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Abstract 

The objective of this study is to improve the accuracy, interpretability, and reliability of regional economic forecasting, a 

task essential for effective policy-making, infrastructure planning, and crisis management. Existing econometric and 

machine learning models often suffer from linear assumptions, limited use of heterogeneous data, and a lack of transparent 

uncertainty quantification. To address these limitations, we propose a unified multi-modal spatio-temporal deep learning 

framework that integrates satellite imagery, structured economic indicators, and policy documents through an adaptive 

cross-modal attention mechanism. The methodology incorporates a spatio-temporal cross-attention module to capture 

dynamic inter-regional dependencies and temporal patterns, along with a Bayesian neural prediction head to quantify 

uncertainty. Applied to a 13-year dataset from 75 Chinese cities, the model demonstrates substantial improvements, 

reducing mean absolute error by 37% compared to XGBoost and achieving 92% PICP (Prediction Interval Coverage 

Probability) under a 90% confidence threshold. Case studies further validate its ability to trace pandemic-induced economic 

shocks and reveal latent propagation pathways. The novelty of this work lies in its integrative architecture that jointly 

advances multi-modal fusion, interpretability, and uncertainty quantification, offering both methodological innovation and 

practical utility. This framework provides policymakers with transparent, risk-aware predictions and establishes a scalable 

foundation for next-generation economic forecasting. 

Keywords: Regional Economic Forecasting; Spatio-Temporal Deep Learning; Multi-Modal Fusion; Uncertainty Quantification. 

 

1. Introduction 

Regional economic forecasting plays a pivotal role in policy formulation, infrastructure planning, and crisis response, 

serving as a critical tool for governments and financial institutions. Traditional methods such as Autoregressive 

Integrated Moving Average (ARIMA) and Vector Autoregression (VAR) have long been employed to analyze economic 

trends, yet their reliance on linear assumptions and homogeneous time-series data severely limits their ability to capture 

complex spatio-temporal dependencies [1]. ARIMA has been widely used to evaluate the impact of large-scale 

interventions, as it accounts for underlying trends, autocorrelation, and seasonality [2], while VAR extends forecasting 

to multivariate settings [3]. More recent variants such as quantile VAR introduce flexibility by modeling interactions 

across quantiles [4]. Nevertheless, these models still struggle to capture nonlinear interregional dependencies and cannot 

integrate heterogeneous data sources such as satellite imagery or unstructured policy documents, which could provide 

valuable real-time economic signals. 
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With the development of web technology, multi-modal or multi-view data has emerged as a major stream in big data 

analytics, where each modality encodes different aspects of information [5]. Despite the increasing availability of 

alternative data sources, most existing approaches remain confined to structured economic indicators, overlooking the 

potential of multi-modal fusion to improve forecast accuracy [6]. For instance, multi-modal integration has shown 

benefits in healthcare and finance, yet its application in regional economics remains underexplored [7]. 

Previous research has explored multi-modal fusion, spatio-temporal modeling, and uncertainty quantification in 

isolation, but few studies have attempted to unify these dimensions within a single forecasting framework. Advances 

such as LSTM and CNN have improved nonlinear sequence modeling [8], and Graph Neural Networks have introduced 

spatial dependency modeling [9]. However, these methods remain largely restricted to structured data, while unstructured 

sources such as policy documents and satellite imagery are seldom incorporated. Moreover, most fusion strategies are 

overly simplified, typically treating data integration as a static operation (e.g., early or late fusion), and fail to capture 

dynamic dependencies between modalities, regions, and time [10]. 

Despite these advances, a critical research gap persists: no existing framework simultaneously integrates multi-modal 

fusion, spatio-temporal modeling, and principled uncertainty quantification in regional economic forecasting. Current 

approaches tend to be either accurate but opaque (black-box models such as XGBoost [11]) or interpretable but narrow 

in scope (post-hoc methods such as SHAP or Bayesian neural networks [12]). Furthermore, most models generate single-

point forecasts without quantifying uncertainty, leaving decision-makers ill-equipped to assess risks under volatile 

conditions. This gap motivates the present study [13]. 

To bridge this gap, we propose a unified multi-modal spatio-temporal deep learning framework that integrates 

satellite imagery, structured economic indicators, and policy documents through adaptive cross-modal attention and 

spatio-temporal modeling, while incorporating Bayesian neural layers for reliable uncertainty quantification. By 

combining these components into an end-to-end trainable system, the framework enhances both predictive accuracy and 

transparency, providing policymakers with risk-aware insights for high-stakes decision-making. Ultimately, this research 

contributes a scalable and practical solution to support resource allocation, crisis management, and the assessment of 

regional economic resilience. 

The remainder of this article is organized as follows. Section 2 reviews related works. Section 3 details the proposed 

methodology. Section 4 presents the experimental setup and results. Section 5 discusses implications and future 

directions, and Section 6 concludes the study. 

2. Related Works 

Building on traditional econometric approaches, recent studies in regional economic forecasting can be grouped into 

three major methodological frontiers: (i) multi-modal fusion methods, (ii) spatio-temporal modeling techniques, and (iii) 

interpretability with uncertainty quantification. 

Regional economic forecasting has evolved through three major methodological paradigms, each addressing distinct 

challenges while introducing new limitations. These approaches can be categorized into traditional econometric models, 

modern DL techniques, and emerging interpretability-focused frameworks. DL techniques are outperforming current 

ML techniques [14]. The constraints relevant to DL-based techniques are the sample selection, network architecture, 

training with minimal annotated database, and security issues [15]. Figure 1 illustrates this evolutionary progression and 

the corresponding capability enhancements. 

 

Figure 1. Evolution of Economic Forecasting Approaches 

Traditional economic forecasting models established foundational techniques for time series analysis but face 

inherent constraints in handling complex spatial-temporal relationships [16]. ARIMA models demonstrate strong 

performance for univariate prediction tasks yet fundamentally lack mechanisms to account for cross-regional economic 

influences. As shown in Table 1, ARIMA achieves satisfactory results for single-region GDP prediction but fails to 

capture inter-regional dependencies that are crucial for accurate forecasting. The spatial modeling limitations of these 

traditional approaches become particularly apparent when analyzing economic spillover effects between neighboring 

regions, as visualized in Figure 2. This highlights a fundamental gap: while effective for temporal forecasting, traditional 

econometric models lack the capacity to capture cross-regional dependencies and heterogeneous data inputs. 
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Figure 2. Spatial Modeling Capability Comparison 

Table 1. Performance Comparison of Traditional Models 

Model Temporal Modeling Spatial Modeling Multi-Modal Support 

ARIMA Strong None No 

VAR Moderate Implicit Limited 

DL approaches have significantly advanced economic forecasting capabilities by capturing nonlinear patterns in 

economic data. Long Short-Term Memory (LSTM) networks improved upon traditional methods for univariate time 

series forecasting but remain constrained to single-modality analysis [17]. However, current GNN-based economic 

forecasting systems predominantly rely on structured data inputs, neglecting potentially informative unstructured data 

sources such as policy documents or satellite imagery [18]. Thus, although deep learning and graph-based methods have 

advanced spatial-temporal modeling, they remain constrained by an underutilization of unstructured and multi-modal 

data sources [19]. 

Recent studies in 2025 have further highlighted both opportunities and persistent challenges. Qin [20] examined how 

deep learning can be applied to stock prediction within portfolio optimization, demonstrating that advanced neural 

models can directly support decision-making in quantitative trading. Ruiz-López & Jiménez-Carrión [21] combined 

ARIMA with LSTM for cryptocurrency price forecasting, showing that hybrid approaches can effectively capture both 

linear and nonlinear dynamics. Guo [22] focused on the IASB framework and proposed a PO-BP-based accounting 

system for data assets, underscoring the importance of standardized governance structures in financial applications. 

Similarly, Ruangkanjanases & Hariguna [23] investigated user satisfaction and continuous usage of digital financial 

advisory platforms, emphasizing interpretability and trust as essential for sustainable adoption. Taken together, these 

studies illustrate ongoing innovation across predictive modeling, hybrid design, data governance, and user-centric 

financial systems, yet they continue to treat multimodality, interpretability, and uncertainty in isolation rather than as an 

integrated challenge. 

These recent advances underscore progress in spatio-temporal and multimodal forecasting, yet they leave 

unresolved the critical issues of interpretability and uncertainty quantification, which are addressed in the following 

line of research. 

Recent developments in interpretable artificial intelligence and uncertainty quantification have begun addressing 

critical gaps in economic forecasting systems. Uncertainty quantification methods play a pivotal role in reducing the 

impact of uncertainties during both optimization and decision-making processes. SHAP (SHapley Additive 

exPlanations) values provide post-hoc interpretability for tree-based models like XGBoost but cannot capture 

dynamic spatial-temporal relationships [24]. Bayesian Neural Networks (BNN), successfully applied in 

meteorological forecasting, offer promising approaches for quantifying prediction uncertainty in economic contexts 

[25]. The current work synthesizes these advances by introducing an end-to-end framework that simultaneously 

addresses multi-modal data fusion, spatial-temporal interpretability, and rigorous uncertainty quantification, three 

dimensions that existing solutions have treated in isolation [26]. This integrative approach, combining dynamic multi -

modal fusion, spatio-temporal cross-attention, and Bayesian uncertainty quantification, represents a significant 

methodological innovation. Figure 3 demonstrates how the proposed framework integrates these capabilities 

compared to prior approaches. 
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Figure 3. Framework Capability Comparison 

This synthesis of related works reveals persistent challenges in regional economic forecasting: the inability to 

effectively fuse heterogeneous data sources, limited transparency in model decision-making, and inadequate treatment 

of prediction uncertainty [27]. The subsequent sections detail how the proposed framework addresses these limitations 

through novel architectural designs and methodological innovations. By bridging these methodological gaps, our work 

introduces a generalizable unified theoretical framework that supports both empirical improvements and new analytical 

pathways for the study of complex economic systems. The proposed model architecture concretely implements the 

unified theoretical framework for future research, serving as a template for reconciling interpretability, predictive power, 

and uncertainty quantification in socio-economic forecasting. 

3. Research Methodology 

The proposed framework adopts a unified theoretical structure to process heterogeneous economic data while 

ensuring both interpretability and uncertainty awareness. At its core is a spatio-temporal cross-attention module that 

captures dependencies across regions and time, supported by a cross-modal gating layer that adaptively weights each 

modality, and a Bayesian neural prediction head for rigorous uncertainty quantification. This design enhances forecast 

reliability and transparency while remaining extensible to additional data sources and regional contexts. 

The implementation required iterative model engineering and extensive hyperparameter tuning, with multiple rounds 

of cross-validation, ablation testing, and expert review to ensure generalizability. 

 Deep learning has become a central paradigm in economic forecasting, offering the ability to model nonlinear 

dynamics and learn representations from heterogeneous data sources. To improve accessibility for readers unfamiliar 

with the technical details, we first provide an overview of the architecture before delving into mathematical formulations. 

Figure 4 presents the overall design, which is organized around three major modules: (i) multi-modal feature encoders 

that process satellite imagery, structured economic indicators, and policy documents; (ii) a spatio-temporal fusion 

module that integrates cross-modal signals while capturing inter-regional dependencies and temporal dynamics; and (iii) 

an uncertainty-aware prediction head that generates probabilistic and interpretable forecasts. The following subsections 

elaborate on each component, progressing from high-level intuition to detailed mathematical specification. 

 

Figure 4. Framework Architecture 

The multi-modal data encoding stage transforms heterogeneous inputs into unified representations while preserving 

modality-specific characteristics. For satellite imagery, a convolutional neural network (CNN) is employed to extract 

spatial features from nighttime light data, generating illumination intensity maps that serve as proxies for regional 

economic activity. CNNs are among the most prominent architectures in deep learning due to their ability to capture 
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local spatial correlations [28]. They have demonstrated high efficiency and accuracy in diverse applications, including 

object detection, digit recognition, and image classification denote the input satellite image at time 𝑡 [29]. The extracted 

feature representation is given by: 

Ft
img

= CNN(It)   where   CNN = ReLU(Conv2D(k = 3; , s = 2))                           (1) 

where; Ft
img

 is the spatial feature at time t, and the CNN encoder consists of a convolutional layer with kernel size k=3, 

stride s=2, followed by a ReLU activation function. 

For structured economic indicators, temporal dependencies are modeled using gated recurrent units (GRUs). Given a 

sequence {xt} of economic variables, the hidden state is updated as: 

ht = GRU(xt, ht−1)   with   𝓏t = σ(W𝓏xt + U𝓏ht−1)                                 (2) 

where; ht is the hidden state at time t, ht−1 is the previous hidden state, 𝓏tis the update gate, and W𝓏,U𝓏 are trainable 

weight matrices. The nonlinearity σ denotes the sigmoid activation function. 

For policy documents, semantic and sentiment-rich representations are extracted using a pre-trained Bidirectional 

Encoder Representations from Transformers (BERT) model [30]. The document embedding is obtained from the [CLS] 

token output as: 

edoc = BERT(d)[CLS]                                                (3) 

where; edoc denotes the contextualized embedding vector of document d. 

The Spatio-Temporal Fusion Module dynamically integrates these modalities through a dual-path architecture. Spatial 

dependencies are modeled using graph attention networks (GATs) where regions   i and j interact through learned 

attention weights αij: 

αij =
exp(LeakyReLU(aT[Whi||Whj]))

∑ exp(LeakyReLU(aT[Whi||Whk]))k∈Ni

                                                 (4) 

where hi, hj are feature vectors of regions i and j, W is a trainable weight matrix, a is the attention parameter vector, || 
denotes vector concatenation, and 𝒩i is the neighbor set of region i. 

Temporal patterns are captured through dilated causal convolutions that prevent information leakage: 

yt = ∑ wi ∙ xt−d∙i
k−1
i=0                                                              (5) 

where; yt is the output at time t, xt−d∙i is the input delayed by dilation factor d, wi is the i-th kernel weight, and k is the 
kernel size. 

To adaptively balance contributions from different modalities, a cross-modal gating mechanism is introduced: 

g = σ(Wg[Fimg||Fts||Ftext])                                              (6) 

where; Fimg, Fts, Ftext are the image, time-series, and text features, respectively, Wg is a trainable weight matrix, σ is the 

sigmoid function, and || denotes concatenation. 

Interpretability is achieved by computing attention weights across spatial and temporal dimensions: 

Ai,t = softmax(QKT/√dk)V                                                (7) 

where; Q, K, V are query, key, and value matrices derived from input features, and dk is the dimensionality of the key 
vector. The attention distribution highlights the relative importance of regions and time steps in prediction. 

To quantify predictive uncertainty, Monte Carlo dropout is applied at inference, yielding probabilistic outputs: 

𝔼(y) ≈
1

T
∑ f(x; θt)

T
t=1    Var(y) ≈

1

T
∑ f(x; θt)2 − 𝔼(y)2T

t=1                              (8) 

where; f(x; θt) denotes the prediction under dropout mask θt, 𝔼(y) is the mean prediction, Var(y) the predictive variance, 

and T the number of Monte Carlo samples. 

Table 2 summarizes the hyperparameter configuration for each module: 

Table 2. Model Configuration Details 

Component Hyperparameter Value 

CNN Encoder Kernel Size 3×3 

GRU Hidden Units 128 

GAT Attention Heads 4 

Dropout Rate Inference Samples 100 
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Each module exposes standardized interfaces, making it straightforward to substitute or augment individual 

components according to domain requirements. This plug-and-play capability underpins the system’s adaptability for 

diverse applications and future technological advances. The framework's design ensures that all predictions are 

accompanied by both explanatory attention maps and quantified confidence intervals, addressing the critical 

requirements for policy-sensitive economic forecasting while maintaining state-of-the-art accuracy. From a theoretical 

perspective, the integration of attention-based interpretability and principled Bayesian inference establishes a rigorous 

foundation for developing trustworthy, transparent, and uncertainty-aware regional economic models. This 

methodological synthesis advances the frontier of both artificial intelligence and applied economics. The architecture is 

modular and supports parallel processing of multiple data streams, substantially improving throughput for both training 

and inference. Key components, such as the CNN encoder and GRU modules, are optimized for modern GPU 

acceleration, allowing the system to efficiently handle high-dimensional and high-frequency regional economic data. In 

addition, the model incorporates regularization and dropout strategies specifically chosen to prevent overfitting and 

enhance robustness against missing or corrupted data, further supporting its deployment in heterogeneous, real-world 

scenarios. 

The uncertainty estimates obtained through Monte Carlo dropout primarily capture model variance (epistemic 

uncertainty), reflecting variability in the learned parameters under stochastic sampling. While observation noise 

(aleatoric uncertainty), such as anomalies in satellite imagery or incomplete policy documents, may indirectly widen 

predictive intervals, it is not explicitly modeled in this study. Future work could incorporate heteroscedastic likelihoods 

or modality-specific data-quality indicators to better disentangle model and data uncertainty. 

4. Experiments 

4.1. Experimental Setup  

The experimental validation utilizes a comprehensive dataset comprising more than 1.2 million records (over 40 GB), 

collected across 75 Chinese prefecture-level cities over 13 years. The dataset integrates quarterly economic indicators 

from the National Bureau of Statistics with DMSP/VIIRS nighttime light imagery at 1 km resolution. The inclusion of 

multiple cities across varying economic structures, along with a 13-year temporal span, provides a robust testbed for 

evaluating the model’s generalizability across different regions and economic cycles. This diversity enables systematic 

assessment of the framework’s ability to adapt to both stable and volatile economic environments. Table 3 details the 

statistical characteristics of key variables, demonstrating the dataset's coverage and variability. The data collection and 

preprocessing workflow included the aggregation and cleaning of over 40 GB of raw economic and satellite imagery 

data, manual annotation of policy documents, and the alignment of temporal and spatial references across modalities. 

This intensive effort ensured data integrity and consistency and resulted in one of the most comprehensive multi-modal 

economic datasets available for regional forecasting research. The baseline models include traditional econometric 

approaches (ARIMA(1,1,1) and VAR(2)), ML (XGBoost with 12-month lagged features), and DL (Spatio-Temporal 

Graph Neural Network, ST-GNN) for comprehensive comparison. All models are evaluated using identical temporal 

splits: 2010-2018 for training, 2019-2021 for validation, and 2022-2023 for testing. 

Table 3. Dataset Statistical Summary 

Variable Unit Mean Std Dev Min Max Coverage 

GDP Growth % 7.2 2.1 -5.3 15.8 100% 

Night Light Intensity nW/cm²/sr 12.3 8.7 0.5 54.2 98% 

Industrial Output Billion CNY 45.6 32.1 2.3 210.5 100% 

Policy Sentiment Score [0,1] 0.62 0.18 0.12 0.95 85% 

Policy sentiment scores were available for 85% of documents. For the remaining cases, missing values were handled 

using a masking strategy within the cross-modal attention layer, which prevents the model from over-weighting 

incomplete inputs. We further tested mean-value and regression-based imputation, with results showing less than 2% 

variation in MAE across strategies, confirming robustness to imputation choice. 

4.2. Evaluation Metrics 

Model performance is evaluated using three categories of metrics: prediction accuracy (Root Mean Square Error, 

RMSE; Mean Absolute Error, MAE), uncertainty quantification (Prediction Interval Coverage Probability, PICP, based 

on the 90% confidence interval), and interpretability (expert scoring of attention weight distributions). Figure 5 illustrates 

the evaluation framework's logical flow, showing how raw predictions translate into quantifiable metrics across the three 

evaluation dimensions. 
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Figure 5. Evaluation Framework Flowchart 

4.3. Results Analysis  

We evaluate the proposed framework from five dimensions: forecasting accuracy, statistical significance, 

computational efficiency, ablation study, and generalizability. Results across these perspectives are summarized below. 

4.3.1. Predictive Accuracy Across Models 

Comparative experiments demonstrate the proposed framework's superior performance across all evaluation 

dimensions. The substantial gains validate the efficacy of its novel components, particularly the integration of 

interpretable attention and probabilistic output, which together enable a level of explainability and risk-awareness not 

previously attainable in regional economic forecasting.  

As shown in Table 4, the proposed model achieves the lowest MAE (0.87 ± 0.04), outperforming XGBoost (1.38 

± 0.06) and VAR (1.92 ± 0.08) by 37% and 55%, respectively. It also delivers the smallest RMSE and the highest 

prediction interval coverage (PICP = 92%), significantly exceeding models that lack explicit uncertainty quantification. 

Table 4. Performance Comparison Across Models 

Model RMSE MAE PICP (%) Training Time (h) 

ARIMA(1,1,1) 1.45 1.21 ± 0.07 N/A 0.5 

VAR(2) 1.98 1.92 ± 0.08 N/A 1.2 

XGBoost 1.42 1.38 ± 0.06 63 3.8 

ST-GNN 1.15 1.02 ± 0.05 N/A 5.5 

Proposed 0.91 0.87 ± 0.04 92 6.2 

To further illustrate the performance gap and prediction stability, Figure 6 visualizes the comparative MAE and 

RMSE across all models. The proposed framework consistently demonstrates both lower error magnitude and tighter 

variance. This reinforces its advantage over traditional econometric methods such as ARIMA and VAR, as well as 

advanced learning-based models like XGBoost and ST-GNN. 

 

Figure 6. Comparison of MAE and RMSE across Models 
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Beyond numerical superiority, these results highlight that the proposed model not only achieves lower errors but also 

quantifies uncertainty (PICP = 92%), providing confidence intervals rather than single-point predictions. This explains 

its stronger risk-awareness compared to baselines such as XGBoost and VAR. 

4.3.2. Statistical Significance Testing 

To rigorously verify whether observed improvements are statistically meaningful, we conduct paired t-tests. 

Compared to XGBoost, our model yields a t-value of 4.56 (p < 0.01), and a t-value of 5.23 (p < 0.01) against VAR, 

confirming that the performance gains are statistically significant rather than incidental. The significance results confirm 

that the performance gains are not due to random fluctuations. Instead, they stem from the model’s structural innovations, 

particularly the cross-modal fusion and Bayesian layers, which systematically reduce error variance across diverse 

conditions. 

4.3.3. Computational Efficiency and Scalability 

Despite the inclusion of multi-modal and spatio-temporal modules, the framework maintains efficient training and 

inference. Training the full model on the entire dataset takes 6.2 hours, and inference supports near real-time deployment. 

As shown in Table 5 and Figure 7, training time scales linearly with dataset size (R² = 0.97), while MAE plateaus beyond 

800k samples, suggesting a practical upper bound for model training. 

Table 5. Computational Scaling Analysis 

Dataset Size (k) Training Time (h) MAE RMSE 

200 1.5 1.12 1.41 

500 3.1 0.95 1.19 

800 4.9 0.89 1.12 

1200 6.2 0.87 0.91 

 

Figure 7. Scalability of Training Time and Model Performance across Dataset Sizes 

As shown in Figure 8, the proposed framework requires longer training times than XGBoost and ST-GNN, 

particularly at larger sample sizes (e.g., 11.1 hours at 1.2M samples), but consistently delivers the lowest mean absolute 

error (MAE) across all scales. This trade-off demonstrates that the framework favors accuracy and reliability over 

marginal gains in efficiency, making it well-suited for large-scale regional forecasting. In addition, the nearly linear 

scaling of training time with data size ensures computational feasibility, while the plateauing of MAE beyond 800k 

samples indicates diminishing returns once the available information is saturated. 
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Figure 8. Joint Efficiency-Accuracy-Scalability Comparison across Models 

4.3.4. Ablation Study: Component Contributions 

We perform ablation experiments to evaluate the contribution of individual components. Removing the spatial 

attention module increases RMSE by 29% (from 0.91 to 1.17), and disabling the multi-modal gate degrades MAE by 

18% (from 0.87 to 1.03). These findings are visualized in Figure 9. Additional tests under adverse data conditions (e.g., 

missing modalities or noisy inputs) show graceful performance degradation. 

 

Figure 9. Ablation Study: Contribution of Each Module to Model Performance 

Table 6 quantifies component contributions across stable and crisis periods, showing that spatial attention improves 

MAE by 28% during shocks, while multi-modal fusion is more beneficial under stable conditions.  

Table 6. Component Contribution by Scenario 

Module Crisis MAE Stable MAE Overall ΔMAE 

Spatial Attention 0.71 0.95 -29% 

multi-modal Gate 0.89 0.83 -18% 

Bayesian Layer 0.93 0.91 -12% 

Full Framework 0.68 0.79 Baseline 

The ablation study confirms that each module plays a complementary role: spatial attention is vital during crisis 

periods, multi-modal fusion strengthens stable conditions, and the Bayesian layer prevents overconfidence. These results 

show that modules are not redundant but tailored to specific forecasting challenges. 
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4.3.5. Generalizability and Robustness 

We evaluate the model’s generalizability, robustness, and interpretability, which are essential for real-world 

economic forecasting. Out-of-sample testing shows strong generalization to unseen cities and extreme periods such as 

the 2020 COVID-19 shock. The model maintains over 89% coverage and keeps MAE within 12% of in-sample values. 

Spatially, performance is best in coastal economic zones (MAE = 0.79), due to stronger cross-regional dependencies 

(Table 7).  

Table 7. Geographic Performance Distribution 

Region Type MAE RMSE Policy Alignment 

Coastal Economic 0.79 0.99 0.85 

Inland Industrial 0.92 1.17 0.78 

Border Trade Hubs 0.86 1.08 0.82 

Expert evaluation further validates practical relevance: the model achieves an average interpretability score of 0.81, 

with attention weights aligning with major events such as infrastructure investment (85%) and trade policy shifts (79%). 

Case studies from Zhejiang Province confirm the model’s ability to trace the spatial propagation of shocks, successfully 

predicting 89% of extreme GDP fluctuations within confidence intervals. 

Table 8 presents quantitative results across China’s three major economic regions. The proposed framework 

consistently outperforms baselines, with an average 18.7% RMSE improvement over ARIMA-PNN hybrids, particularly 

for industrial output prediction where R² reaches 0.92 ± 0.03. Variance is higher in the western region due to data sparsity, 

highlighting the importance of data quality for uncertainty quantification. 

Table 8. Regional performance comparison of the proposed framework (2021–2023 quarterly data) 

Region Metric Proposed Model ARIMA-PNN Hybrid VAR 

Eastern 

RMSE 0.142 0.178 0.201 

MAE 0.098 0.124 0.145 

R² 0.92 0.85 0.79 

Central 

RMSE 0.157 0.193 0.218 

MAE 0.112 0.138 0.162 

R² 0.89 0.82 0.75 

Western 

RMSE 0.183 0.221 0.247 

MAE 0.134 0.167 0.189 

R² 0.85 0.78 0.71 

Note that Table 7 uses functional economic classifications, while Table 8 reflects administrative regional divisions 

per NBS guidelines. 

As shown in Figure 10, the cross-modal analysis reveals that satellite-derived imagery contributes 41%, followed by 

structured economic indicators (36%) and policy sentiment (23%). This highlights the importance of multi-modal fusion 

in regional economic forecasting, where complementary signals from diverse data sources enhance predictive 

performance and robustness. 

 

Figure 10. Feature Importance of Multi-modal Inputs 
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Beyond statistical metrics, regional case studies provide additional evidence of the framework’s practical 

relevance. In particular, its ability to trace pandemic-induced economic shocks demonstrates its real-world 

applicability. 

Figure 11 presents the predicted GDP growth rates alongside the corresponding 90% confidence intervals and 

observed values during the COVID-19 shock in Zhejiang Province. The model accurately captures both the early 

contraction in severely affected areas such as Wenzhou and the subsequent stabilization in surrounding cities. Notably, 

over 90% of the actual values fall within the predicted intervals, validating the reliability of the framework’s uncertainty 

quantification. 

 

Figure 11. Predicted GDP Growth with 90% Confidence Intervals 

In addition, the interpretability components, particularly the spatio-temporal attention heatmaps, enhance 

transparency by identifying the most influential regions and time periods contributing to the model’s predictions. These 

insights are particularly valuable for policy evaluation and crisis response. Figure 12 depicts the evolving attention 

weights across major cities in Zhejiang, illustrating the model’s dynamic prioritization over the pandemic timeline. 

Expert assessment reports an 81% alignment between the attention distribution and documented economic events, further 

supporting the interpretability of the framework. 

 

Figure 12. Attention Heatmap for Economic Shock Tracing (Zhejiang, 2020) 

In practice, policymakers and domain experts reported that the spatio-temporal attention heatmaps were intuitive to 

interpret, as they highlight the most influential regions and time periods contributing to forecasted outcomes. Experts 
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noted that the visual emphasis on key cities during crisis periods facilitated alignment with well-documented economic 

events, making the outputs actionable for scenario evaluation and policy planning. While the interpretability score of 

0.81 confirms strong usability, experts also indicated that further tailoring of visual interfaces, for example, interactive 

exploration or annotation, could enhance accessibility for non-technical stakeholders. 

Figure 13 illustrates the spatial diffusion pattern of pandemic-induced economic disturbances in Zhejiang. The model 

identifies Wenzhou as the initial epicenter, with directional arrows indicating the spread toward Hangzhou, Ningbo, 

Jinhua, and Jiaxing. This spatial trajectory underscores the model’s ability to capture dynamic inter-regional 

dependencies and the propagation of economic shocks under crisis conditions. 

 

Figure 13. Spatial Trajectory of Pandemic-Induced Economic Shock Propagation in Zhejiang Province 

The regional breakdown highlights that the framework adapts effectively across heterogeneous economic contexts. 

Superior performance in coastal regions reflects the availability of dense, high-quality data and strong inter-regional 

dependencies, while higher variance in the western regions points to data sparsity as a limiting factor. Case studies during 

COVID-19 further illustrate that the model does not merely fit past data but actively captures the spatial propagation of 

shocks. This interpretability was corroborated by domain experts, with attention weights aligning with real economic 

events such as infrastructure investment and trade policy shifts. Such alignment enhances trust in the model’s predictions 

for policy use. 

4.3.6. Hyperparameter Sensitivity Analysis 

To assess the robustness of the model architecture, we perform sensitivity analysis on three key hyperparameters: 

dropout rate, number of attention heads, and GRU hidden unit size. As shown in Figure 14, the model’s MAE decreases 

steadily as dropout increases, reaching its lowest value (0.87) when dropout is set to 0.5, indicating that moderate 

regularization improves generalization. For attention heads, performance improves sharply from 2 to 4 heads (MAE = 

0.87) but slightly worsens at 8 heads (MAE = 0.88), suggesting that excessive attention heads introduce unnecessary 

complexity. Similarly, for GRU hidden units, the lowest error (0.87) occurs at 128 units, while both smaller (64 units, 

MAE = 0.91) and larger configurations (256 units, MAE = 0.88) perform less effectively.  

These results confirm that moderate regularization and balanced architectural complexity yield the most stable and 

accurate predictions, highlighting the importance of carefully tuning hyperparameters to achieve optimal performance. 

The results of this study align with and extend prior work not only in regional economic forecasting but also in broader 

financial prediction domains. For example, Qin [20] applied deep learning to portfolio optimization for stock prediction, 

while Ruiz-López & Jiménez-Carrión [21] demonstrated the potential of hybrid ARIMA-LSTM models in 

cryptocurrency forecasting. Guo [22] emphasized the importance of standardized data governance under the IASB 

framework, and Ruangkanjanases & Hariguna [23] investigated user satisfaction with digital financial platforms. 

Collectively, these studies reinforce the growing need for predictive accuracy, interpretability, and user trust, which are 

also central goals of the proposed framework. 
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Figure 14. Hyperparameter Sensitivity Analysis of Model Performance 

5. Conclusion 

This study presents a unified multi-modal spatio-temporal deep learning framework for interpretable and uncertainty-

aware regional economic forecasting. The architecture integrates three key components: (1) dynamic fusion of 

heterogeneous data sources, including satellite imagery, structured economic indicators, and policy text; (2) a spatio-

temporal cross-attention module that captures regional dependencies and temporal dynamics; and (3) a Bayesian 

prediction head for principled uncertainty quantification. 

Empirical results on a dataset covering 75 Chinese cities over 13 years demonstrate a 37% reduction in Mean 

Absolute Error compared to XGBoost and a 92% prediction interval coverage at the 90% confidence level. Ablation 

studies confirm the contributions of each module, while interpretability evaluations show strong alignment between 

model attention weights and real-world events. Case studies further illustrate the framework’s ability to trace spatial 

propagation of economic shocks, underscoring its policy relevance in crisis scenarios such as the COVID-19 pandemic. 

Nevertheless, several limitations should be acknowledged. First, the uncertainty quantification in this study primarily 

captures model variance (epistemic uncertainty) via Monte Carlo dropout; while data noise (aleatoric uncertainty), such 

as anomalies in satellite imagery or incomplete policy text, may indirectly contribute to wider predictive intervals, it is 

not explicitly modeled. Second, the framework’s performance depends on the availability of high-quality satellite 

imagery and reliable economic indicators; sensor errors, cloud cover, or preprocessing procedures (e.g., imputation of 

missing values, sentiment extraction) could introduce biases. Third, although robustness was demonstrated across 

diverse Chinese regions, generalizability to economies with substantially lower data quality remains uncertain. Fourth, 

the current implementation requires considerable computational resources for training (multi-GPU infrastructure), 

although inference can be executed efficiently on modest hardware, making policy deployment feasible with appropriate 

scaling. Finally, while large-scale datasets yielded strong results in this study, smaller regions with sparser data may 

benefit through transfer learning or pretraining, yet a minimal level of data coverage remains necessary for stable 

performance. Addressing these challenges through noise-aware learning, bias-mitigation strategies, cross-country 

validation, and efficient model distillation represents a key direction for future research. 

Future work will extend the framework to transnational forecasting by incorporating cross-border flows and 

harmonizing international datasets. Additional enhancements include integrating real-time indicators (e.g., logistics data, 

electricity consumption, web sentiment) to improve responsiveness, as well as privacy-preserving methods such as 

federated learning and advanced Bayesian techniques for tail-risk estimation. By combining predictive performance, 

interpretability, and uncertainty awareness in a single system, this study establishes a practical and extensible foundation 

for next-generation economic forecasting and data-driven policy support in complex, dynamic environments. 
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