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Abstract

Strokes continue to be a primary reason for disability and death around the globe. Annually, over 12.2 million new strokes
occur, which necessitates the development of early detection and intervention tools to reduce the potential harm. This
systematic review and bibliometric analysis aim to review and visualize recent advances in predicting stroke or post-stroke
effects using bio-signals, either with machine learning (ML) or deep learning (DL). The included studies were published
between 2016 and 2024. A comprehensive search of IEEE, PubMed, MDPI, and ScienceDirect databases was performed
using keywords related to stroke prediction, machine learning, deep learning, and bio-signals. From an initial pool of 152
studies, 15 studies met the inclusion criteria through the screening process. South Korea contributed the most to publishing
studies on stroke prediction using bio-signals. The results show that Electroencephalography (EEG) is the most used bio-
signal in the reviewed studies. The sample size ranged from 3 to 4068. The top ten cited journals in the selected literature
are high-ranked journals, which indicates the scientific validity of the concept and its potential for dissemination.

Keywords: Applied Al; Bio-Signals; Deep Learning; EEG; Machine Learning; Stroke Detection; Post-Stroke Effect; Bibliometric Analysis.

1. Introduction

Strokes continue to be a primary reason for disability and death around the globe. Every year, over 12.2 million new
strokes occur. In addition, above the age of 25, one in four individuals will experience a stroke in their lifetime, which
necessitates the development of early detection and intervention tools [1]. Brain stroke, as a cerebrovascular accident
(CVA), is a medical disorder that happens when the blood supply to the brain is suddenly disrupted. This disturbance
can be produced by a blood vessel obstruction (ischemic stroke) or a blood vessel rupture (hemorrhagic stroke). In either
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case, strokes can cause brain cells to lose oxygen and nutrients, resulting in brain damage and a variety of neurological
symptoms such as paralysis, speech difficulty, and cognitive impairment [2]. Immediate medical intervention is required
to reduce the potential harm from a stroke.

Traditionally, strokes are diagnosed by brain scans and physical examinations, such as Magnetic Resonance Imaging
(MRI) and Computed tomography (CT) scans [3]. Despite these effective techniques, they are time-consuming and
cannot be used continuously since they may increase cancer risk [4]. In contrast, in the last few years, the interest in
exploring the use of bio-signals and machine learning (ML) as potential predictors of stroke occurrence has increased.
Bio-signals, referred to as physiological signals, indicate the measurable electrical or chemical activities produced by
the human body. For example, Electroencephalography (EEG) measures electrical activity in the brain, detecting neural
patterns and diagnosing disorders [5], Electrocardiography (ECG) measures the electrical activity of the heart, aiding in
the diagnosis of cardiac disease and arrhythmias [6], Electromyography (EMG) examines muscle electrical activity and
assists in identifying neuromuscular disorders [7], and Photoplethysmography (PPG) measures variations in blood
volume using fingertip sensors to monitor heart rate and detect blood flow irregularities [8]. These non-invasive methods
are essential for diagnosing and monitoring a variety of medical disorders. In the context of stroke detection, bio-signals
are used to identify specific patterns or changes that may indicate an increased risk of stroke [9].

Despite the growing interest in applying ML/DL techniques to bio signal-based stroke detection, existing published
studies remain limited in different aspects. Most of the studies were centred on a specific region, with a small clinical
dataset size, raising the need for a larger, more diverse dataset. Furthermore, none of the studies covered stroke detection
in the hospital workflow. Additionally, none of the reviewed studies incorporated advanced model performance or
enhancement techniques such as ensemble learning, explainable Al, wavelet transforms, or Fourier transforms. These
gaps emphasize the need for systematic review and bibliometric analysis that focus on the studies that produced stroke
detection or post-stroke effects detection based on ML and DL models using bio-signal data.

This systematic review and bibliometric analysis aims to identify gaps in the literature related to stroke detection or
post-stroke effects detection using bio-signal data with ML and DL models. In addition, it provides a foundation for
developing detection algorithms in the stroke field. To our knowledge, this is the first systematic review and bibliometric
analysis that studies proposed methods applying ML or DL in stroke detection or post-stroke effects detection using bio-
signal data.

Section 2 reveals the previous surveys and reviews utilizing ML and DL models for predicting strokes and post-
stroke effects via bio-signals. Section 3 illustrates the systematic review methodology, including research questions,
search strategy, inclusion and exclusion criteria, study selection, reporting quality assessment, and data extraction. In
Section 4, the results of the systematic review methodology are illustrated, including the PRISMA flowchart, the Al
models that have been used in the literature, and the sample size according to the algorithms used. Section 5 visualizes
the bibliometric analysis of the selected literature based on author keyword co-occurrence and co-citation. Section 6
discusses the findings of the systematic review and bibliometric analysis. Section 7 discusses the limitations of the
reviewed research. Finally, Section 8 concludes our systematic review and provides suggestions for future researchers.

2. Motivation and Related Surveys

Bio-signals are used for many purposes in medical fields, including monitoring conditions, detecting illness, limiting
its effects, and accelerating recovery. Our motivation is to enrich the medical and Al fields by investigating the existing
studies that use bio-signals to detect early-stage strokes or post-stroke effects by utilizing ML or DL. In addition, we
hope this systematic review and bibliometric analysis will motivate researchers to leverage bio-signal data for stroke
detection.

This section presents the previous surveys and reviews utilizing ML and DL models for predicting strokes and post-
stroke effects via bio-signals. The following syntax was used to search for existing surveys and reviews:

(("Machine Learning" OR "Deep Learning” OR "Classification" OR "Supervised Learning" OR "Neural Networks")
AND ("Stroke prediction” OR "Predicting Stroke™) AND (“"bio-signals" OR "ECG" OR "EMG" OR "PPG" OR "EEG")
AND ("Review" OR "Survey")).

Book chapters were excluded from the search due to their specific focus, which was not aligned with the research
objectives. Scopus searches in titles, keywords, and abstracts, while the MDPI search focuses on titles and keywords.
PubMed and Google Scholar are used for searches that concentrate on titles and abstracts. IEEE Xplore uses general
settings. The search results are shown in Table 1.

As shown in Table 1, the search results totaled five articles. Google Scholar and IEEE Xplore have no articles that
match our search query. We scrutinize each research to ensure that it meets our search keywords. None of the five studies
conducted a systematic review and bibliometric analysis on utilizing ML and DL Models for predicting strokes and post-
stroke effects via bio-signals, including ECG, EMG, PPG, and EEG. We aim for this paper to contribute significantly to
applying Al in the medical field to predict stroke early by utilizing bio-signals.
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Table 1. Related surveys and reviews

Ref. Type Database Year Stroke ML DL ECG EMG PPG EEG Bibliometric Note

[10] Conference Paper Scopus 2024 v v X v X v X X

[11] Review Scopus PubMed 2020 X v X N X X X X Atrial Fibrillation (AF)

[12] Review MDPI 2022 X X X X X X v v Rehabilitation

[13] Review MDPI 2022 v X X X X X X

[14] Review MDPI 2021 X X v Vv X X X X Atrial Fibrillation (AF)
Our Study ~ Systematic Review - 2024 v v v Y v v v v

3. Systematic Reviews Methods

This review uses Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To specify the
research expectation, it is crucial to clearly define research questions, search strategy, and selection criteria.

3.1. Research Questions (RQs)

To define the key components of the research questions, this review utilized the PICO framework.
¢ RQ1: What bio-signals can be effectively utilized for the early detection of strokes?

¢ RQ2: What are the most ML and DL classifiers used with bio-signal data to detect strokes?

e RQ3: What are the most promising ML and DL models regarding result accuracy?

¢ RQ4: Which countries contribute the most to enriching research in this field?

3.2. Search Strategy

The reviewed studies were collected from IEEE, PubMed, MDPI, ScienceDirect, and Nature. The following
keywords were used: (“Machine Learning,” OR “Deep Learning” OR “Classification” OR “Supervised Learning” OR
“Neural Networks”) AND (“Stroke prediction” OR “Predicting Stroke”) AND (“bio-signals” OR “ECG” OR “EMG”
OR “PPG” OR “EEG”). After conducting an extensive search across multiple databases, a comprehensive protocol
based on specific inclusion criteria was established to identify publications that match the requirements of the review.
The qualified studies that met the following inclusion criteria were considered: (a) publication in English; (b) publication
in high-ranking journals or conferences and excluding reviews; (c) publication between the years 2016 and 2024; (d)
contains experiment and result sections; (e) Focused on predicting stroke or poststroke effects detection using bio-signal
data; and (f) Availability of the complete study rather than just abstracts or notes. This systematic review aims to review
recent advances in supervised ML and DL models for stroke detection or post-stroke effects detection.

3.3. Inclusion and Exclusion Criteria

An article is considered in this review when it meets the inclusion criteria as follows:
o Written English language;
¢ Published in high-ranking journals or conferences;

o Published between the years 2016 and 2024;

o Focused on predicting stroke or post-stroke effects detection;

e Using bio-signal data;

o Availability of the complete study rather than just abstracts or notes.

On the other hand, an article is not considered when it fits in one of the exclusion criteria as follows:
o Utilizing clinical evaluations, imaging (CT, MRI, MRA, etc.), blood tests, or any non-signal-based data;
e The source (journal or conference) is not peer-reviewed;

o Review, survey, chapter book, thesis, or dissertation articles;

Missing experiment and result;

Missing popular ML/DL metric measurements, e.g., accuracy;
Published prior to 2016;
Written in a language other than English;

Medical-based methods to predict stroke or post-stroke effects detection.
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Due to the sensitivity of the topic in the medical field, our strict criteria may unintentionally filter out innovative or
non-traditional approaches that are published within the scope that are not covered by our inclusion criteria. However,
including such excluded research could extend to other types of research, such as evidence-based, case studies, and
early-stage innovations. In addition, including research from a non-peer-reviewed high-ranking journal may reduce bias
in presenting positive results, thereby capturing a broader picture of the techniques. However, it may introduce more
challenges in the assessment.

3.4. Study Selection

To evaluate the appropriateness of the studies obtained from the searches by examining the titles and abstracts of all
articles. In case of any disagreement, extensive discussion was employed. For all studies considered relevant, their full
text was thoroughly reviewed. The studies were considered eligible if they met the inclusion criteria.

3.5. Reporting Quality Assessment

A customized checklist items, as shown in Table Al, was created to evaluate the risk of bias in the selected studies
that developed ML and DL Prediction Models for bio-signal data. Studies are assessed through their title, abstract,
introduction, methods and results, and other information.

3.6. Data Extraction

A detailed form was created to collect data in an organized manner, which helps us extract the study characteristics
(authors, publication year, study objective), methods (techniques and models), data (source of data, type of data, sample
size), participants (participants’ condition), and results (reported performance measure, code availability).

3.7. Citation of Tables and Figures

All tables and figures included in this systematic review paper are clearly cited and referenced within the main text.
Additionally, supplementary materials are included in Appendix I, where Table A1 summarizes the customized checklist
for the research sections criteria, Table A2 represents the extracted items from the reviewed papers, Table A3 illustrates
the quality assessment data for each study, and lastly Table A4 includes the study author, objective, source of data, type
of data, sample size, techniques, outcome, region under study, and published year.

4. PRISMA Results

We identified a total of 153 studies, from which 11 studies were from IEEE, 12 studies from MDPI, nine studies
from PubMed, 115 studies from ScienceDirect, and six studies from Nature. After the removal of duplicates, as well as
abstract and title screening, 57 studies were considered potentially relevant, 31 of which were not accessible/not
available. After screening the full articles of accessible articles, 15 studies were identified for information extraction.
The process is illustrated in Figure 1. All studies were published as peer-reviewed publications in reliable and well-
known journals and conferences. All included studies were published after 2015, with more than half (9 studies)
published after 2020, from which two studies were published in 2021 [15, 16], five studies were published in 2022 [17-
21], two studies were published in 2023 [22, 23], and one study was published in 2024 [24]. In terms of regions under
study, South Korea (7) [15-17, 20, 24, 25-26] and USA (2) [21, 22] make up more than half of the sample. Pakistan
[27], Canada [28], and India [19] had one study each. Whereas the rest of the studies (3) [18, 23, 29] did not mention
the region under study.

All included studies focused on stroke detection, except for two studies [21, 29] which focused on post-stroke effects
detection. Out of the fifteen studies, more than half of the studies (8) [15-18, 21, 27-29] used EEG signal data, whereas
three studies [19, 22, 25] used ECG signal data, three studies [26, 23, 24] used EMG signal data, and one study [20]
used a combination of ECG and PPG signal data. For sources of data, more than half of the studies (11) [15-17, 19-21,
24-28] collected data from hospitals, while some studies (3) [18, 22, 23] utilized data from online databases, one study
[29] did not mention clear information about how the utilized dataset was collected. More than half of the studies (9)
[15-17, 19-21, 24-26] utilized datasets that include more than 100 samples, while some of the studies (5) [22-23, 27-29]
used datasets that include less than 100 samples, and one study [18] did not mention clearly the sample size.

For predictive models’ development, the most used ML methods were RF (6) [16, 20, 24-26, 28], SVM (3) [24, 25,
271, KNN (2) [24-25], LR (2) [24, 25], DT (2) [20, 24]. Whereas Adaboost [17], XGBoost [17], LightGBM [17], NB
[25], LDA [29], and RDA+KDE classifier [21] were used by one study each. Meanwhile, the most used DL methods
were CNN (3) [18-19, 22] and LSTM (2) [19, 26] and ensemble of CNN and LSTM [15, 20]. Whereas a single study
CNN and bidirectional LSTM in one model [15], another study used RNN [19], and one study used Stacked CNN with
LSTM and GMDH [23]. Upon model development and evaluation, the highest accuracy among the studies was obtained
by [24], which developed a RF model that scored a remarkable accuracy of 100%. The number of studies published
based on the algorithms used each year is depicted in Figure 2.
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Identification of studies via databases

Records identified through search
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Nature (n=6)
h
Records screened p | Records excluded
(n=130) (n=73)
h
Reports sought for retrieval .| Reports not retrieved
»
w0 (n=57) (n=31)
=
a \d
Reports assessed for eligibility Reports excluded:
(n=26) —> Missing Information (n = 8)
Unstructured Information (n = 3)
v
B
g Studies included in review
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Figure 1. PRISMA Flowchart
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Figure 2. Number of studies published according to the algorithms used each year
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We considered eleven customized checklist items for each study, as depicted in Figure 3. Two items (1) and (2) are
about the title and abstract sections. One item (3) is about the introduction section. Seven items (4a)(4b)(5)(6)(7)(8a)(8b)
are about the methods and results sections, and one item (9) is about the study code. Seven items (1)(2)(3)(4b)(7)(8a)(8b)
are reported by all studies. Three items (4a)(5)(6) are reported by the majority of studies. However, item (9) is reported
by one study [28] only as depicted in Figure 4. The relationship between the algorithms used and the sample size is
depicted in Figure 5. ML algorithms were used with smaller sizes when compared to DL algorithms. For example, the
mean and median of the RF algorithm are 312.4 and 273, respectively. On the other hand, the mean and median of the
CNN algorithm are 2069.5. All sample sizes were less than 600 except for study [19], which has a sample size equal to

4068 and used CNN, RNN, and LSTM algorithms. In addition, Table 2 presents a summary of the studies.

Number of studies

1dentify the study as developing andjor validating a prediction model.

2.Provide a summary of objectives, study design, results, and conclusions

Vol. 6, No. 3, September, 2025

———

3 Specify the objectives and aims, including whether the study describes the development or validation of the model or both, [ s

%

g 4a.Specify the source of data. 1
2
= 4b.Specify the type of data (e.g.. EEG, MEG, ECG, PPG).
a
2
f 5.Specify participants’ condition (e.g.. patients, healthy).
2
O &.Explain how the study size was arrived at 1
7.Clearly define all and used in ing and/or validating the ion model.
8a.Clearly define the outcome that is predicted by the prediction model
8b.Report performance measures IS I —m,
9Provide the code of the study
0 5 10
I Yes [l No NA
Figure 3. Number of studies reported for each checklist item
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Figure 4. Number of checklist items reported in each study
Sample Size by Algorithms
CNN-Bidirectional LSTM 1

CNN-LSTM
Bidirectional LSTM

NN)
multilayer perceptron(iLP)
(RDA+KDE) classifier

Decision Tree(DT)

Logistic Regression(LR)
K-Nearest Neighbor (KNN)
Naive Bayes (NB)

LightGBM

XGBoost

AdaBoost

Random Forest(RF)

Support Vector Machine (SVM)

E"" Hlé@ -

1000 1500 2000 2500 3000 3500 4000

Sample Size

Figure 5. Boxplots showing the distribution of sample size according to algorithms used
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Table 1. A summary of the reviewed studies

Ref. Objective Data source Data type Si?;sle Techniques Outcome
Reveal the occurrence of stroke in patients From Shaheed Mohtarma Benazir SVM: Precision: 100%
[27]  who have previously survived a stroke or Bhutto  Medical ~ University, EEG Signals. 30 ML: SVM. ’ I '0 °
who have a high risk of experiencing stroke.  Larkana, Pakistan. Recall: 99.16%
(LjJtiI_izing an trin([eixfpensiVﬁ p'inlabtle kEE(Z ML: RF - Muse by RF: Accuracy: 76%
evice as a method for prehospital stroke an s ) . : i T
[28] examining whether EEG data can be used to University of Alberta Hospital. EEG Signals. 25 Interreagé?dn EITECG ;d(ne;/;;:e to Sens!tl_w_ty. 63%
detect changes in stroke intensity. gnats. Specificity: 86%
Raw values showed the best accuracy.
LSTM: Accuracy: 70.1%
Presented a new way for applying deep Emergency Medical Center of DL: LSTM, Bidirectional Bidirectional LSTM:
[15] learning models to raw EEG data without Chungnam National University ~EEG Signals. 273 LSTM, CNN-LSTM, Accuracy: 91.8%
relying on the frequency features of EEG. Hospital. CNN-Bidirectional LSTM. CNN-LSTM: Accuracy: 93.7%
CNN-Bidirectional
LSTM: Accuracy: 94.0%
Developing a health monitoring system that Emergency Medical Center and
can anticipate the symptoms of stroke Rehabilitation Department of . X . o
[16] diseases in old people in real-time while they ~ Chungnam National University EEG Signals. 273 ML: RF. RF: Accuracy 92.51%
walk on a regular basis. Hospital.
[17] Classifying stroke and healthy control groups Korea Research Institute of EEG Signals 123 ML: AdaBoost, XGBoost, AdaBoost:
for stroke prediction in active situations. Standards and Science. gnats. and LightGBM. Accuracy: 80%
RESNET-50:
Accuracy: 90%
Sensitivity: 100%
. . Deep neural network
Develop models to categorize EEG signalsas Normal and abnormal EEG . p 3
18] irokes or non-strokes. activity from PhysioNet. EEG Signals.  Unknown arcmte;:(;rf/' GRgSlNGET 50, VGG-16:
. Accuracy: 90%
Specificity: 100%
Precision: 100%
KNN: Accuracy: 96.6%
Develop a classification model using . . . . RF: Accuracy: 94.4%
[25] machine learning and ECG signals for [C)ggjl%r:]argoumagg?:al Hospital, ECG Signals. 132 g’lal;éivKMN',\? Fa'n’[\j‘al_'\ée SVM: Accuracy: 85.4%
diagnosing stroke disease. ' ) ' ! ’ Naive Bayes: Accuracy: 72.7%
LR: Accuracy: 66.9%
Proposing a medical framework to detect BL: LSTM. CNN. and LSTM: Accuracy: 93.78%
[19]  abnormalities in the ECG associated with Indian hospitals. ECG Signals. 4068 ’ RN'N ! CNN: Accuracy: 89.25%
stroke disease. ' RNN: Accuracy: 86.19%
CNN: Accuracy: 99.7%
122] Developing a classification model based on The cerebral  vasoregulation ECG Signals n Stacking ensemble model F1: 99.69%
ECG signals for stroke diagnosis. Dataset. gnass. of CNN models. Recall: 99.71%
Precision: 99.67%
Emergency Medical Center and
[26] Developing a stroke prediction system with the Department of Rehabilitation EMG Signals 558 ML: RF. RF: Accuracy: 90.38%
the use of real-time EMG signals. Medicine at Chungnam National gnals. DL: LSTM. LSTM: Accuracy: 98.96%
University Hospital
EMG Lower Limb Dataset :
Proposing a telemedicine system that predicts . DL: Stacked CNN + LSTM Stacked CNN + LSTM + GMDH:
(23] heart, and brain stroke mHealth Dataset EMG Signals. 38 + GMDH. Accuracy: 99%
' ' EMG Physical Action Dataset. Explainable Al (XAI). y:
Emergency medical center and DL:
o : an ensemble structure .
. Di Tree: A( 1 91.56%
Develop multi-models based on ML, ECG, depa_rt_ment of rehabllltgitlon ECG and PPG that combines CNN and et:lswn_ ree ccyracy 91.56%
[20] and PPG signals medicine at Chungnam National Signals 574 LSTM RF: Accuracy: 97.51%
Enlversﬁy Hospital, Republic of ML: Decision Tree, RF. CNN-LSTM: Accuracy: 99.15%
orea.
Decoding stroke patients” gait intentions . Linear Discriminant LDA: Accuracy: 73.2%
(29] using EEG signals. Unknown EEG Signals. 3 Analysis (LDA). Delay is 0.13 s
Proposing system combines EEG data and (RDA+KDE):
Augmented Reality (AR) to identify the University of Pittsburgh Medical . . . .
(1] presence of Visual-Spatial Neglect (SN) in  Center Inpatient Rehabilitation. EEG Signals. 226 (RDA+KDE) Classifier. Average train AUC: 0.788
stroke patients. Average test AUC: 0.760
RF: Accuracy: 100%
Examine the impact of the statistical features LR: Accuracy: 96%
of muscle activity of the major leg muscles . ’ T DT: Accuracy: 94%
[24] during gait as predictive factors across Multiple ~medical institutions EMG Signals. 240 DT, RF, LR, MLP, SVC, MLP: Accuracy: 99%

various models to differentiate between
stroke patients and healthy individuals.

across South Korea.

K-NN, NB.

SVM: Accuracy: 94%
NB: Accuracy: 77%
KNN: Accuracy 85%

Table 3 illustrates a customized structured bias matrix employed across five key dimensions: (D1) dataset clarity,

(D2) model description, (D3) evaluation metrics, (D4) validation approach, and (D5) reproducibility. Table 4.
comprehensively explain each dimension definition and evaluation guidance. The results of the risk bias matrix
demonstrated low bias across (D1-D2), indicating that most studies provided transparent information related to utilized
dataset, models, evaluation metrics and validation procedure. However, (D5) reproducibility showed high bias among
studies, due to limited access to code or data sharing, which prevented replication. The use of risk bias matrix ensured
comparability of results across diverse methodologies and robustness of performance metric extraction from
heterogeneous sources.
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Table 2. Customized risk of bias matrix

Ref D1: Clarity D2: Model D3: Evaluation D4: Validation D5:
' of dataset  description metric (CVv) Reproducibility

Cyber Physical System for Stroke Detection [27] Low bias Low bias Low bias Low bias High bias
Predicting stroke severity with a 3-min recording from the Muse . . . . .
portable EEG system for rapid diagnosis of stroke [28] Low bias Low bias Low bias Low bias Low bias
Deep Learning-Based Stroke Disease Prediction System Using Real- . . . . . .
Time Bio Signals [15] Low bias Low bias Low bias Low bias High bias
Machine-Learning-Based Elderly Stroke Monitoring System Using . . . . . .
Electroencephalography Vital Signals [16] Low bias Low bias Low bias Low bias High bias
Explainable Artificial Intelligence Model for Stroke Prediction Using . . . . . .
EEG Signal [17] Low bias Low bias Low bias Low bias High bias
EEG Classification for Stroke Detection Using Deep Learning . . . . . . .
Networks [18] High bias Low bias Low bias Low bias High bias
Evaluation of ECG Features for the Classification of Post-Stroke . . . . . .
Survivors with a Diagnostic Approach [25] Low bias Low bias Low bias Low bias High bias
Stroke Disease Prediction based on ECG Signals using Deep Learning . . . . . .
Techniques [19] Low bias Low bias Low bias Low bias High bias
A Stacked Ensemble Model for Automatic Stroke Prediction Using . . . . . .
only Raw Electrocardiogram [22] Low bias Low bias Low bias Low bias High bias
Al-Based Stroke Disease Prediction System Using Real-Time Low bias Low bias Low bias Low bias High bias

Electromyography Signals [26]

A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep
Learning Model for Stroke Prediction Applied on Mobile Al Smart Low bias Low bias Low bias Low bias High bias
Hospital Platform [23]

Al-Based Stroke Disease Prediction System Using ECG and PPG Bio-

Signals [20] Low bias Low bias Low bias Low bias High bias
‘I?s;e-thg]v?/rY é!al:tn E%i?liitt;?itggt{?sr}r?g Egreon[izcg?tmke Patients Towards High bias Low bias Low bias Low bias High bias
D ISl Vol Nl T S Lowbias  Lowbias  Lowbis  Lowbias  Hgnbis
Data-Driven Stroke Classification Utilizing Electromyographic Muscle Low bias Low bias Low bias Low bias High bias

Features and Machine Learning Techniques [24]

Table 3. Criteria definitions for risk of bias assessment

Code Description Evaluation guidance

. Rate whether dataset source, size, and characteristics are clearly described. High bias:
D1 Clarity of dataset L p A ;
unclear/missing dataset info. Low bias: fully described.

. Is the algorithm/architecture and key settings described? Low bias: algorithm, parameters,
D2 Model description and rationale provided. High bias: named but lacks necessary detail.
D3 Evaluation metric used Low blas_: me_tm.:s (e.g., Accuracy, F1, AUC,_ Sensitivity/Specificity) appropriate and
stated. High bias: unsuitable or unreported metrics.

- alidati Is validation proper (e.g., holdout, CV, external test) with no leakage? High bias: train/test
D4 Validation (cross-validation) not separated, or leakage suspected. Low bias: appropriate CV/holdout described.

Can results be reproduced (code/data availability, sufficient procedural detail)? High bias:

D5 Reproducability no access and insufficient detail. Low bias: code/data or full protocol provided.

5. Bibliometric Analysis

In this section, bibliometric analysis is conducted to visualize the literature in Table 2 using VOSviewer. The
bibliometric analysis aims to discover trending topics and ML/DL methods for using bio signals in stroke detection. In
addition, we aspire to assess the trustworthiness of the knowledge basis in selected studies based on the source ranking.

5.1. Author Keyword Co-Occurrence

Author keyword co-occurrence analysis discloses the knowledge produced by selected studies. Clusters are formed
based on the authors’ keywords for citing papers that frequently appear together [30]. In Figure 6, the bibliometric
analysis presents the co-occurrence analysis based on authors’ keywords of studies in Table 2. The bibliometric data was
extracted from Scopus. Data was preprocessed to unify the keywords regarding the abbreviation. We use index keywords
of these articles [28, 29] because the authors’ keywords are missing.
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Figure 6. The authors’ keywords co-occurrence network visualization

As we see, the center keywords are stroke, EEG, and machine learning. In the visualization map, items with more
occurrences of keywords are shown more prominently than items with fewer occurrences. Therefore, stroke and EEG
are the most common occurrences, followed by machine learning, deep learning, Long Short-Term Memory (LSTM),
ECG, and stroke disease analysis, respectively, as shown in Table 5.

Table 4. The top author keywords occurrence

Keyword Occurrence
Stroke 10
EEG 8

Machine Learning
Deep Learning
Long Short-Term Memory
ECG

e

Stroke Disease Analysis

The links that connect two keywords indicate that these keywords have been appearing in the same publication. The
number of publications in which two keywords occur together increases the link strength. We set the minimum number
of publications for which any two keywords appear together to two publications. The top keyword pairs that have the
most occurrences in two or more publications are stroke with EEG and stroke with machine learning.

This indicates that using EEG in ML and DL models is the most common bio-signal data. In addition, more
researchers have been applying machine learning, which leaves promising avenues for researchers to apply deep learning
models to benefit from their capacity to handle complex data. In addition, there are eight clusters, each represented by
a different color. The clusters were generated by VOSviewer using the association strength method proposed in [31].
The clusters form based on the association strength between the keywords, calculated using the number of co-occurrence
links between keywords.

The largest cluster is the red cluster, which contains the brain, clinical trials, and different terms of human age and
gender, such as male, female, and elderly. The common feature among the red cluster items is that they represent humans
in different circumstances. The second largest is the green, blue, and yellow clusters, which include machine learning,
Long Short-Term Memory (LSTM), CNN, prediction, analysis, model, etc. Its theme is Al terms. The authors’
keywords, which co-occurred a few times, such as explainable Al, wavelet transform, and Fourier transform, indicate
future opportunities for integrating emerging technologies of trend Al methods with the Al-based stroke detection
system. In addition, Figure 7 shows the keywords over the years. The use of machine learning models started around
2021. On the other hand, deep learning models emerged as hew methods to utilize bio-signal data later.

1070



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

discrete wavelet transform
fast fouriertrapsform

explainable ai

classification elis

brainguaves

augmented reality

. ecg mMachipelearning

stroke
physiclogical data el
Y ee
B (EES
-
wearabledevices <an
deeplea rnlng‘ real-time healgh monitoring
ensamble 9 female
brain isehemia
stroke prediction adut
P_ behgwior cerebrovas@Ular accident aged, 80@nd over
emg < intention huliian middigaged | arhophysiology
long short-term memory (Istm) ] e bn
artificial intelligence
biomedical emgsignal proeessi
gmdh neural fetworks
& vosviewer L ;

2018 2020 2022 2024
Figure 7. The distribution of keywords co-occurrence over years

5.2. Co-Citation

Co-citation analysis reveals the foundations of knowledge relied on by selected literature, in which clusters are
formed based on the cited documents, which often occur together [30]. In this analysis, Table 6 presents the most cited
sources that have been cited by five or more of the articles in Table 2. Figure 8 illustrates the co-citation network
visualization among the top ten cited articles. The strongest links are between Stroke, Clinical Neurophysiology, and
Sensors journals. We noticed that all the top ten cited journals are highly ranked journals based on SJR. In addition,
Figure 8 reveals a new track of research and innovation, where neurology, wearable sensors, and Al are combined. This
combination leverages the advantages of each, with neurology providing the clinical and physiological foundation,
wearable sensors facilitating continuous and real-world data acquisition, and Al offering advanced analytical and
predictive capabilities. Accordingly, neurological research and care from periodical, hospital-based assessments are
shifting to continuous and personalized monitoring, which can be done remotely. The combination holds promise for
early disease detection, not only stroke, but may extend to include long-term monitoring of neurodegenerative
conditions, cognitive rehabilitation, and real-time mental health assessment. Even though these emerging
communication fields introduce opportunities for innovation in digital health ecosystems, other challenges arise, such
as data privacy and Explainable Al (XAl), as well as transparency.

Table 5. The top ten co-citation journals based on bibliometric analysis

Journal Citation Rank Publisher
Stroke 33 Q1 American Heart Association
Clinical Neurophysiology 25 Q1 Elsevier
Sensors 19 Q1 MDPI
IEEE Access 17 Q1 IEEE
Journal of Stroke 11 Q1 Korean Stroke Society
Neuropsychologia 7 Q2 Elsevier
PloS One 7 Q1 Public Library of Science
Neurology ® 6 Q1 Wolters Kluwer
Cortex 5 Q1 Lippincott Williams and Wilkins
Applied Science 5 Q2 MDPI
Journal of Neuroscience Methods 5 Q2 Elsevier
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6. Discussion

This systematic review and bibliometric analysis paper reviews and visualizes DL and ML methods with bio-signals
data to detect stroke and post-stroke effects. From 2016 to 2024, there was an interest in publishing studies; 2022 stands
out as the year in which almost a third of the reviewed studies were published. Regarding where most reviewed studies
were published, South Korea contributes the most in the stroke detection field. The most used bio-signal in the reviewed
studies is EEG. Most of the reviewed studies gathered data from hospitals. Moreover, based on the sample size analysis,
the largest sample size among the reviewed studies is 4068 [19]. On the other hand, the smallest sample size is 3 [29].
Notably, only one study did not mention the sample size clearly [18].

The most frequent ML methods used are RF and SVM. RF was used as the only method employed in both studies
[16, 28]. In addition, the RF in studies [25, 26, 20] did not outperform other utilized methods in other studies. On the
other hand, SVM was applied as a single method in the study [27]. However, it did not perform the best in the study
[25]. Additionally, the most used DL methods are CNN and LSTM. CNN was exclusively applied in both studies [22,
18]. Nonetheless, it did not outperform other methods in the study [19]. Conversely, LSTM outperformed in both studies
[19, 26].

DL and ML models were evaluated using metric measurements such as accuracy, precision, and recall. The studies
depended on internal validation to ensure generalization ability. The internal validation techniques used were splitting
the data into train and test, or cross-validation. Despite the differences in the datasets, the RF model outperforms all
other models in terms of accuracy; either RF is used merely [28, 16], or RF was part of the proposed multimodel, such
as [20, 24-26]. Studies such as [32, 33] show that the results of different ML/DL models may be artifacts of dataset size
and preprocessing choices.

On the other hand, signal data suffers from complexity, nonstationarity, and high dimensionality [34]. Additionally,
bio-signal datasets are considered time-series data. They are highly susceptible to interference from unrelated signals,
such as eye blinks and muscle activity, which can serve as noise and yield high inter-individual variability [35, 36].
Nevertheless, some properties of ML/DL models can significantly enhance the results based on the characteristics of the
bio-signal data. For example, the Random Forest (RF) model can handle the noise in signal datasets by aggregating the
decisions across several sub-trees. Additionally, RF is considered a non-linear model, which enables it to work
effectively with the signal dataset. Also, the RF model works well with small datasets, which is particularly applicable
to datasets used in inclusion studies.

CNNs excel in spatial invariance, allowing them to detect patterns regardless of their location in the bio-signal,
making them valuable for shift-invariant data. They generate a hierarchical representation of features, enabling the
identification of complex patterns. CNNs eliminate the need for manual feature engineering, as they can learn and adapt
to the unique qualities of the data. This automation simplifies signal data analysis, improves accuracy in tasks such as
classification and regression, and enhances the power of CNNs for signal processing applications [37]. As bio-signal
datasets are considered time-series data, LSTM is known as one of the DL models designed to learn dependencies from
the data, yielding promising results with bio-signal datasets [19].
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7. Conclusion

In conclusion, this systematic review and bibliometric analysis focused on the recent advancements in supervised
machine learning (ML) and deep learning (DL) models for stroke detection and post-stroke effects detection using bio-
signals. Most of the reviewed studies collected data from hospitals of varying sizes. The most frequently used ML
methods were RF and SVM, while CNN and LSTM were the commonly employed DL methods. The model’s
performance was evaluated using metric measurements like accuracy, precision, and recall, with internal validation
techniques such as data splitting and cross-validation. Future research should aim to overcome the limitations addressed
in this systematic review by incorporating larger and more diverse datasets, conducting external validation on hospital
experiments, and exploring more advanced Al techniques such as ensemble learning, explainable Al, and transfer
learning. By addressing these critical aspects, the field of stroke detection and post-stroke effects detection will advance,
and robust and reliable predictive models will be developed.

7.1. Reviewed Research Gaps

Our systematic review paper identifies several significant gaps in the existing literature that utilize ML and DL to
detect strokes using bio-signals that future researchers could address.

First, the reviewed research highlights an important limitation in the geographic coverage aspect; most of them
originated in South Korea. That limits the generalizability of findings to diverse populations. Hence, there is a crucial
need for cross-cultural datasets and international collaborations. Second, although most of the reviewed studies gathered
data from hospitals, no reviewed study reported the detection of stroke in real hospital workflows. That reveals a
significant gap between experimental results and clinical applicability, suggesting the need to fill the absence of
validation in real-world healthcare settings. Third, although the largest dataset size among all studies was around 4000,
it is considered relatively small to train robust ML and DL models. Future research should consider a larger, high-quality
clinical dataset with external validation to ensure reliability. Fourth, while multiple ML and DL models were developed,
none of the included studies employed an ensemble learning technique that could introduce a promising detection result
by combining robust models. Finally, the authors’ keywords, which co-occurred a few times, such as explainable Al,
wavelet transform, and Fourier transform, indicate future opportunities for integrating emerging technologies of trend
Al methods with the Al-based stroke detection system.

Addressing these gaps will empower future studies and could deliver more reliable health care decisions toward brain
stroke detection. This will require ensuring that they cover a larger, diverse clinical dataset with integration of real
hospital workflows, and testing a variety of model enhancement techniques such as ensemble learning, explainable Al,
wavelet transform, and Fourier transform.
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Table Al. Customized checklist for ML and DL prediction models for bio-signal data

Ref. Section/

Topic Item Checklist Item Page
Title and Abstract
Title 1 Identify the study as developing and/or validating a prediction model.
Abstract 2 Provide a summary of objectives, study design, results, and conclusions.
Introduction
Objectives 3 Specify the objectives and aims, including whether the study describes the development or validation of the model or both.
Methods and Results
4a Specify the source of data.
Data
4b Specify the type of data (e.g., EEG, MEG, ECG, PPG).
Participants 5 Specify participants’ condition (e.g., patients, health).
Sample Size 6 Explain how the study size arrived at.
Model 7 Clearly define all techniques and algorithms used in developing and/or validating the pretrained model.
8 Clearly define the outcome that is predicted by the prediction model.
Outcomes
8a Report on performance measures.
Other Information
Code 9 Provide the code of the study.
Table A2. Data extraction form
Extracted item Comments
Author Name of authors, e.g. Laghari et al. [27]
Objective Specify the objectives and aims.
Source of data Specify the source of data, e.g., Hospital name.
Answer categories:
e EEG signal.
Data type e EMG signal.
e ECG signal.
e PPG signal.
Sample Size Sample size used for building the model.
Techniques List all machine learning / deep learning algorithms used.
Outcome List the performance measures used.
Region under study Specify the region under the study.
Published year Published year of the study.
Table A3. Quality assessment data for each study
Study Checklist items
Title and Abstract  Introduction Methods and Results ?r:?gr
Title and Reference Title  Abstract  Objectives Data Participants Samplesize Models  Outcome Code
1 2 3 4a 4b 5 6 7 8a 8b 9
Cyber Physical System for Stroke Detection [27] Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes No
Predicting stroke severity with a 3-min recording from
the Muse portable EEG system for rapid diagnosis of  Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes Yes
stroke [28]
B:?npg Ihe:{:{]_i?ﬁhga;fg Ssitgrs:é If)li;?ase Prediction System Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes No
System Using Eloencepralogrphy il Signals 1 YeS YeS ves Yes o Yes  Yes Yes  Yes  Yes Yes No
Explainable Artificial Intelligence Model for Stroke Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes No

Prediction Using EEG Signal [17]
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EEG Classification for Stroke Detection Using Deep
Learning Networks [18]

Evaluation of ECG Features for the Classification of
Post-Stroke Survivors with a Diagnostic Approach [25]

Stroke Disease Prediction based on ECG Signals using
Deep Learning Techniques [19]

A Stacked Ensemble Model for Automatic Stroke
Prediction Using only Raw Electrocardiogram [22]

Al-Based Stroke Disease Prediction System Using Real-
Time Electromyography Signals [26]

A Hybrid Stacked CNN and Residual Feedback GMDH-
LSTM Deep Learning Model for Stroke Prediction
Applied on Mobile Al Smart Hospital Platform [23]

Al-Based Stroke Disease Prediction System Using ECG
and PPG Bio-Signals [20]

Detecting Voluntary Gait Intention of Chronic Stroke
Patients Towards Top-Down Gait Rehabilitation Using
EEG [29]

Detection of Stroke-Induced Visual Neglect and Target
Response Prediction Using Augmented Reality and
Electroencephalography [21]

Data-Driven Stroke Classification Utilizing
Electromyographic Muscle Features and Machine
Learning Techniques [24]

Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Unknown

Yes

Yes
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Yes No Unknown Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes

No

No

No

No

No

No

No

No

No

No

Table A4. The study author, objective, source of data, type of data, sample size, techniques, outcome, region under study, published year

Author Objective Data source Data type Se;rigsle Techniques Outcome R;ng Year
Reveal the occurrence of stroke in SVM:
Laghari et al. patients who have previously survived a ~ Shaheed Mohtarma Benazir EEG . cinn 0 .
[27] stroke or who have a high risk of Bhutto Medical University. Signals. 30 ML: SVM. Precision: 100% Pakistan 2018
experiencing stroke. Recall: 99.16%
Utilizing an inexpensive portable EEG ML: RF - Muse b RF: Accuracy: 76%
Wilkinson et device as a method for prehospital stroke University of Alberta EEG y Y I
al. [28] and examining whether EEG data can be Hospital. Signals. 25 InteraXo; IIEII]ECé a.dev;C( Sens!tl.v!ty. 63% Canada 2020
used to detect changes in stroke intensity. to recor signals. Specificity: 86%
Raw values showed the best
accuracy.
LSTM:
Accuracy: 70.1%
Choi et al Prese_nted a new way for applying_ deep  Emergency MedicaI_Center EEG Bidir[e)é_t:ioLnsa-lnl\_AS’TM Bldlrectlonél LS-EM: South
15 ) learning models to raw EEG data without of Chungnam National Sianal 273 CNN-LSTM. CNN- Accuracy: 91.8% K 2021
[15] relying on the frequency features of EEG. University Hospital. Ignais. Bidire—ctionaI'LSTM— CNN-LSTM: orea
’ Accuracy: 93.7%
CNN-Bidirectional
LSTM:
Accuracy: 94.0%
. Developing a health monitoring system  Emergency Medical Center
Choi et al. that can anticipate the symptoms of and Rehabilitation EEG 273 ML: RE RF: South 2021
[15] stroke diseases in old people in real-time ~ Department of Chungnam Signals. o Accuracy 92.51% Korea
while they walk on a regular basis. National University Hospital.
Classifying stroke and healthy control . ML: AdaBoost, AdaBoost:
ISIaT; tal groups for stroke prediction in active K%ﬂzzs;sdesagcnz Isncslteltr:JCt: of S'E EG; 123 XGBoost, and ) '0 }S(OUth 2022
(17 situations. " ignals. LightGBM. Accuracy: 80% orea
RESNET-50:
Accuracy: 90%
Sensitivity: 100%
. Deep neural network
Kumar & Develop models to categorize EEG  Normal and abnormal EEG EEG N
Sengupta [18] signals as strokes or non-strokes. activity from PhysioNet. Signals. Unknown  architecture, RESNET- VGG-16: Unknown 2022
50, and VGG-16. .
Accuracy: 90%
Specificity: 100%
Precision: 100%
KNN: Accuracy: 96.6%
RF: Accuracy: 94.4%
; Develop a classification model using Chungnam National . " SVM: Accuracy: 85.4%
Rathall(rlshnan machine learning and ECG signals for ~ Hospital, Daejeon, South ECGI 132 :\3/”" SVP!?\I’I\TF’ Z‘aL“F/Qe . Y . South 2020
et al. [25] diagnosing stroke disease. Korea. Signals. ayes, ,an . Naive Bayes: Korea
Accuracy: 72.7%
LR: Accuracy: 66.9%
- . . . o
Kumaret Froposing a medical framework to detect ) . ECG DL: LSTM, CNN, and LSTM' Accurac)f' 93.78% .
abnormalities in the ECG associated with Indian hospitals. . 4068 CNN: Accuracy: 89.25% India 2022
al. [19] stroke disease Signals. RNN.
. RNN: Accuracy: 86.19%
CNN:
. Accuracy: 99.7%
CKﬁnvéahr & Developing a classification model based ~ The cerebral vasoregulation ECG el Stacking ensemble . 4 o ° USA 2023
ouchary on ECG signals for stroke diagnosis. Dataset. Signals. model of CNN models. F1:99.69%
[22] Recall: 99.71%
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Yu etal. [26]

Elbagoury et
al. [23]

Yu etal. [20]

Choi et al.
[29]

Mak et al. [21]

Lee et al. [24]

Developing a stroke prediction system
with the use of real-time EMG signals.

Proposing a telemedicine system that
predicts heart, and brain stroke.

Develop multi-models based on ML,
ECG, and PPG signals.

Decoding stroke patients’ gait intentions
using EEG signals.

Proposing system combines EEG data
and Augmented Reality (AR) to identify
the presence of Visual-Spatial Neglect
(SN) in stroke patients.

Examine the impact of the statistical
features of muscle activity of the major
leg muscles during gait as predictive
factors across various models to
differentiate between stroke patients and
healthy individuals.

Emergency Medical Center
and the Department of
Rehabilitation Medicine at
Chungnam National
University Hospital

EMG Lower Limb Dataset
mHealth Dataset
EMG Physical Action
Dataset.

Emergency medical center
and department of
rehabilitation medicine at
Chungnam National
University Hospital

Unknown

University of Pittsburgh
Medical Center Inpatient
Rehabilitation.

Multiple medical institutions
across South Korea.

EMG
Signals.

EMG
Signals.

ECG and
PPG
Signals.

EEG
Signals.

EEG
Signals.

EMG
Signals.

38

574

226

240

ML: RF.
DL: LSTM.

DL: Stacked CNN +
LSTM + GMDH.
Explainable Al (XAl).

DL: an ensemble
structure that combines
CNN and LSTM.
ML: Decision Tree, RF

Linear Discriminant
Analysis (LDA).

(RDA+KDE) Classifier

DT, RF, LR, MLP,
SVC, K-NN, NB.

Vol. 6, No. 3, September, 2025

RF:
Accuracy: 90.38%
LSTM:
Accuracy: 98.96%
Stacked CNN + LSTM +
GMDH:
Accuracy: 99%

Decision Tree:
Accuracy: 91.56%
RF:
Accuracy: 97.51%
CNN-LSTM:
Accuracy: 99.15%

LDA:
Accuracy: 73.2%
Delay is 0.13 s

(RDA+KDE):
Average train AUC: 0.788
Average test AUC: 0.760

RF:Accuracy: 100%
LR: Accuracy: 96%
DT: Accuracy: 94%
MLP:Accuracy: 99%
SVM:Accuracy: 94%
NB:Accuracy: 77%
KNN:Accuracy 85%

South
Korea

Unknown

South
Korea

Unknown

USA

South
Korea

2020

2023

2022

2016

2022

2024
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