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Abstract 

Strokes continue to be a primary reason for disability and death around the globe. Annually, over 12.2 million new strokes 

occur, which necessitates the development of early detection and intervention tools to reduce the potential harm. This 

systematic review and bibliometric analysis aim to review and visualize recent advances in predicting stroke or post-stroke 

effects using bio-signals, either with machine learning (ML) or deep learning (DL). The included studies were published 

between 2016 and 2024. A comprehensive search of IEEE, PubMed, MDPI, and ScienceDirect databases was performed 

using keywords related to stroke prediction, machine learning, deep learning, and bio-signals. From an initial pool of 152 

studies, 15 studies met the inclusion criteria through the screening process. South Korea contributed the most to publishing 

studies on stroke prediction using bio-signals. The results show that Electroencephalography (EEG) is the most used bio-

signal in the reviewed studies. The sample size ranged from 3 to 4068. The top ten cited journals in the selected literature 

are high-ranked journals, which indicates the scientific validity of the concept and its potential for dissemination.  

Keywords: Applied AI; Bio-Signals; Deep Learning; EEG; Machine Learning; Stroke Detection; Post-Stroke Effect; Bibliometric Analysis. 

1. Introduction 

Strokes continue to be a primary reason for disability and death around the globe. Every year, over 12.2 million new 

strokes occur. In addition, above the age of 25, one in four individuals will experience a stroke in their lifetime, which 

necessitates the development of early detection and intervention tools [1]. Brain stroke, as a cerebrovascular accident 

(CVA), is a medical disorder that happens when the blood supply to the brain is suddenly disrupted. This disturbance 

can be produced by a blood vessel obstruction (ischemic stroke) or a blood vessel rupture (hemorrhagic stroke). In either 
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case, strokes can cause brain cells to lose oxygen and nutrients, resulting in brain damage and a variety of neurological 

symptoms such as paralysis, speech difficulty, and cognitive impairment [2]. Immediate medical intervention is required 

to reduce the potential harm from a stroke. 

Traditionally, strokes are diagnosed by brain scans and physical examinations, such as Magnetic Resonance Imaging 

(MRI) and Computed tomography (CT) scans [3]. Despite these effective techniques, they are time-consuming and 

cannot be used continuously since they may increase cancer risk [4]. In contrast, in the last few years, the interest in 

exploring the use of bio-signals and machine learning (ML) as potential predictors of stroke occurrence has increased. 

Bio-signals, referred to as physiological signals, indicate the measurable electrical or chemical activities produced by 

the human body. For example, Electroencephalography (EEG) measures electrical activity in the brain, detecting neural 

patterns and diagnosing disorders [5], Electrocardiography (ECG) measures the electrical activity of the heart, aiding in 

the diagnosis of cardiac disease and arrhythmias [6], Electromyography (EMG) examines muscle electrical activity and 

assists in identifying neuromuscular disorders [7], and Photoplethysmography (PPG) measures variations in blood 

volume using fingertip sensors to monitor heart rate and detect blood flow irregularities [8]. These non-invasive methods 

are essential for diagnosing and monitoring a variety of medical disorders. In the context of stroke detection, bio-signals 

are used to identify specific patterns or changes that may indicate an increased risk of stroke [9]. 

Despite the growing interest in applying ML/DL techniques to bio signal-based stroke detection, existing published 

studies remain limited in different aspects. Most of the studies were centred on a specific region, with a small clinical 

dataset size, raising the need for a larger, more diverse dataset. Furthermore, none of the studies covered stroke detection 

in the hospital workflow. Additionally, none of the reviewed studies incorporated advanced model performance or 

enhancement techniques such as ensemble learning, explainable AI, wavelet transforms, or Fourier transforms. These 

gaps emphasize the need for systematic review and bibliometric analysis that focus on the studies that produced stroke 

detection or post-stroke effects detection based on ML and DL models using bio-signal data. 

This systematic review and bibliometric analysis aims to identify gaps in the literature related to stroke detection or 

post-stroke effects detection using bio-signal data with ML and DL models. In addition, it provides a foundation for 

developing detection algorithms in the stroke field. To our knowledge, this is the first systematic review and bibliometric 

analysis that studies proposed methods applying ML or DL in stroke detection or post-stroke effects detection using bio-

signal data. 

Section 2 reveals the previous surveys and reviews utilizing ML and DL models for predicting strokes and post-

stroke effects via bio-signals. Section 3 illustrates the systematic review methodology, including research questions, 

search strategy, inclusion and exclusion criteria, study selection, reporting quality assessment, and data extraction. In 

Section 4, the results of the systematic review methodology are illustrated, including the PRISMA flowchart, the AI 

models that have been used in the literature, and the sample size according to the algorithms used. Section 5 visualizes 

the bibliometric analysis of the selected literature based on author keyword co-occurrence and co-citation. Section 6 

discusses the findings of the systematic review and bibliometric analysis. Section 7 discusses the limitations of the 

reviewed research. Finally, Section 8 concludes our systematic review and provides suggestions for future researchers. 

2. Motivation and Related Surveys 

Bio-signals are used for many purposes in medical fields, including monitoring conditions, detecting illness, limiting 

its effects, and accelerating recovery. Our motivation is to enrich the medical and AI fields by investigating the existing 

studies that use bio-signals to detect early-stage strokes or post-stroke effects by utilizing ML or DL. In addition, we 

hope this systematic review and bibliometric analysis will motivate researchers to leverage bio-signal data for stroke 

detection. 

This section presents the previous surveys and reviews utilizing ML and DL models for predicting strokes and post-

stroke effects via bio-signals. The following syntax was used to search for existing surveys and reviews:     

(("Machine Learning" OR "Deep Learning" OR "Classification" OR "Supervised Learning" OR "Neural Networks") 

AND ("Stroke prediction" OR "Predicting Stroke") AND ("bio-signals" OR "ECG" OR "EMG" OR "PPG" OR "EEG") 

AND ("Review" OR "Survey")).  

Book chapters were excluded from the search due to their specific focus, which was not aligned with the research 

objectives. Scopus searches in titles, keywords, and abstracts, while the MDPI search focuses on titles and keywords. 

PubMed and Google Scholar are used for searches that concentrate on titles and abstracts. IEEE Xplore uses general 

settings. The search results are shown in Table 1. 

As shown in Table 1, the search results totaled five articles. Google Scholar and IEEE Xplore have no articles that 

match our search query. We scrutinize each research to ensure that it meets our search keywords. None of the five studies 

conducted a systematic review and bibliometric analysis on utilizing ML and DL Models for predicting strokes and post-

stroke effects via bio-signals, including ECG, EMG, PPG, and EEG. We aim for this paper to contribute significantly to 

applying AI in the medical field to predict stroke early by utilizing bio-signals. 
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 Table 1. Related surveys and reviews 

Ref. Type Database Year Stroke ML DL ECG EMG PPG EEG Bibliometric Note 

[10] Conference Paper Scopus 2024 ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ - 

[11] Review Scopus PubMed 2020 ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ Atrial Fibrillation (AF) 

[12] Review MDPI 2022 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ Rehabilitation 

[13] Review MDPI 2022 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ - 

[14] Review MDPI 2021 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ Atrial Fibrillation (AF) 

Our Study Systematic Review - 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - 

3. Systematic Reviews Methods 

This review uses Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). To specify the 

research expectation, it is crucial to clearly define research questions, search strategy, and selection criteria. 

3.1. Research Questions (RQs) 

To define the key components of the research questions, this review utilized the PICO framework. 

 RQ1: What bio-signals can be effectively utilized for the early detection of strokes? 

 RQ2: What are the most ML and DL classifiers used with bio-signal data to detect strokes? 

 RQ3: What are the most promising ML and DL models regarding result accuracy? 

 RQ4: Which countries contribute the most to enriching research in this field? 

3.2. Search Strategy 

The reviewed studies were collected from IEEE, PubMed, MDPI, ScienceDirect, and Nature. The following 

keywords were used: (“Machine Learning,” OR “Deep Learning” OR “Classification” OR “Supervised Learning” OR 

“Neural Networks”) AND (“Stroke prediction” OR “Predicting Stroke”) AND (“bio-signals” OR “ECG” OR “EMG” 

OR “PPG” OR “EEG”). After conducting an extensive search across multiple databases, a comprehensive protocol 

based on specific inclusion criteria was established to identify publications that match the requirements of the review. 

The qualified studies that met the following inclusion criteria were considered: (a) publication in English; (b) publication 

in high-ranking journals or conferences and excluding reviews; (c) publication between the years 2016 and 2024; (d) 

contains experiment and result sections; (e) Focused on predicting stroke or poststroke effects detection using bio-signal 

data; and (f) Availability of the complete study rather than just abstracts or notes. This systematic review aims to review 

recent advances in supervised ML and DL models for stroke detection or post-stroke effects detection. 

3.3. Inclusion and Exclusion Criteria 

An article is considered in this review when it meets the inclusion criteria as follows: 

 Written English language; 

 Published in high-ranking journals or conferences; 

 Published between the years 2016 and 2024; 

 Focused on predicting stroke or post-stroke effects detection; 

 Using bio-signal data; 

 Availability of the complete study rather than just abstracts or notes. 

On the other hand, an article is not considered when it fits in one of the exclusion criteria as follows: 

 Utilizing clinical evaluations, imaging (CT, MRI, MRA, etc.), blood tests, or any non-signal-based data; 

 The source (journal or conference) is not peer-reviewed; 

 Review, survey, chapter book, thesis, or dissertation articles; 

 Missing experiment and result; 

 Missing popular ML/DL metric measurements, e.g., accuracy; 

 Published prior to 2016; 

 Written in a language other than English; 

 Medical-based methods to predict stroke or post-stroke effects detection. 
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Due to the sensitivity of the topic in the medical field, our strict criteria may unintentionally filter out innovative or 

non-traditional approaches that are published within the scope that are not covered by our inclusion criteria. However, 

including such excluded research could extend to other types of research, such as evidence-based, case studies, and 

early-stage innovations. In addition, including research from a non-peer-reviewed high-ranking journal may reduce bias 

in presenting positive results, thereby capturing a broader picture of the techniques. However, it may introduce more 

challenges in the assessment. 

3.4. Study Selection 

To evaluate the appropriateness of the studies obtained from the searches by examining the titles and abstracts of all 

articles. In case of any disagreement, extensive discussion was employed. For all studies considered relevant, their full 

text was thoroughly reviewed. The studies were considered eligible if they met the inclusion criteria. 

3.5. Reporting Quality Assessment 

A customized checklist items, as shown in Table A1, was created to evaluate the risk of bias in the selected studies 

that developed ML and DL Prediction Models for bio-signal data. Studies are assessed through their title, abstract, 

introduction, methods and results, and other information. 

3.6. Data Extraction 

A detailed form was created to collect data in an organized manner, which helps us extract the study characteristics 

(authors, publication year, study objective), methods (techniques and models), data (source of data, type of data, sample 

size), participants (participants’ condition), and results (reported performance measure, code availability). 

3.7. Citation of Tables and Figures 

All tables and figures included in this systematic review paper are clearly cited and referenced within the main text. 

Additionally, supplementary materials are included in Appendix I, where Table A1 summarizes the customized checklist 

for the research sections criteria, Table A2 represents the extracted items from the reviewed papers, Table A3 illustrates 

the quality assessment data for each study, and lastly Table A4 includes the study author, objective, source of data, type 

of data, sample size, techniques, outcome, region under study, and published year. 

4. PRISMA Results 

We identified a total of 153 studies, from which 11 studies were from IEEE, 12 studies from MDPI, nine studies 

from PubMed, 115 studies from ScienceDirect, and six studies from Nature. After the removal of duplicates, as well as 

abstract and title screening, 57 studies were considered potentially relevant, 31 of which were not accessible/not 

available. After screening the full articles of accessible articles, 15 studies were identified for information extraction. 

The process is illustrated in Figure 1. All studies were published as peer-reviewed publications in reliable and well-

known journals and conferences. All included studies were published after 2015, with more than half (9 studies) 

published after 2020, from which two studies were published in 2021 [15, 16], five studies were published in 2022 [17-

21], two studies were published in 2023 [22, 23], and one study was published in 2024 [24]. In terms of regions under 

study, South Korea (7) [15-17, 20, 24, 25-26] and USA (2) [21, 22] make up more than half of the sample. Pakistan 

[27], Canada [28], and India [19] had one study each. Whereas the rest of the studies (3) [18, 23, 29] did not mention 

the region under study. 

All included studies focused on stroke detection, except for two studies [21, 29] which focused on post-stroke effects 

detection. Out of the fifteen studies, more than half of the studies (8) [15-18, 21, 27-29] used EEG signal data, whereas 

three studies [19, 22, 25] used ECG signal data, three studies [26, 23, 24] used EMG signal data, and one study [20] 

used a combination of ECG and PPG signal data. For sources of data, more than half of the studies (11) [15-17, 19-21, 

24-28] collected data from hospitals, while some studies (3) [18, 22, 23] utilized data from online databases, one study 

[29] did not mention clear information about how the utilized dataset was collected. More than half of the studies (9) 

[15-17, 19-21, 24-26] utilized datasets that include more than 100 samples, while some of the studies (5) [22-23, 27-29] 

used datasets that include less than 100 samples, and one study [18] did not mention clearly the sample size.  

For predictive models’ development, the most used ML methods were RF (6) [16, 20, 24-26, 28], SVM (3) [24, 25, 

27], KNN (2) [24-25], LR (2) [24, 25], DT (2) [20, 24]. Whereas Adaboost [17], XGBoost [17], LightGBM [17], NB 

[25], LDA [29], and RDA+KDE classifier [21] were used by one study each. Meanwhile, the most used DL methods 

were CNN (3) [18-19, 22] and LSTM (2) [19, 26] and ensemble of CNN and LSTM [15, 20]. Whereas a single study 

CNN and bidirectional LSTM in one model [15], another study used RNN [19], and one study used Stacked CNN with 

LSTM and GMDH [23]. Upon model development and evaluation, the highest accuracy among the studies was obtained 

by [24], which developed a RF model that scored a remarkable accuracy of 100%. The number of studies published 

based on the algorithms used each year is depicted in Figure 2. 
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Figure 1. PRISMA Flowchart 

 
Figure 2. Number of studies published according to the algorithms used each year 
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We considered eleven customized checklist items for each study, as depicted in Figure 3. Two items (1) and (2) are 

about the title and abstract sections. One item (3) is about the introduction section. Seven items (4a)(4b)(5)(6)(7)(8a)(8b) 

are about the methods and results sections, and one item (9) is about the study code. Seven items (1)(2)(3)(4b)(7)(8a)(8b) 

are reported by all studies. Three items (4a)(5)(6) are reported by the majority of studies. However, item (9) is reported 

by one study [28] only as depicted in Figure 4. The relationship between the algorithms used and the sample size is 

depicted in Figure 5. ML algorithms were used with smaller sizes when compared to DL algorithms. For example, the 

mean and median of the RF algorithm are 312.4 and 273, respectively. On the other hand, the mean and median of the 

CNN algorithm are 2069.5. All sample sizes were less than 600 except for study [19], which has a sample size equal to 

4068 and used CNN, RNN, and LSTM algorithms. In addition, Table 2 presents a summary of the studies. 

 

Figure 3. Number of studies reported for each checklist item 

 

Figure 4. Number of checklist items reported in each study 

 

Figure 5. Boxplots showing the distribution of sample size according to algorithms used 
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Table 1. A summary of the reviewed studies 

Ref. Objective Data source Data type 
Sample 

size 
Techniques Outcome 

[27] 
Reveal the occurrence of stroke in patients 

who have previously survived a stroke or 

who have a high risk of experiencing stroke. 

From Shaheed Mohtarma Benazir 

Bhutto Medical University, 

Larkana, Pakistan. 
EEG Signals. 30 ML: SVM. 

SVM: Precision: 100% 

Recall: 99.16% 

[28] 

Utilizing an inexpensive portable EEG 

device as a method for prehospital stroke and 

examining whether EEG data can be used to 

detect changes in stroke intensity. 

University of Alberta Hospital. EEG Signals. 25 
ML: RF - Muse by 

InteraXon Inc., a device to 

record EEG signals. 

RF: Accuracy: 76% 

Sensitivity: 63% 

Specificity: 86% 

[15] 
Presented a new way for applying deep 

learning models to raw EEG data without 

relying on the frequency features of EEG. 

Emergency Medical Center of 

Chungnam National University 

Hospital. 

EEG Signals. 273 
DL: LSTM, Bidirectional 

LSTM, CNN-LSTM, 

CNN-Bidirectional LSTM. 

Raw values showed the best accuracy. 

LSTM: Accuracy: 70.1% 

Bidirectional LSTM: 

Accuracy: 91.8% 

CNN-LSTM: Accuracy: 93.7% 

CNN-Bidirectional 

LSTM: Accuracy: 94.0% 

[16] 

Developing a health monitoring system that 

can anticipate the symptoms of stroke 

diseases in old people in real-time while they 

walk on a regular basis. 

Emergency Medical Center and 

Rehabilitation Department of 

Chungnam National University 

Hospital. 

EEG Signals. 273 ML: RF. RF: Accuracy 92.51% 

[17] 
Classifying stroke and healthy control groups 

for stroke prediction in active situations. 

Korea Research Institute of 

Standards and Science. 
EEG Signals. 123 

ML: AdaBoost, XGBoost, 

and LightGBM. 

AdaBoost: 

Accuracy: 80% 

[18] 
Develop models to categorize EEG signals as 

strokes or non-strokes. 

Normal and abnormal EEG 

activity from PhysioNet. 
EEG Signals. Unknown 

Deep neural network 

architecture, RESNET-50, 

and VGG-16. 

RESNET-50: 

Accuracy: 90% 

Sensitivity: 100% 

VGG-16: 

Accuracy: 90% 

Specificity: 100% 

Precision: 100% 

[25] 
Develop a classification model using 

machine learning and ECG signals for 

diagnosing stroke disease. 

Chungnam National Hospital, 

Daejeon, South Korea. 
ECG Signals. 132 

ML: SVM, RF, Naïve 

Bayes, KNN, and LR. 

KNN: Accuracy: 96.6% 

RF: Accuracy: 94.4% 

SVM: Accuracy: 85.4% 

Naïve Bayes: Accuracy: 72.7% 

LR: Accuracy: 66.9% 

[19] 
Proposing a medical framework to detect 

abnormalities in the ECG associated with 

stroke disease. 

Indian hospitals. ECG Signals. 4068 
DL: LSTM, CNN, and 

RNN. 

LSTM: Accuracy: 93.78% 

CNN: Accuracy: 89.25% 

RNN: Accuracy: 86.19% 

[22] 
Developing a classification model based on 

ECG signals for stroke diagnosis. 

The cerebral vasoregulation 

Dataset. 
ECG Signals. 71 

Stacking ensemble model 

of CNN models. 

CNN: Accuracy: 99.7% 

F1: 99.69% 

Recall: 99.71% 

Precision: 99.67% 

[26] 
Developing a stroke prediction system with 

the use of real-time EMG signals. 

Emergency Medical Center and 

the Department of Rehabilitation 

Medicine at Chungnam National 

University Hospital 

EMG Signals. 558 
ML: RF. 

DL: LSTM. 

RF: Accuracy: 90.38% 

LSTM: Accuracy: 98.96% 

[23] 
Proposing a telemedicine system that predicts 

heart, and brain stroke. 

EMG Lower Limb Dataset 

mHealth Dataset 

EMG Physical Action Dataset. 

EMG Signals. 38 

DL: Stacked CNN + LSTM 

+ GMDH. 

Explainable AI (XAI). 

Stacked CNN + LSTM + GMDH: 

Accuracy: 99% 

[20] 
Develop multi-models based on ML, ECG, 

and PPG signals. 

Emergency medical center and 

department of rehabilitation 

medicine at Chungnam National 

University Hospital, Republic of 

Korea. 

ECG and PPG 

Signals. 
574 

DL: an ensemble structure 

that combines CNN and 

LSTM. 

ML: Decision Tree, RF. 

Decision Tree: Accuracy: 91.56% 

RF: Accuracy: 97.51% 

CNN-LSTM: Accuracy: 99.15% 

[29] 
Decoding stroke patients’ gait intentions 

using EEG signals. 
Unknown EEG Signals. 3 

Linear Discriminant 

Analysis (LDA). 

LDA: Accuracy: 73.2% 

Delay is 0.13 s 

[21] 

Proposing system combines EEG data and 

Augmented Reality (AR) to identify the 

presence of Visual-Spatial Neglect (SN) in 

stroke patients. 

University of Pittsburgh Medical 

Center Inpatient Rehabilitation. 
EEG Signals. 226 (RDA+KDE) Classifier. 

(RDA+KDE): 

Average train AUC: 0.788 

Average test AUC: 0.760 

[24] 

Examine the impact of the statistical features 

of muscle activity of the major leg muscles 

during gait as predictive factors across 

various models to differentiate between 

stroke patients and healthy individuals. 

Multiple medical institutions 

across South Korea. 
EMG Signals. 240 

DT, RF, LR, MLP, SVC, 

K-NN, NB. 

RF: Accuracy: 100% 

LR: Accuracy: 96% 

DT: Accuracy: 94% 

MLP: Accuracy: 99% 

SVM: Accuracy: 94% 

NB: Accuracy: 77% 

KNN: Accuracy 85% 

Table 3 illustrates a customized structured bias matrix employed across five key dimensions: (D1) dataset clarity, 
(D2) model description, (D3) evaluation metrics, (D4) validation approach, and (D5) reproducibility. Table 4. 
comprehensively explain each dimension definition and evaluation guidance. The results of the risk bias matrix 
demonstrated low bias across (D1-D2), indicating that most studies provided transparent information related to utilized 
dataset, models, evaluation metrics and validation procedure. However, (D5) reproducibility showed high bias among 
studies, due to limited access to code or data sharing, which prevented replication. The use of risk bias matrix ensured 

comparability of results across diverse methodologies and robustness of performance metric extraction from 
heterogeneous sources. 
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Table 2. Customized risk of bias matrix 

Ref. 
D1: Clarity 

of dataset 

D2: Model 

description 

D3: Evaluation 

metric 

D4: Validation 

(CV) 

D5: 

Reproducibility 

Cyber Physical System for Stroke Detection [27] Low bias Low bias Low bias Low bias High bias 

Predicting stroke severity with a 3-min recording from the Muse 

portable EEG system for rapid diagnosis of stroke [28] 
Low bias Low bias Low bias Low bias Low bias 

Deep Learning-Based Stroke Disease Prediction System Using Real-

Time Bio Signals [15] 
Low bias Low bias Low bias Low bias High bias 

Machine-Learning-Based Elderly Stroke Monitoring System Using 

Electroencephalography Vital Signals [16] 
Low bias Low bias Low bias Low bias High bias 

Explainable Artificial Intelligence Model for Stroke Prediction Using 

EEG Signal [17] 
Low bias Low bias Low bias Low bias High bias 

EEG Classification for Stroke Detection Using Deep Learning 

Networks [18] 
High bias Low bias Low bias Low bias High bias 

Evaluation of ECG Features for the Classification of Post-Stroke 

Survivors with a Diagnostic Approach [25] 
Low bias Low bias Low bias Low bias High bias 

Stroke Disease Prediction based on ECG Signals using Deep Learning 

Techniques [19] 
Low bias Low bias Low bias Low bias High bias 

A Stacked Ensemble Model for Automatic Stroke Prediction Using 

only Raw Electrocardiogram [22] 
Low bias Low bias Low bias Low bias High bias 

AI-Based Stroke Disease Prediction System Using Real-Time 

Electromyography Signals [26] 
Low bias Low bias Low bias Low bias High bias 

A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep 

Learning Model for Stroke Prediction Applied on Mobile AI Smart 

Hospital Platform [23] 
Low bias Low bias Low bias Low bias High bias 

AI-Based Stroke Disease Prediction System Using ECG and PPG Bio-

Signals [20] 
Low bias Low bias Low bias Low bias High bias 

Detecting Voluntary Gait Intention of Chronic Stroke Patients Towards 

Top-Down Gait Rehabilitation Using EEG [29] 
High bias Low bias Low bias Low bias High bias 

Detection of Stroke-Induced Visual Neglect and Target Response 

Prediction Using Augmented Reality and Electroencephalography [21] 
Low bias Low bias Low bias Low bias High bias 

Data-Driven Stroke Classification Utilizing Electromyographic Muscle 

Features and Machine Learning Techniques [24] 
Low bias Low bias Low bias Low bias High bias 

Table 3. Criteria definitions for risk of bias assessment 

Code Description Evaluation guidance 

D1 Clarity of dataset 
Rate whether dataset source, size, and characteristics are clearly described. High bias: 

unclear/missing dataset info. Low bias: fully described. 

D2 Model description 
Is the algorithm/architecture and key settings described? Low bias: algorithm, parameters, 

and rationale provided. High bias: named but lacks necessary detail. 

D3 Evaluation metric used 
Low bias: metrics (e.g., Accuracy, F1, AUC, Sensitivity/Specificity) appropriate and 

stated. High bias: unsuitable or unreported metrics. 

D4 Validation (cross-validation) 
Is validation proper (e.g., holdout, CV, external test) with no leakage? High bias: train/test 

not separated, or leakage suspected. Low bias: appropriate CV/holdout described. 

D5 Reproducability 
Can results be reproduced (code/data availability, sufficient procedural detail)? High bias: 

no access and insufficient detail. Low bias: code/data or full protocol provided. 

5. Bibliometric Analysis 

In this section, bibliometric analysis is conducted to visualize the literature in Table 2 using VOSviewer. The 

bibliometric analysis aims to discover trending topics and ML/DL methods for using bio signals in stroke detection. In 

addition, we aspire to assess the trustworthiness of the knowledge basis in selected studies based on the source ranking. 

5.1. Author Keyword Co-Occurrence 

Author keyword co-occurrence analysis discloses the knowledge produced by selected studies. Clusters are formed 

based on the authors’ keywords for citing papers that frequently appear together [30]. In Figure 6, the bibliometric 

analysis presents the co-occurrence analysis based on authors’ keywords of studies in Table 2. The bibliometric data was 

extracted from Scopus. Data was preprocessed to unify the keywords regarding the abbreviation. We use index keywords 

of these articles [28, 29] because the authors’ keywords are missing. 
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Figure 6. The authors’ keywords co-occurrence network visualization 

As we see, the center keywords are stroke, EEG, and machine learning. In the visualization map, items with more 

occurrences of keywords are shown more prominently than items with fewer occurrences. Therefore, stroke and EEG 

are the most common occurrences, followed by machine learning, deep learning, Long Short-Term Memory (LSTM), 

ECG, and stroke disease analysis, respectively, as shown in Table 5. 

Table 4. The top author keywords occurrence 

Keyword Occurrence 

Stroke 10 

EEG 8 

Machine Learning 7 

Deep Learning 4 

Long Short-Term Memory 4 

ECG 4 

Stroke Disease Analysis 4 

The links that connect two keywords indicate that these keywords have been appearing in the same publication. The 

number of publications in which two keywords occur together increases the link strength. We set the minimum number 

of publications for which any two keywords appear together to two publications. The top keyword pairs that have the 

most occurrences in two or more publications are stroke with EEG and stroke with machine learning.  

This indicates that using EEG in ML and DL models is the most common bio-signal data. In addition, more 

researchers have been applying machine learning, which leaves promising avenues for researchers to apply deep learning 

models to benefit from their capacity to handle complex data. In addition, there are eight clusters, each represented by 

a different color. The clusters were generated by VOSviewer using the association strength method proposed in [31]. 

The clusters form based on the association strength between the keywords, calculated using the number of co-occurrence 

links between keywords.  

The largest cluster is the red cluster, which contains the brain, clinical trials, and different terms of human age and 

gender, such as male, female, and elderly. The common feature among the red cluster items is that they represent humans 

in different circumstances. The second largest is the green, blue, and yellow clusters, which include machine learning, 

Long Short-Term Memory (LSTM), CNN, prediction, analysis, model, etc. Its theme is AI terms. The authors’ 

keywords, which co-occurred a few times, such as explainable AI, wavelet transform, and Fourier transform, indicate 

future opportunities for integrating emerging technologies of trend AI methods with the AI-based stroke detection 

system. In addition, Figure 7 shows the keywords over the years. The use of machine learning models started around 

2021. On the other hand, deep learning models emerged as new methods to utilize bio-signal data later. 
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Figure 7. The distribution of keywords co-occurrence over years 

5.2. Co-Citation 

Co-citation analysis reveals the foundations of knowledge relied on by selected literature, in which clusters are 

formed based on the cited documents, which often occur together [30]. In this analysis, Table 6 presents the most cited 

sources that have been cited by five or more of the articles in Table 2. Figure 8 illustrates the co-citation network 

visualization among the top ten cited articles. The strongest links are between Stroke, Clinical Neurophysiology, and 

Sensors journals. We noticed that all the top ten cited journals are highly ranked journals based on SJR. In addition, 

Figure 8 reveals a new track of research and innovation, where neurology, wearable sensors, and AI are combined. This 

combination leverages the advantages of each, with neurology providing the clinical and physiological foundation, 

wearable sensors facilitating continuous and real-world data acquisition, and AI offering advanced analytical and 

predictive capabilities. Accordingly, neurological research and care from periodical, hospital-based assessments are 

shifting to continuous and personalized monitoring, which can be done remotely. The combination holds promise for 

early disease detection, not only stroke, but may extend to include long-term monitoring of neurodegenerative 

conditions, cognitive rehabilitation, and real-time mental health assessment. Even though these emerging 

communication fields introduce opportunities for innovation in digital health ecosystems, other challenges arise, such 

as data privacy and Explainable AI (XAI), as well as transparency. 

Table 5. The top ten co-citation journals based on bibliometric analysis 

 
Journal Citation Rank Publisher 

Stroke 33 Q1 American Heart Association 

Clinical Neurophysiology 25 Q1 Elsevier 

Sensors 19 Q1 MDPI 

IEEE Access 17 Q1 IEEE 

Journal of Stroke 11 Q1 Korean Stroke Society 

Neuropsychologia 7 Q2 Elsevier 

PloS One 7 Q1 Public Library of Science 

Neurology ® 6 Q1 Wolters Kluwer 

Cortex 5 Q1 Lippincott Williams and Wilkins 

Applied Science 5 Q2 MDPI 

Journal of Neuroscience Methods 5 Q2 Elsevier 
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Figure 8. The top ten cited journals in co-citation network visualization 

6. Discussion 

This systematic review and bibliometric analysis paper reviews and visualizes DL and ML methods with bio-signals 

data to detect stroke and post-stroke effects. From 2016 to 2024, there was an interest in publishing studies; 2022 stands 

out as the year in which almost a third of the reviewed studies were published. Regarding where most reviewed studies 

were published, South Korea contributes the most in the stroke detection field. The most used bio-signal in the reviewed 

studies is EEG. Most of the reviewed studies gathered data from hospitals. Moreover, based on the sample size analysis, 

the largest sample size among the reviewed studies is 4068 [19]. On the other hand, the smallest sample size is 3 [29]. 

Notably, only one study did not mention the sample size clearly [18]. 

The most frequent ML methods used are RF and SVM. RF was used as the only method employed in both studies 

[16, 28]. In addition, the RF in studies [25, 26, 20] did not outperform other utilized methods in other studies. On the 

other hand, SVM was applied as a single method in the study [27]. However, it did not perform the best in the study 

[25]. Additionally, the most used DL methods are CNN and LSTM. CNN was exclusively applied in both studies [22, 

18]. Nonetheless, it did not outperform other methods in the study [19]. Conversely, LSTM outperformed in both studies 

[19, 26].  

DL and ML models were evaluated using metric measurements such as accuracy, precision, and recall. The studies 

depended on internal validation to ensure generalization ability. The internal validation techniques used were splitting 

the data into train and test, or cross-validation. Despite the differences in the datasets, the RF model outperforms all 

other models in terms of accuracy; either RF is used merely [28, 16], or RF was part of the proposed multimodel, such 

as [20, 24-26]. Studies such as [32, 33] show that the results of different ML/DL models may be artifacts of dataset size 

and preprocessing choices. 

On the other hand, signal data suffers from complexity, nonstationarity, and high dimensionality [34]. Additionally, 

bio-signal datasets are considered time-series data. They are highly susceptible to interference from unrelated signals, 

such as eye blinks and muscle activity, which can serve as noise and yield high inter-individual variability [35, 36]. 

Nevertheless, some properties of ML/DL models can significantly enhance the results based on the characteristics of the 

bio-signal data. For example, the Random Forest (RF) model can handle the noise in signal datasets by aggregating the 

decisions across several sub-trees. Additionally, RF is considered a non-linear model, which enables it to work 

effectively with the signal dataset. Also, the RF model works well with small datasets, which is particularly applicable 

to datasets used in inclusion studies. 

CNNs excel in spatial invariance, allowing them to detect patterns regardless of their location in the bio-signal, 

making them valuable for shift-invariant data. They generate a hierarchical representation of features, enabling the 

identification of complex patterns. CNNs eliminate the need for manual feature engineering, as they can learn and adapt 

to the unique qualities of the data. This automation simplifies signal data analysis, improves accuracy in tasks such as 

classification and regression, and enhances the power of CNNs for signal processing applications [37]. As bio-signal 

datasets are considered time-series data, LSTM is known as one of the DL models designed to learn dependencies from 

the data, yielding promising results with bio-signal datasets [19]. 
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7. Conclusion 

In conclusion, this systematic review and bibliometric analysis focused on the recent advancements in supervised 

machine learning (ML) and deep learning (DL) models for stroke detection and post-stroke effects detection using bio-

signals. Most of the reviewed studies collected data from hospitals of varying sizes. The most frequently used ML 

methods were RF and SVM, while CNN and LSTM were the commonly employed DL methods. The model’s 

performance was evaluated using metric measurements like accuracy, precision, and recall, with internal validation 

techniques such as data splitting and cross-validation. Future research should aim to overcome the limitations addressed 

in this systematic review by incorporating larger and more diverse datasets, conducting external validation on hospital 

experiments, and exploring more advanced AI techniques such as ensemble learning, explainable AI, and transfer 

learning. By addressing these critical aspects, the field of stroke detection and post-stroke effects detection will advance, 

and robust and reliable predictive models will be developed. 

7.1. Reviewed Research Gaps 

Our systematic review paper identifies several significant gaps in the existing literature that utilize ML and DL to 

detect strokes using bio-signals that future researchers could address.  

First, the reviewed research highlights an important limitation in the geographic coverage aspect; most of them 

originated in South Korea. That limits the generalizability of findings to diverse populations. Hence, there is a crucial 

need for cross-cultural datasets and international collaborations. Second, although most of the reviewed studies gathered 

data from hospitals, no reviewed study reported the detection of stroke in real hospital workflows. That reveals a 

significant gap between experimental results and clinical applicability, suggesting the need to fill the absence of 

validation in real-world healthcare settings. Third, although the largest dataset size among all studies was around 4000, 

it is considered relatively small to train robust ML and DL models. Future research should consider a larger, high-quality 

clinical dataset with external validation to ensure reliability. Fourth, while multiple ML and DL models were developed, 

none of the included studies employed an ensemble learning technique that could introduce a promising detection result 

by combining robust models. Finally, the authors’ keywords, which co-occurred a few times, such as explainable AI, 

wavelet transform, and Fourier transform, indicate future opportunities for integrating emerging technologies of trend 

AI methods with the AI-based stroke detection system.  

Addressing these gaps will empower future studies and could deliver more reliable health care decisions toward brain 

stroke detection. This will require ensuring that they cover a larger, diverse clinical dataset with integration of real 

hospital workflows, and testing a variety of model enhancement techniques such as ensemble learning, explainable AI, 

wavelet transform, and Fourier transform. 
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Appendix I 

Table A1. Customized checklist for ML and DL prediction models for bio-signal data 

Ref. Section/ 

Topic 
Item Checklist Item Page 

  Title and Abstract  

Title 1 Identify the study as developing and/or validating a prediction model.  

Abstract 2 Provide a summary of objectives, study design, results, and conclusions.  

  Introduction  

Objectives 3 Specify the objectives and aims, including whether the study describes the development or validation of the model or both.  

  Methods and Results  

Data 
4a Specify the source of data.  

4b Specify the type of data (e.g., EEG, MEG, ECG, PPG).  

Participants 5 Specify participants’ condition (e.g., patients, health).  

Sample Size 6 Explain how the study size arrived at.  

Model 7 Clearly define all techniques and algorithms used in developing and/or validating the pretrained model.  

Outcomes 
8 Clearly define the outcome that is predicted by the prediction model.  

8a Report on performance measures.  

  Other Information  

Code 9 Provide the code of the study.  

Table A2. Data extraction form 

Extracted item Comments 

Author Name of authors, e.g. Laghari et al. [27] 

Objective Specify the objectives and aims. 

Source of data Specify the source of data, e.g., Hospital name. 

Data type 

Answer categories: 

 EEG signal. 

 EMG signal. 

 ECG signal. 

 PPG signal. 

Sample Size Sample size used for building the model. 

Techniques List all machine learning / deep learning algorithms used. 

Outcome List the performance measures used. 

Region under study Specify the region under the study. 

Published year Published year of the study. 

Table A3. Quality assessment data for each study 

Study Checklist items 

Title and Reference 

Title and Abstract Introduction Methods and Results 
Other 

info. 

Title Abstract Objectives Data Participants Sample size Models Outcome Code 

1 2 3 4a 4b 5 6 7 8a 8b 9 

Cyber Physical System for Stroke Detection [27] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Predicting stroke severity with a 3-min recording from 

the Muse portable EEG system for rapid diagnosis of 

stroke [28] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Deep Learning-Based Stroke Disease Prediction System 

Using Real-Time Bio Signals [15] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Machine-Learning-Based Elderly Stroke Monitoring 

System Using Electroencephalography Vital Signals [16] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Explainable Artificial Intelligence Model for Stroke 

Prediction Using EEG Signal [17] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 
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EEG Classification for Stroke Detection Using Deep 

Learning Networks [18] 
Yes Yes Yes Yes Yes No Unknown Yes Yes Yes No 

Evaluation of ECG Features for the Classification of 

Post-Stroke Survivors with a Diagnostic Approach [25] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Stroke Disease Prediction based on ECG Signals using 

Deep Learning Techniques [19] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

A Stacked Ensemble Model for Automatic Stroke 

Prediction Using only Raw Electrocardiogram [22] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

AI-Based Stroke Disease Prediction System Using Real-

Time Electromyography Signals [26] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

A Hybrid Stacked CNN and Residual Feedback GMDH-

LSTM Deep Learning Model for Stroke Prediction 

Applied on Mobile AI Smart Hospital Platform [23] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

AI-Based Stroke Disease Prediction System Using ECG 

and PPG Bio-Signals [20] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Detecting Voluntary Gait Intention of Chronic Stroke 

Patients Towards Top-Down Gait Rehabilitation Using 

EEG [29] 
Yes Yes Yes Unknown Yes Yes Yes Yes Yes Yes No 

Detection of Stroke-Induced Visual Neglect and Target 

Response Prediction Using Augmented Reality and 

Electroencephalography [21] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Data-Driven Stroke Classification Utilizing 

Electromyographic Muscle Features and Machine 

Learning Techniques [24] 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Table A4. The study author, objective, source of data, type of data, sample size, techniques, outcome, region under study, published year 

Author Objective Data source Data type 
Sample 

size 
Techniques Outcome 

Region 

Pub. 
Year 

Laghari et al. 

[27] 

Reveal the occurrence of stroke in 

patients who have previously survived a 

stroke or who have a high risk of 

experiencing stroke. 

Shaheed Mohtarma Benazir 

Bhutto Medical University. 

EEG 

Signals. 
30 ML: SVM. 

SVM: 

Precision: 100% 

Recall: 99.16% 

Pakistan 2018 

Wilkinson et 

al. [28] 

Utilizing an inexpensive portable EEG 

device as a method for prehospital stroke 

and examining whether EEG data can be 

used to detect changes in stroke intensity. 

University of Alberta 

Hospital. 

EEG 

Signals. 
25 

ML: RF - Muse by 

InteraXon Inc., a device 

to record EEG signals. 

RF: Accuracy: 76% 

Sensitivity: 63% 

Specificity: 86% 

Canada 2020 

Choi et al. 

[15] 

Presented a new way for applying deep 

learning models to raw EEG data without 

relying on the frequency features of EEG. 

Emergency Medical Center 

of Chungnam National 

University Hospital. 

EEG 

Signals. 
273 

DL: LSTM, 

Bidirectional LSTM, 

CNN-LSTM, CNN-

Bidirectional LSTM. 

Raw values showed the best 

accuracy. 

LSTM: 

Accuracy: 70.1% 

Bidirectional LSTM: 

Accuracy: 91.8% 

CNN-LSTM: 

Accuracy: 93.7% 

CNN-Bidirectional 

LSTM: 

Accuracy: 94.0% 

South 

Korea 
2021 

Choi et al. 

[15] 

Developing a health monitoring system 

that can anticipate the symptoms of 

stroke diseases in old people in real-time 

while they walk on a regular basis. 

Emergency Medical Center 

and Rehabilitation 

Department of Chungnam 

National University Hospital. 

EEG 

Signals. 
273 ML: RF. 

RF: 

Accuracy 92.51% 

South 

Korea 
2021 

Islam et al. 

[17] 

Classifying stroke and healthy control 

groups for stroke prediction in active 

situations. 

Korea Research Institute of 

Standards and Science. 

EEG 

Signals. 
123 

ML: AdaBoost, 

XGBoost, and 

LightGBM. 

AdaBoost: 

Accuracy: 80% 

South 

Korea 
2022 

Kumar & 

Sengupta [18] 

Develop models to categorize EEG 

signals as strokes or non-strokes. 

Normal and abnormal EEG 

activity from PhysioNet. 

EEG 

Signals. 
Unknown 

Deep neural network 

architecture, RESNET-

50, and VGG-16. 

RESNET-50: 

Accuracy: 90% 

Sensitivity: 100% 

VGG-16: 

Accuracy: 90% 

Specificity: 100% 

Precision: 100% 

Unknown 2022 

Rathakrishnan 

et al. [25] 

Develop a classification model using 

machine learning and ECG signals for 

diagnosing stroke disease. 

Chungnam National 

Hospital, Daejeon, South 

Korea. 

ECG 

Signals. 
132 

ML: SVM, RF, Naïve 

Bayes, KNN, and LR. 

KNN: Accuracy: 96.6% 

RF: Accuracy: 94.4% 

SVM: Accuracy: 85.4% 

Naïve Bayes: 

Accuracy: 72.7% 

LR: Accuracy: 66.9% 

South 

Korea 
2020 

Kumar et 

al. [19] 

Proposing a medical framework to detect 

abnormalities in the ECG associated with 

stroke disease. 

Indian hospitals. 
ECG 

Signals. 
4068 

DL: LSTM, CNN, and 

RNN. 

LSTM: Accuracy: 93.78% 

CNN: Accuracy: 89.25% 

RNN: Accuracy: 86.19% 

India 2022 

Kunwar & 

Choudhary 

[22] 

Developing a classification model based 

on ECG signals for stroke diagnosis. 

The cerebral vasoregulation 

Dataset. 

ECG 

Signals. 
71 

Stacking ensemble 

model of CNN models. 

CNN: 

Accuracy: 99.7% 

F1: 99.69% 

Recall: 99.71% 

Precision: 99.67% 

USA 2023 
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Yu et al. [26] 
Developing a stroke prediction system 

with the use of real-time EMG signals. 

Emergency Medical Center 

and the Department of 

Rehabilitation Medicine at 

Chungnam National 

University Hospital 

EMG 

Signals. 
558 

ML: RF. 

DL: LSTM. 

RF: 

Accuracy: 90.38% 

LSTM: 

Accuracy: 98.96% 

South 

Korea 
2020 

Elbagoury et 

al. [23] 
Proposing a telemedicine system that 

predicts heart, and brain stroke. 

EMG Lower Limb Dataset 

mHealth Dataset 

EMG Physical Action 

Dataset. 

EMG 

Signals. 
38 

DL: Stacked CNN + 

LSTM + GMDH. 

Explainable AI (XAI). 

Stacked CNN + LSTM + 

GMDH: 

Accuracy: 99% 

Unknown 2023 

Yu et al. [20] 
Develop multi-models based on ML, 

ECG, and PPG signals. 

Emergency medical center 

and department of 

rehabilitation medicine at 

Chungnam National 

University Hospital 

ECG and 

PPG 

Signals. 

574 

DL: an ensemble 

structure that combines 

CNN and LSTM. 

ML: Decision Tree, RF. 

Decision Tree: 

Accuracy: 91.56% 

RF: 

Accuracy: 97.51% 

CNN-LSTM: 

Accuracy: 99.15% 

South 

Korea 
2022 

Choi et al. 

[29] 
Decoding stroke patients’ gait intentions 

using EEG signals. 
Unknown 

EEG 

Signals. 
3 

Linear Discriminant 

Analysis (LDA). 

LDA: 

Accuracy: 73.2% 

Delay is 0.13 s 

Unknown 2016 

Mak et al. [21] 

Proposing system combines EEG data 

and Augmented Reality (AR) to identify 

the presence of Visual-Spatial Neglect 

(SN) in stroke patients. 

University of Pittsburgh 

Medical Center Inpatient 

Rehabilitation. 

EEG 

Signals. 
226 (RDA+KDE) Classifier. 

(RDA+KDE): 

Average train AUC: 0.788 

Average test AUC: 0.760 

USA 2022 

Lee et al. [24] 

Examine the impact of the statistical 

features of muscle activity of the major 

leg muscles during gait as predictive 

factors across various models to 

differentiate between stroke patients and 

healthy individuals. 

Multiple medical institutions 

across South Korea. 

EMG 

Signals. 
240 

DT, RF, LR, MLP, 

SVC, K-NN, NB. 

RF:Accuracy: 100% 

LR: Accuracy: 96% 

DT: Accuracy: 94% 

MLP:Accuracy: 99% 

SVM:Accuracy: 94% 

NB:Accuracy: 77% 

KNN:Accuracy 85% 

South 

Korea 
2024 

 


