing models, particularly those exceeding
99% accuracy. Although cross-validation was employed, it is possible that some models learned dataset-specific details,
limiting generalizability. This finding highlights the value of external validation on independent datasets from diverse
clinical sources.

A key limitation of this work is that the models were validated only on three benchmark datasets. Although these
datasets are diverse and include both balanced and imbalanced cases, they do not capture the full heterogeneity of clinical
practice. Future work will extend validation to independent datasets such as CBIS-DDSM and INbreast for
mammography, and Break His for histopathology, to test generalization across populations, devices, and acquisition
settings. From a clinical perspective, we envision this system primarily as a diagnostic aid integrated into hospital
workflows rather than a stand-alone diagnostic tool. Feature extraction can be pre-computed on PACS servers, while
lightweight classifiers can be tuned per site. Explainability modules (Grad-CAM, SHAP) allow clinicians to visualize
why a prediction was made, building trust and supporting case review. These integration strategies are intended to make
the pipeline practical not only in advanced hospitals but also in resource-constrained environments, where computational
cost and transparency are crucial.

Future research should explore few-shot learning methods for rare tumor subtypes, which remain a persistent clinical
challenge. Developing hybrid model architectures that combine the strengths of different approaches could also help
address the limitations of individual models [26]. Additionally, testing these systems on broader clinical data; including
diverse patient populations, imaging devices, and acquisition protocols; will enhance their applicability and robustness
in real-world scenarios.
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