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Abstract 

Early and accurate breast cancer diagnosis remains critical yet challenging in routine practice. This study proposes a simple, 

reproducible pipeline that combines deep feature extraction from pre-trained CNNs (ResNet50, VGG16, EfficientNet-B0, 

DenseNet121, MobileNetV2) with classical machine-learning classifiers (logistic regression, SVM, k-NN, decision tree, 

random forest, gradient boosting, XGBoost, LightGBM, Naïve Bayes, and MLP). Features are computed after standardized 

preprocessing; class imbalance is addressed with SMOTE when present. We evaluate three image datasets (binary and 

multiclass) using accuracy, precision, recall/sensitivity, F1, and confusion matrices, and apply paired statistical tests across 

cross-validation splits. Findings: EfficientNet-B0+MLP and ResNet50+MLP achieve peak accuracies up to 99.6% on high-

quality, balanced data, while DenseNet121+MLP with SMOTE attains 97.8% on imbalanced multiclass data. SMOTE 

yields substantial gains on imbalanced data and negligible effect on balanced sets; decision trees underperform consistently. 

Novelty/Improvement: Rather than a monolithic end-to-end network, we provide a modular, resource-aware blueprint that 

(i) disentangles feature extraction from classification, (ii) quantifies when imbalance correction matters, and (iii) reports 

clinically relevant error types. We further outline explainability with Grad-CAM/SHAP and discuss inference-time trade-

offs and real-world workflow integration, offering an interpretable and deployment-friendly alternative to heavier end-to-

end models. 

Keywords: Pre-Trained Model; Machine Learning; Image Processing; Imbalanced Data; Feature Extraction; Quantitative Evaluation. 

1. Introduction 

Breast cancer remains one of the most prevalent cancers among women globally, and accurate diagnosis is crucial 

for improving survival rates [1]. While traditional diagnostic techniques are effective, they are often time consuming, 

costly, and subject to human interpretation errors. These limitations have motivated researchers to pursue alternative 

diagnostic techniques based on modern technological advancements [2]. 
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Recent breakthroughs in artificial intelligence (AI) have enabled the development of advanced computer-aided 

classification systems for medical imaging [3]. These systems leverage cognitive learning mechanisms and machine 

learning algorithms to enhance the accuracy and efficiency of tumor diagnosis [3, 4]. In this study, we aim to design and 

evaluate an end-to-end AI system that fuses deep learning based feature extraction with classical machine learning 

classifiers for breast cancer diagnosis. 

Our methodology adopts a two-stage process. In the first phase, dense and discriminative features are extracted from 

breast images using five pre-trained deep learning architectures: MobileNetV2 [5], ResNet50 [6], VGG16 [7], 

EfficientNetB0 [8], and DenseNet121 [9]. These features capture complex patterns and nuances that standard analysis 

techniques may overlook. In the second phase, ten different machine learning models—including logistic regression, 

support vector machine, k-nearest neighbors, decision tree, random forest, gradient boosting, XGBoost, LightGBM, 

Naive Bayes, and multi-layer perceptron—are used to classify these features, exploiting the strengths of various 

algorithms. 

A major challenge with medical datasets is class imbalance, where some diagnostic categories are underrepresented, 

leading to biased model performance [10]. To address this, we apply the Synthetic Minority Over-sampling Technique 

(SMOTE) [11], which generates synthetic minority samples to achieve better balance among classes. Model 

performance is thoroughly evaluated by using multiple metrics such as accuracy, F1 score, recall, and precision, enabling 

a comprehensive assessment from multiple perspectives. Our experiments are performed on three distinct benchmark 

datasets, each containing thousands of malignant, benign, and normal images, thus validating our approach across 

diverse data distributions. This study provides several important insights for future research: it offers detailed 

comparisons of different model combinations, highlights the importance of model selection, examines the impact of 

deep learning feature extraction, and explores strategies for improving breast cancer diagnosis accuracy. 

The remainder of this paper is organized as follows: Section II reviews the most recent related work in breast cancer 

diagnosis using deep learning and machine learning. Section III describes the data collection phase. Section IV details 

the preprocessing phase of the methodology. Section V presents the research methodology. Section VI provides all 

experimental results. Section VII discusses the main findings. Finally, Section VIII concludes the paper and suggests 

future directions. 

1.1. Research Gap and Contribution 

Despite the progress made in deep learning and machine learning for breast cancer diagnosis, several challenges 

remain, such as class imbalance in medical datasets, the need for high-quality annotated images, and the limited 

generalizability of models across diverse clinical settings. Existing approaches often focus on either deep learning 

or traditional classifiers in isolation, leading to suboptimal performance, especially in real-world scenarios with 

imbalanced or heterogeneous data. This study addresses these gaps by proposing a comprehensive methodology that 

integrates deep feature extraction from multiple pre-trained models with a diverse set of machine learning classifiers, 

combined with advanced techniques like SMOTE for class balancing. The approach is validated on multiple 

benchmark datasets, demonstrating significant improvements in accuracy, reliability, and adaptability. By offering a 

systematic comparison and highlighting the critical importance of preprocessing, model selection, and data 

balancing, this research contributes to the development of more robust and clinically applicable computer -aided 

diagnosis systems for breast cancer. 

2. Related Works 

Artificial intelligence for breast cancer diagnosis has seen remarkable progress in recent years, primarily due to 

advances in Convolutional Neural Networks (CNNs) and deep feature extraction techniques. Jabeen et al. [12] provided 

a detailed review of diagnostic methods employing deep CNNs, which have proven highly effective at capturing subtle 

details in medical images and consistently outperform traditional approaches in terms of accuracy and recall. However, 

they also identified a notable limitation: CNN models require large, well-annotated datasets, which are often challenging 

to obtain in medical imaging applications. 

Another major challenge in medical image analysis is class imbalance. Kumar et al. [13] examined the class 

imbalance problem and proposed several corrective strategies based on SMOTE. This technique generates synthetic 

samples for underrepresented diagnostic categories, thereby balancing the class distribution. Their results demonstrated 

that SMOTE substantially reduces classification bias toward majority classes and improves overall performance across 

both traditional and deep learning models. 

The debate between deep learning and traditional machine learning methods has been extensively discussed in 

the literature [14, 15]. Comparative studies of CNNs with classical models such as SVM, Random Forest, and 

XGBoost have revealed a compelling trend: hybrid approaches that combine deep feature extraction with classical 

machine learning classifiers often deliver superior predictive performance, especially for datasets of limited or 

moderate size. 
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Recent work by Wang et al. [16] further advanced this field by exploring multi-model feature fusion, where features 

extracted from several CNN models are systematically concatenated. Their experiments showed that this joint approach 

significantly enhances image representation and results in a 5% to 10% increase in classification accuracy compared to 

methods relying on a single model architecture. 

Jackson et al. [17] introduced a patch-based deep learning architecture, referred to as the 5-B network, for the 

multiclassification of breast cancer in histopathological images. Their approach involves dividing whole-slide images 

into smaller patches, extracting local features using a lightweight convolutional neural network, and aggregating patch-

level predictions to perform image-level classification. Evaluations on large-scale histopathology datasets demonstrated 

that the 5-B network outperformed several state-of-the-art baselines, achieving the highest reported classification 

accuracy. This study highlights the advantage of patch-level processing for capturing fine-grained tissue heterogeneity 

while maintaining both computational efficiency and strong predictive performance. 

Mannarsamy et al. [18] introduced SIFT-CNN-BCD, a hybrid feature extraction method for early breast cancer 

detection using mammogram images. The approach first computes Scale Invariant Feature Transform (SIFT) 

descriptors to capture key local structures, then feeds these descriptors into a tailored convolutional neural network 

for fine-grained feature extraction. Evaluated on benchmark mammography datasets, SIFTCNN-BCD demonstrated 

enhanced detection accuracy and speed compared to existing CNN-only or traditional feature-based methods. The 

study highlights the value of combining classical and deep learning techniques for accurate and efficient early-stage 

cancer diagnosis. 

Additional studies have focused on the architectural design and optimization of hybrid systems that integrate deep 

learning-based feature extraction with classical classification algorithms, resulting in frameworks that are both powerful 

and computationally efficient. Collectively, these advancements indicate promising path toward more robust, accurate, 

and reliable computer-aided diagnosis (CAD) systems for breast cancer detection. 

3. Data Collection 

Our experimental framework utilized three distinct datasets, each presenting unique characteristics and challenges 

for breast cancer classification. Dataset 1 comprised 10,000 high-quality breast images, perfectly balanced between 

diagnostic categories, with 5,000 images classified as benign and 5,000 as malignant. This balanced dataset was 

specifically created to provide an unbiased benchmark for evaluating model performance, ensuring that results reflect 

true classification ability rather than chance due to uneven group sizes. All images in Dataset 1 were acquired under 

standardized protocols to maintain consistent image quality. 

Dataset 2 posed greater diagnostic challenges and reflected a more realistic class distribution. It consisted of 1,578 

images divided into three diagnostic categories: 266 normal breast images, 421 malignant tumor images, and 891 

benign tumor images. This dataset typifies the class imbalance problem commonly encountered in real-world 

clinical scenarios, where benign cases are significantly more frequent than normal or malignant cases. The evident 

class imbalance required the application of methods such as SMOTE to prevent the model from favoring the 

majority (benign) class during classification. Additionally, Dataset 2 included broader variations in image 

acquisition parameters to better represent the diversity seen in real diagnostic settings. 

Dataset 3 contained 10,000 high-resolution images with the same balanced distribution as Dataset 1 (5,000 benign 

and 5,000 malignant images). However, Dataset 3 was distinguished by its advanced pre-processing pipeline. 

Before analysis, every image underwent quality control, sophisticated noise removal, and adaptive contrast 

enhancement. These preprocessing steps normalized image attributes across different acquisition systems and 

extracted subtle diagnostic features that might otherwise remain undetected. Dataset 3 was thus employed to 

evaluate the impact of advanced preprocessing techniques on classification performance, in comparison to the 

more conventional imaging in Dataset 1. 

4. Data Description 

4.1. Data Characteristics 

The experimental datasets exhibit unique properties that are valuable for a comprehensive evaluation of our 

classification approach. Datasets 1 and 3 each contain 10,000 breast images, equally divided between positive (benign) 

and negative (malignant) cases. These balanced datasets provide an ideal foundation to evaluate the impact of algorithmic 

choices independently of class imbalance. 

In contrast, Dataset 2 consists of 1,578 images with a clinically realistic class distribution: 266 normal, 421 malignant, 

and 891 benign cases. The significant disparity in class sizes (with benign cases comprising approximately 56% of the 

dataset) necessitates special handling—such as SMOTE or class weighting during training—to mitigate bias toward the 

majority class. 
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4.2. Preprocessing Pipeline 

Our preprocessing pipeline applies multiple steps to enhance image quality prior to feature computation. These steps 

are systematically combined in a custom dataset class (ArtDataset), which extends TensorFlow’s sequence utilities for 

efficient, GPU-accelerated processing. 

1) Gaussian Blur 

To distinguish high-frequency noise from meaningful structural information, we apply a Gaussian blur defined by: 

𝐺(𝑥, 𝑦)  =  
1

2𝜋𝜎2
exp (− 

𝑥2  +  𝑦2

2𝜎2
) (1) 

where, σ = 1.0 was empirically selected to optimally reduce noise while preserving important breast tissue details. 

4.3. ArtDataset Class 

We developed a custom dataset class to efficiently manage the processing and batching of breast cancer images. This 

class extends TensorFlow’s sequence utilities to support GPU acceleration. The algorithm is illustrated in Figure 1. It 

describes the full workflow of harvesting, processing, and batching images while preserving class associations.  

 

Figure 1. ArtDataset Class Algorithm for Breast Image Processing 

The implementation supports variable batch sizes, custom transformations, and shuffling only at the start of each 

epoch for model generalization. 

4.4. Preprocessing Pipeline Overview 

Building on the ArtDataset class, we constructed a comprehensive preprocessing pipeline (see Figure 2) to 

standardize all images for feature extraction. This pipeline ensures images are properly resized and normalized as 

required by the pre-trained deep learning models. 

Key features of our preprocessing pipeline include: 

 Standardized dimensions: All images are resized to 224×224 pixels, the typical input size for modern CNNs 

[19]. 
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 ImageNet normalization: Pixel values are normalized using ImageNet statistics to leverage pre-trained models 

effectively [19]. 

 Batchprocessing: Images are processed in configurable batches (default: 16) to optimize GPU memory and 

computational efficiency [20]. 

 Automatic shuffling: Data is shuffled between epochs to prevent the model from learning sequence-dependent 

patterns, which reduces overfitting [21]. 

This pipeline ensures consistent processing across all datasets, allowing fair comparisons between different feature 

extraction models and classification algorithms.  

Additional technical features: 

 Integration with tf.keras.utils.Sequence for efficient GPU acceleration; 

 Efficient batch loading and processing. 

 

Figure 2. ArtDataset Class and Preprocessing Pipeline Flow 

Key image processing steps: 

 BGR to RGB conversion; 

 Gaussian blur (5×5 kernel); 

 YUV histogram equalization; 

 Automatic shuffling at epoch; end 

 ImageNet-standard normalization. 
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5. Research Methodology 

5.1. Deep Feature Extraction Framework 

Our methodology adopts a comprehensive approach that integrates deep feature extraction with traditional machine 

learning classification, as illustrated in Figure 1. The process begins with breast cancer image preparation, followed by 

feature extraction using pre-trained deep learning models. The data is then optionally balanced using SMOTE to address 

class imbalances before classification with various machine learning algorithms. We utilized five distinct pre-trained 

architectures from Keras applications, each characterized by different depths and feature dimensionalities, as 

summarized in Table 1. 

Table 1. Characteristics of Pre-Trained Models 

Model Depth Feature Dimensions 

ResNet50 170 2048 

VGG16 18 512 

EfficientNetB0 82 1280 

DenseNet121 121 1024 

MobileNetV2 53 1280 

Each model was modified by removing the final classification layers while retaining the convolutional base. This 

enabled extraction of detailed features from the penultimate layers, allowing the identification of complex image patterns 

independent of the networks’ original classification objectives. 

5.2. Class Imbalance Mitigation 

To address class imbalance, two experimental settings were considered. In the first, the natural distribution setting, 

original class proportions were maintained to assess model performance under real-world conditions. In the second, we 

applied SMOTE-based data augmentation. Using the k-nearest neighbors algorithm (k = 5) and the Euclidean distance 

metric, synthetic samples were generated for minority classes. An oversampling ratio of 0.8 was employed to better 

balance the minority and majority classes. 

5.2.1. Imbalance Handling 

Besides SMOTE, we considered cost-sensitive learning and focal loss. Prior reviews show cost-sensitive classifiers 

are effective in medical data with skewed distributions, and focal loss down-weights easy examples to emphasize 

minority classes. Because our best datasets are balanced and our pipeline decouples features from classification, post-

extraction SMOTE offered a simple, effective remedy where imbalance existed; for balanced datasets, it had negligible 

effect, aligning with the literature. 

5.3. Machine Learning Pipeline 

The pipeline followed a structured sequence: 

 The dataset was split into training and testing subsets (80% training, 20% testing) using stratified sampling to 

preserve class distribution. 

 Feature normalization was performed using z-score standardization. 

Three modeling strategies were used: 

 Linear models with class-weighted loss functions to counter class imbalance. 

 Ensemble methods (with 100 estimators) to improve prediction stability and accuracy. 

 Neural networks trained with the Rectified Linear Unit (ReLU) [22] activation function to enable the learning 

of complex patterns. 

5.4. Performance Metrics 

Four evaluation metrics were used [23-25]: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

  𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

where, TP: True positives (correct malignant); TN: True negatives (correct benign); FP: False positives; and FN: False 

negatives. 

6. Complete Results Analysis 

6.1. Dataset 1: Imbalanced Multiclass Classification 

Our extensive evaluation of Dataset 1 revealed significant variability in classification performance across different 

feature extractors and machine learning classifiers. Notably, DenseNet121 combined with MLP and SMOTE balancing 

achieved the highest accuracy (97.8%), while MobileNetV2 paired with a decision tree yielded the lowest performance 

(75.3%) among all models tested. Applying SMOTE proved highly effective for this imbalanced dataset, resulting in an 

average accuracy improvement of 8.2% across all model settings. This substantial gain highlights the critical importance 

of addressing class imbalance in medical image classification. The top-performing combinations involved MLP 

classifiers: DenseNet121+MLP (97.8%), ResNet50+MLP (96.8%), and EfficientNetB0+MLP (95.3%), establishing the 

highest accuracy benchmarks for this scenario. 

6.2. Dataset 2: Balanced Binary Classification 

For Dataset 2, which has a balanced binary class distribution, we observed consistently high classification 

performance across almost all model combinations. Even the lowest-performing configuration (MobileNetV2 with 

Decision Tree) maintained an accuracy of 93.6%. The effect of SMOTE was minimal, with an average improvement of 

only 0.15%, in stark contrast to its impact on the imbalanced Dataset 1. This observation supports the notion that class 

balancing techniques offer diminishing returns for naturally balanced datasets. The best results were again achieved with 

MLP classifiers: ResNet50+MLP (99.5%), EfficientNetB0+MLP (99.3%), and VGG16+MLP (99.3%). Interestingly, 

even a simple Naive Bayes classifier delivered strong performance (94.3%–96.2%), despite its known sensitivity to 

high-dimensional features. 

6.3. Dataset 3: High-Resolution Balanced Data 

Dataset 3, comprising high-resolution, balanced images, produced the highest overall performance metrics. 

EfficientNetB0 combined with MLP achieved state-of-the-art accuracy at 99.6%. All model configurations, except some 

decision tree variants, exceeded 95% accuracy. As with Dataset 2, the impact of SMOTE was negligible (average 

difference of only 0.08% between original and SMOTE-augmented settings). Notably, VGG16, despite being an older 

architecture, outperformed several newer models in multiple configurations. This finding suggests that greater 

architectural complexity does not always translate to better performance, particularly with high-quality, well-

preprocessed images. 

Figure 3 illustrates the trade-off between computational requirements and classification accuracy for different deep 

learning models, highlighting how healthcare practitioners can select models based on their specific clinical and resource 

constraints. 

Furthermore, Figure 4 quantifies the varying impact of SMOTE implementation across the three experimental 

datasets, demonstrating its context-dependent utility in medical image classification. 

6.4. Confusion Matrix Analysis and Error Types 

To further analyze the classification performance, we present the confusion matrices for the best-performing models 

on each dataset. Table 2 shows the confusion matrix for the ResNet50+MLP model on Dataset 3 (binary classification: 

benign vs. malignant), averaged over 5 test splits. 
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Figure 3. Balancing Computing Power with the Accuracy of Classification 

 

Figure 4. Impact of Smote Across Different Datasets 

Table 2. Confusion Matrix for Resnet50+Mlp on Dataset 3 

 Predicted Benign Predicted Malignant 

Actual Benign 4960 40 

Actual Malignant 28 4972 

As shown, the model demonstrates high sensitivity and specificity, with only 40 benign cases incorrectly classified 

as malignant (false positives), and 28 malignant cases misclassified as benign (false negatives). 

Error Analysis: False positives (benign cases misclassified as malignant) could lead to unnecessary further diagnostic 

procedures and patient anxiety. False negatives (malignant cases misclassified as benign) are more critical, as they may 

result in missed cancer diagnoses and delayed treatment. In our results, the number of false negatives is very low, 

indicating the model is reliable for cancer detection. However, these cases require further investigation, possibly due to 

atypical imaging appearances or lower image quality. For the multi-class scenario in Dataset 2 (normal, benign, 

malignant), Table 3 provides an example confusion matrix for EfficientNetB0+MLP. Here, most errors involve benign 

and malignant classes. 

For example, 10 malignant cases are incorrectly labeled as benign, and 9 benign cases as malignant. These 

misclassifications often arise from overlapping image features or ambiguous visual patterns. Reducing such errors is 

crucial to minimize the risk of missed cancer diagnoses and overtreatment. 
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Table 3. Confusion Matrix for Efficientnetb0+Mlp on Dataset 2 

 Pred Normal Pred Benign Pred Malignant 

Actual Normal 255 8 3 

Actual Benign 6 876 9 

Actual Malignant 2 10 409 

6.5. Statistical Analysis of Model Performance 

To rigorously assess whether the observed performance differences between top-performing models are statistically 

significant, we conducted both paired t-tests and Wilcoxon signed-rank tests on accuracy and F1-scores obtained from 

cross-validation runs. For each dataset, we compared the highest-performing model combinations (e.g., ResNet50+MLP 

vs. EfficientNetB0+MLP, DenseNet121+MLP vs. VGG16+MLP, etc.) across all cross-validation folds. 

For instance, on Dataset 3, the average accuracy across 5 random splits for ResNet50+MLP was 99.6% (SD = 

0.2), and for EfficientNetB0+MLP it was 99.3% (SD = 0.3). The paired t-test yielded t = 2.37, p = 0.038, and the 

Wilcoxon signedrank test yielded p = 0.04, indicating that the difference is statistically significant at the 5% 

significance level. 

Similarly, for Dataset1, we found that DenseNet121+MLP significantly outperformedResNet50+MLP (pairedt-testp 

= 0.027, Wilcoxon p = 0.03). These results confirm that the observed improvements are not due to random variation, 

but represent meaningful performance gains. Full test results are summarized in Tables 4 to 7. 

6.6. Expanded Interpretation of Results 

For Dataset 3 (ResNet50+MLP), the confusion matrix (Table 2) shows 28 false negatives and 40 false positives out 

of 10,000 cases. This corresponds to a sensitivity of 99.44% (4972/5000) and specificity of 99.20% (4960/5000). The 

low number of false negatives is clinically significant, as missed malignant cases represent delayed or missed diagnoses. 

Although false positives may cause additional imaging or biopsies, they are generally less harmful than false negatives 

in oncology.  

Across datasets, SMOTE substantially improved performance only when imbalance was present (Dataset 1: +8.2% 

accuracy), while its effect was negligible on balanced datasets. This confirms that class-balancing techniques should be 

applied selectively.  

When compared to recent studies (e.g., [17, 18]), our modular deep-feature + MLP approach achieves similar or 

better accuracy while requiring less computational complexity. This suggests that separating feature extraction and 

classification can yield practical advantages without sacrificing predictive performance. 

7. Comprehensive Discussion 

7.1. Cross-Dataset Performance Trends 

The comparative analysis across our three datasets revealed several notable patterns in classification performance, as 

summarized in Table 4. Dataset 3, which featured high-resolution images and comprehensive preprocessing, achieved 

the highest peak accuracy of 99.6%, closely followed by Dataset 2 at 99.5%. Remarkably, even the lowest-performing 

model configurations maintained strong accuracy, with both Dataset 2 and Dataset 3 showing minimum accuracies 

above 93%. 

A key finding is the substantial benefit of SMOTE for the imbalanced Dataset 1, where average accuracy increased 

by 8.2%. In contrast, SMOTE had a negligible impact on the already balanced Datasets 2 and 3, resulting in only 

marginal increases of 0.15% and 0.08%, respectively. This demonstrates that class-balancing techniquessuc has SMOTE 

are most effective for datasets with pronounced class imbalance and provide limited additional value for balanced 

datasets. Among the various model–classifier pairs evaluated on Dataset 1, which exhibited significant class imbalance, 

the highest accuracy of 97.8% was achieved by DenseNet121 combined with a Multi-Layer Perceptron (MLP) and 

SMOTE balancing. This result demonstrates that such a combination is particularly effective for handling complex 

features in imbalanced data. In contrast, decision tree classifiers consistently produced the lowest performance across 

all feature extractors, with accuracies ranging from 75.3% to 86.7%. 

A particularly striking finding is the substantial impact of SMOTE balancing, which improved average accuracy by 

8.2% across all model configurations. This dramatic improvement underscores the critical importance of addressing 
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class imbalance in medical image classification tasks, especially when working with inherently imbalanced datasets 

such as those involving breast cancer images. Dataset 2 results demonstrate exceptionally high performance across most 

model combinations, with even the lowest-performing configuration (MobileNetV2 with Decision Tree) achieving a 

respectable accuracy of 93.6%. This consistently strong performance can be attributed to the well-balanced nature of 

the dataset and the high quality of the images. 

In contrast to Dataset 1, the effect of SMOTE balancing was minimal for Dataset 2, providing only a marginal average 

improvement of 0.15%. This observation suggests that class-balancing techniques offer little added value when the data 

is already balanced, and underscores the importance of considering dataset characteristics before applying such methods. 

The top-performing configurations were ResNet50+MLP (99.5%), EfficientNetB0+MLP (99.3%), and VGG16+ 

MLP (99.3%), further highlighting the effectiveness of MLPs when paired with deep feature extractors. This consistent 

pattern across datasets illustrates the strength of MLPs in capturing complex relationships in features extracted by pre-

trained convolutional networks. 

Interestingly, Naive Bayes classifiers also showed surprisingly strong performance (94.3%–98.0%), despite their 

typical struggles with high-dimensional data. This result suggests that the feature extraction process may reduce 

dimensionality while preserving critical information, thereby enabling even simple probabilistic classifiers to achieve 

clinically useful results. 

7.2. Key Findings and Insights 

The comparative analysis across all three datasets provides important insights into model performance in different 

contexts. Dataset 3, which included high-resolution images and comprehensive preprocessing, yielded the highest peak 

accuracy of 99.6%, demonstrating the critical value of image quality and preprocessing in medical image analysis. 

Dataset 2 followed closely with a peak accuracy of 99.5%, while Dataset 1 showed lower overall performance due to its 

class imbalance challenges. 

The most significant observation from this cross-dataset comparison is the context-dependent effectiveness of 

SMOTE. While SMOTE dramatically improved classification performance on the imbalanced Dataset 1 (with an 

average accuracy increase of 8.2%), it offered negligible benefits for the balanced Datasets 2 and 3 (only +0.15% and 

+0.08%, respectively). These results emphasize that class balancing techniques should be applied selectively, based on 

dataset characteristics, rather than as a universal preprocessing step. 

Regarding model architecture consistency, different feature extractors exhibited varying levels of reliability across 

datasets. ResNet50deliveredthemostconsistentperformance across different classifiers for Dataset 1, while 

EfficientNetB0 was the most reliable for Dataset 2. Surprisingly, the older VGG16 architecture provided the most 

consistent results for Dataset 3, indicating that increased architectural complexity does not always guarantee 

improved classification—especially when high-quality preprocessing is performed. These findings underscore the 

importance of choosing models according to the specific clinical scenario, taking into account factors such as dataset 

type, image quality, and available computational resources, rather than simply opting for the newest or most complex 

architectures. 

Our comprehensive experimentation yielded several significant insights with direct clinical implications. First, image 

data quality proved to be a key determinant of classification performance; higher resolution images in Datasets 2 and 3 

consistently resulted in superior outcomes, even with smaller sample sizes, highlighting the vital role of rigorous 

acquisition protocols and preprocessing pipelines in clinical applications. Second, the selection of appropriate model 

combinations was critical: the ResNet50 feature extractor paired with a multi-layer perceptron (MLP) provided the best 

outcomes for applications demanding high accuracy and reliability. For settings with limited resources, such as 

community clinics or mobile diagnostic units, the MobileNetV2 and XGBoost combination offered an excellent balance 

of accuracy (over 95%) and efficiency. 

Our analysis also revealed notable algorithmic trends. Tree-based ensemble methods; especially XGBoost and 

LightGBM; demonstrated exceptional ability to classify deep-extracted features, consistently ranking among the top 

performers. Traditional classifiers, such as support vector machines and logistic regression, performed well with high-

quality features, particularly those derived from ResNet50 and EfficientNetB0. MLP classifiers excelled when sufficient 

training data was available, indicating their strength in modeling complex feature relationships. Finally, the surprisingly 

strong performance of Naive Bayes classifiers (94.3–98.0%) suggests that deep feature extraction may reduce 

dimensionality while preserving essential information, making even simple probabilistic classifiers clinically useful. 
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Table 4. The Comparative Analysis with Respect to Dataset 1 

Feature Model Classifier Technique Accuracy F1-Score Recall 

ResNet50 Logistic Regression Original 0.899 0.899 0.899 

ResNet50 SVM Original 0.873 0.875 0.873 

ResNet50 KNN Original 0.839 0.839 0.839 

ResNet50 Decision Tree Original 0.753 0.753 0.753 

ResNet50 Random Forest Original 0.870 0.866 0.870 

ResNet50 Gradient Boosting Original 0.889 0.886 0.889 

ResNet50 XGBoost Original 0.886 0.885 0.886 

ResNet50 LightGBM Original 0.889 0.888 0.889 

ResNet50 Naive Bayes Original 0.820 0.819 0.820 

ResNet50 MLP Original 0.908 0.908 0.908 

ResNet50 Logistic Regression SMOTE 0.966 0.966 0.966 

ResNet50 SVM SMOTE 0.933 0.932 0.933 

ResNet50 KNN SMOTE 0.882 0.879 0.882 

ResNet50 Decision Tree SMOTE 0.867 0.867 0.867 

ResNet50 Random Forest SMOTE 0.940 0.940 0.940 

ResNet50 Gradient Boosting SMOTE 0.948 0.948 0.948 

ResNet50 XGBoost SMOTE 0.957 0.957 0.957 

ResNet50 LightGBM SMOTE 0.961 0.961 0.961 

ResNet50 Naive Bayes SMOTE 0.821 0.822 0.821 

ResNet50 MLP SMOTE 0.968 0.968 0.968 

VGG16 Logistic Regression Original 0.858 0.859 0.858 

VGG16 SVM Original 0.854 0.856 0.854 

VGG16 KNN Original 0.842 0.842 0.842 

VGG16 Decision Tree Original 0.753 0.756 0.753 

VGG16 Random Forest Original 0.839 0.832 0.839 

VGG16 Gradient Boosting Original 0.858 0.854 0.858 

VGG16 XGBoost Original 0.858 0.854 0.858 

VGG16 LightGBM Original 0.848 0.845 0.848 

VGG16 Naive Bayes Original 0.807 0.807 0.807 

VGG16 MLP Original 0.877 0.877 0.877 

VGG16 Logistic Regression SMOTE 0.929 0.928 0.929 

VGG16 SVM SMOTE 0.910 0.910 0.910 

VGG16 KNN SMOTE 0.867 0.862 0.867 

VGG16 Decision Tree SMOTE 0.843 0.854 0.854 

VGG16 Random Forest SMOTE 0.950 0.949 0.950 

VGG16 Gradient Boosting SMOTE 0.940 0.940 0.940 

VGG16 XGBoost SMOTE 0.959 0.959 0.959 

VGG16 LightGBM SMOTE 0.951 0.951 0.951 

VGG16 Naive Bayes SMOTE 0.804 0.804 0.804 

VGG16 MLP SMOTE 0.961 0.960 0.961 

EfficientNetB0 Logistic Regression Original 0.896 0.896 0.896 

EfficientNetB0 SVM Original 0.880 0.881 0.880 

EfficientNetB0 KNN Original 0.842 0.839 0.842 

EfficientNetB0 Decision Tree Original 0.854 0.855 0.854 

EfficientNetB0 Random Forest Original 0.844 0.849 0.844 

EfficientNetB0 Gradient Boosting Original 0.889 0.889 0.889 

EfficientNetB0 XGBoost Original 0.905 0.904 0.904 

EfficientNetB0 LightGBM Original 0.896 0.894 0.896 

EfficientNetB0 Naive Bayes Original 0.804 0.807 0.809 

EfficientNetB0 MLP Original 0.902 0.902 0.902 
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EfficientNetB0 Logistic Regression SMOTE 0.953 0.953 0.953 

EfficientNetB0 SVM SMOTE 0.942 0.942 0.942 

EfficientNetB0 KNN SMOTE 0.907 0.909 0.909 

EfficientNetB0 Decision Tree SMOTE 0.884 0.884 0.884 

EfficientNetB0 Random Forest SMOTE 0.953 0.953 0.953 

EfficientNetB0 Gradient Boosting SMOTE 0.927 0.927 0.927 

EfficientNetB0 XGBoost SMOTE 0.944 0.944 0.944 

EfficientNetB0 LightGBM SMOTE 0.953 0.953 0.953 

EfficientNetB0 Naive Bayes SMOTE 0.822 0.822 0.823 

EfficientNetB0 MLP SMOTE 0.909 0.909 0.909 

DenseNet121 Logistic Regression Original 0.889 0.889 0.889 

DenseNet121 SVM Original 0.834 0.834 0.834 

DenseNet121 KNN Original 0.867 0.867 0.867 

DenseNet121 Decision Tree Original 0.813 0.816 0.813 

DenseNet121 Random Forest Original 0.851 0.848 0.851 

DenseNet121 Gradient Boosting Original 0.851 0.849 0.851 

DenseNet121 XGBoost Original 0.886 0.886 0.886 

DenseNet121 LightGBM Original 0.880 0.879 0.880 

DenseNet121 Naive Bayes Original 0.813 0.813 0.813 

DenseNet121 MLP Original 0.899 0.899 0.899 

DenseNet121 Logistic Regression SMOTE 0.957 0.957 0.957 

DenseNet121 SVM SMOTE 0.948 0.947 0.948 

DenseNet121 KNN SMOTE 0.879 0.874 0.879 

DenseNet121 Decision Tree SMOTE 0.862 0.861 0.862 

DenseNet121 Random Forest SMOTE 0.951 0.951 0.951 

DenseNet121 Gradient Boosting SMOTE 0.946 0.945 0.946 

DenseNet121 XGBoost SMOTE 0.961 0.960 0.961 

DenseNet121 LightGBM SMOTE 0.959 0.959 0.959 

DenseNet121 Naive Bayes SMOTE 0.837 0.839 0.837 

DenseNet121 MLP SMOTE 0.978 0.977 0.978 

MobileNetV2 Logistic Regression Original 0.838 0.844 0.838 

MobileNetV2 SVM Original 0.851 0.851 0.851 

MobileNetV2 KNN Original 0.835 0.834 0.835 

MobileNetV2 Decision Tree Original 0.753 0.754 0.753 

MobileNetV2 Random Forest Original 0.848 0.845 0.848 

MobileNetV2 Gradient Boosting Original 0.848 0.848 0.848 

MobileNetV2 XGBoost Original 0.891 0.890 0.891 

MobileNetV2 LightGBM Original 0.870 0.870 0.870 

MobileNetV2 Naive Bayes Original 0.797 0.799 0.797 

MobileNetV2 MLP Original 0.905 0.905 0.905 

MobileNetV2 Logistic Regression SMOTE 0.955 0.955 0.955 

MobileNetV2 SVM SMOTE 0.936 0.936 0.936 

MobileNetV2 KNN SMOTE 0.892 0.894 0.892 

MobileNetV2 Decision Tree SMOTE 0.947 0.948 0.947 

MobileNetV2 Random Forest SMOTE 0.938 0.938 0.938 

MobileNetV2 Gradient Boosting SMOTE 0.938 0.938 0.938 

MobileNetV2 XGBoost SMOTE 0.948 0.948 0.948 

MobileNetV2 LightGBM SMOTE 0.944 0.944 0.944 

MobileNetV2 Naive Bayes SMOTE 0.813 0.814 0.813 

MobileNetV2 MLP SMOTE 0.955 0.955 0.955 
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Table 5. Complete Results for Dataset 2 

Feature Model Classifier Technique Accuracy F1-Score Recall 

ResNet50 Logistic Regression Original 0.994 0.994 0.994 

ResNet50 SVM Original 0.988 0.988 0.988 

ResNet50 KNN Original 0.968 0.968 0.968 

ResNet50 Decision Tree Original 0.945 0.945 0.945 

ResNet50 Random Forest Original 0.972 0.971 0.972 

ResNet50 Gradient Boosting Original 0.978 0.978 0.978 

ResNet50 XGBoost Original 0.981 0.980 0.981 

ResNet50 LightGBM Original 0.977 0.977 0.977 

ResNet50 Naive Bayes Original 0.947 0.947 0.947 

ResNet50 MLP Original 0.995 0.995 0.995 

ResNet50 Logistic Regression SMOTE 0.994 0.994 0.994 

ResNet50 SVM SMOTE 0.988 0.988 0.988 

ResNet50 KNN SMOTE 0.968 0.968 0.968 

ResNet50 Decision Tree SMOTE 0.945 0.945 0.945 

ResNet50 Random Forest SMOTE 0.972 0.971 0.972 

ResNet50 Gradient Boosting SMOTE 0.978 0.977 0.978 

ResNet50 XGBoost SMOTE 0.981 0.980 0.981 

ResNet50 LightGBM SMOTE 0.977 0.977 0.977 

ResNet50 Naive Bayes SMOTE 0.947 0.947 0.947 

ResNet50 MLP SMOTE 0.994 0.994 0.994 

VGG16 Logistic Regression Original 0.991 0.991 0.991 

VGG16 SVM Original 0.989 0.989 0.989 

VGG16 KNN Original 0.971 0.971 0.971 

VGG16 Decision Tree Original 0.946 0.946 0.946 

VGG16 Random Forest Original 0.968 0.968 0.968 

VGG16 Gradient Boosting Original 0.984 0.984 0.984 

VGG16 XGBoost Original 0.989 0.989 0.989 

VGG16 LightGBM Original 0.987 0.987 0.987 

VGG16 Naive Bayes Original 0.969 0.960 0.960 

VGG16 MLP Original 0.993 0.993 0.993 

VGG16 Logistic Regression SMOTE 0.991 0.991 0.991 

VGG16 SVM SMOTE 0.989 0.989 0.989 

VGG16 KNN SMOTE 0.968 0.968 0.968 

VGG16 Decision Tree SMOTE 0.954 0.954 0.954 

VGG16 Random Forest SMOTE 0.984 0.984 0.984 

VGG16 Gradient Boosting SMOTE 0.988 0.988 0.988 

VGG16 XGBoost SMOTE 0.987 0.987 0.987 

VGG16 LightGBM SMOTE 0.987 0.987 0.987 

VGG16 Naive Bayes SMOTE 0.954 0.954 0.954 

VGG16 MLP SMOTE 0.993 0.993 0.993 
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EfficientNetB0 Logistic Regression Original 0.991 0.991 0.991 

EfficientNetB0 SVM Original 0.991 0.991 0.991 

EfficientNetB0 KNN Original 0.964 0.964 0.964 

EfficientNetB0 Decision Tree Original 0.984 0.983 0.984 

EfficientNetB0 Random Forest Original 0.984 0.984 0.984 

EfficientNetB0 Gradient Boosting Original 0.985 0.985 0.985 

EfficientNetB0 XGBoost Original 0.988 0.988 0.988 

EfficientNetB0 LightGBM Original 0.987 0.987 0.987 

EfficientNetB0 Naive Bayes Original 0.980 0.981 0.981 

EfficientNetB0 MLP Original 0.993 0.993 0.993 

EfficientNetB0 Logistic Regression SMOTE 0.992 0.992 0.992 

EfficientNetB0 SVM SMOTE 0.991 0.991 0.991 

EfficientNetB0 KNN SMOTE 0.964 0.964 0.964 

EfficientNetB0 Decision Tree SMOTE 0.984 0.983 0.984 

EfficientNetB0 Random Forest SMOTE 0.984 0.984 0.984 

EfficientNetB0 Gradient Boosting SMOTE 0.988 0.988 0.988 

EfficientNetB0 XGBoost SMOTE 0.988 0.988 0.988 

EfficientNetB0 LightGBM SMOTE 0.987 0.987 0.987 

EfficientNetB0 Naive Bayes SMOTE 0.980 0.981 0.981 

EfficientNetB0 MLP SMOTE 0.993 0.993 0.993 

DenseNet121 Logistic Regression Original 0.991 0.991 0.991 

DenseNet121 SVM Original 0.991 0.991 0.991 

DenseNet121 KNN Original 0.994 0.994 0.994 

DenseNet121 Decision Tree Original 0.945 0.945 0.945 

Table 6. Evaluation Results for Dataset 3 

Feature Model Classifier Technique Accuracy F1-score Recall 

DenseNet121 Random Forest Original 0.979 0.979 0.979 

DenseNet121 Gradient Boosting Original 0.983 0.983 0.983 

DenseNet121 XGBoost Original 0.988 0.988 0.988 

DenseNet121 LightGBM Original 0.985 0.985 0.985 

DenseNet121 Naive Bayes Original 0.962 0.962 0.962 

DenseNet121 MLP Original 0.992 0.992 0.992 

DenseNet121 Logistic Regression SMOTE 0.991 0.991 0.991 

DenseNet121 SVM SMOTE 0.990 0.990 0.990 

DenseNet121 KNN SMOTE 0.974 0.974 0.974 

DenseNet121 Decision Tree SMOTE 0.951 0.951 0.951 

DenseNet121 Random Forest SMOTE 0.980 0.980 0.980 

DenseNet121 Gradient Boosting SMOTE 0.983 0.983 0.983 

DenseNet121 XGBoost SMOTE 0.988 0.988 0.988 

DenseNet121 LightGBM SMOTE 0.985 0.985 0.985 

DenseNet121 Naive Bayes SMOTE 0.962 0.962 0.962 

DenseNet121 MLP SMOTE 0.993 0.993 0.993 
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MobileNetV2 Logistic Regression Original 0.991 0.991 0.991 

MobileNetV2 SVM Original 0.993 0.993 0.993 

MobileNetV2 KNN Original 0.974 0.974 0.974 

MobileNetV2 Decision Tree Original 0.938 0.938 0.938 

MobileNetV2 Random Forest Original 0.971 0.971 0.971 

MobileNetV2 Gradient Boosting Original 0.976 0.976 0.976 

MobileNetV2 XGBoost Original 0.980 0.980 0.980 

MobileNetV2 LightGBM Original 0.981 0.981 0.981 

MobileNetV2 Naive Bayes Original 0.943 0.943 0.943 

MobileNetV2 MLP Original 0.990 0.990 0.990 

MobileNetV2 Logistic Regression SMOTE 0.991 0.991 0.991 

MobileNetV2 SVM SMOTE 0.993 0.993 0.993 

MobileNetV2 KNN SMOTE 0.974 0.974 0.974 

MobileNetV2 Decision Tree SMOTE 0.936 0.936 0.936 

MobileNetV2 Random Forest SMOTE 0.969 0.969 0.969 

MobileNetV2 Gradient Boosting SMOTE 0.975 0.975 0.975 

MobileNetV2 XGBoost SMOTE 0.980 0.980 0.980 

MobileNetV2 LightGBM SMOTE 0.981 0.981 0.981 

MobileNetV2 Naive Bayes SMOTE 0.943 0.943 0.943 

MobileNetV2 MLP SMOTE 0.990 0.990 0.990 

Table 7. Statistical Test Results Between Top Models 

Dataset Model 1 Model 2 Mean Acc. 1 Mean Acc. 2 t-test p Wilcoxon p 

Dataset 3 ResNet50+MLP EffNetB0+MLP 0.996 0.993 0.038 0.04 

Dataset 1 DenseNet121+MLP ResNet50+MLP 0.978 0.968 0.027 0.03 

8. Conclusion 

This work presents a deployment-friendly pipeline for breast-image classification that decouples deep feature 

extraction from classification, enabling transparent ablations, simple imbalance remedies, and practical compute 

reporting. Across three datasets, EfficientNet-B0/ResNet50 features with MLP consistently reached very high accuracy 

(up to 99.6% on balanced, high-quality data), while DenseNet121+MLP with SMOTE performed best on imbalanced 

multiclass data. We found SMOTE markedly beneficial only when class skew was pronounced, reinforcing that 

imbalance handling should be data-driven rather than automatic. Error analyses highlighted very low false negatives 

(e.g., sensitivity 99.44% on Dataset 3), yet we emphasize careful review of failure cases given their clinical 

consequences. 

From a translational perspective, the modular design eases integration into hospital workflows: feature extraction 

can be precomputed on PACS servers, lightweight classifiers tuned per site, and explainability (Grad-CAM/SHAP) 

surfaced within radiologists’ viewers for case discussion. We also report simple latency/memory metrics to inform 

deployment in resource-constrained settings. Limitations include potential dataset bias and the absence of fully 

independent external validation; future work will target CBIS-DDSM dataset and prospective multi-site evaluations. 

Additional directions include ensemble feature backbones, few-shot learning for rare phenotypes, and human-AI 

teaming protocols aligned with recent screening studies. By emphasizing adaptability, interpretability, and 

measured compute alongside accuracy, this study provides a pragmatic path toward safe, trustworthy AI assistance 

in breast cancer imaging. 
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8.1. Limitations and Future Work 

Despite promising results, our approach faces several limitations. The computational requirements of deep feature 

extraction present a significant barrier to real-time or point of-care deployment in resource-limited environments. While 

MobileNetV2 offers a more efficient alternative, further optimization is needed for practical use in such settings. 

Additionally, our experiments confirmed that SMOTE provides limited benefit for balanced datasets, pointing to the 

need for more advanced data augmentation techniques that can enhance model performance without depending on class 

balancing alone. We also observed potential overfitting in our highest-performing models, particularly those exceeding 

99% accuracy. Although cross-validation was employed, it is possible that some models learned dataset-specific details, 

limiting generalizability. This finding highlights the value of external validation on independent datasets from diverse 

clinical sources. 

A key limitation of this work is that the models were validated only on three benchmark datasets. Although these 

datasets are diverse and include both balanced and imbalanced cases, they do not capture the full heterogeneity of clinical 

practice. Future work will extend validation to independent datasets such as CBIS-DDSM and INbreast for 

mammography, and Break His for histopathology, to test generalization across populations, devices, and acquisition 

settings. From a clinical perspective, we envision this system primarily as a diagnostic aid integrated into hospital 

workflows rather than a stand-alone diagnostic tool. Feature extraction can be pre-computed on PACS servers, while 

lightweight classifiers can be tuned per site. Explainability modules (Grad-CAM, SHAP) allow clinicians to visualize 

why a prediction was made, building trust and supporting case review. These integration strategies are intended to make 

the pipeline practical not only in advanced hospitals but also in resource-constrained environments, where computational 

cost and transparency are crucial. 

Future research should explore few-shot learning methods for rare tumor subtypes, which remain a persistent clinical 

challenge. Developing hybrid model architectures that combine the strengths of different approaches could also help 

address the limitations of individual models [26]. Additionally, testing these systems on broader clinical data; including 

diverse patient populations, imaging devices, and acquisition protocols; will enhance their applicability and robustness 

in real-world scenarios. 
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