Auvailable online at www.HighTechJournal.org
6 0

o o0 @
0e0e0e0e

HighTech and Innovation
HighTech and Innevation lournal

TJournal

ISSN: 2723-9535 Vol. 6, No. 3, September, 2025

Mathematical Approaches and Algorithms in Big Data Architecture
and Hybrid System Efficiency

Serik Aliaskarov '@, Raissa Uskenbayeva 2@, Vassily Serbin 2@, Orazmuhamed Bekmurat 2@,
Umit Bazarbayeva 3®, Yelena Bakhtiyarova '@, Kanibek Sansyzbay *

!International Information Technologies University, Almaty, 050040, Kazakhstan.
2 Satbayev University, Almaty, 050013, Kazakhstan.

3 Kazakh National Pedagogical University named after Abai, Almaty, 050012, Kazakhstan.

Received 21 May 2025; Revised 19 August 2025; Accepted 26 August 2025; Published 01 September 2025

Abstract

This article presents a formal demonstration of a hybrid big data processing architecture that combines the fault tolerance
and storage robustness of Hadoop with the speed and in-memory processing capabilities of Apache Spark. The proposed
architecture is evaluated through test execution and performance benchmarking in real-world data centers across three
regions in Kazakhstan. The model integrates distributed resource management components, Directed Acyclic Graph
(DAG)-based scheduling mechanism, and Resilient Distributed Datasets (RDDs) to enable dynamic workload distribution
and rapid failure recovery. The results demonstrate that the hybrid system consistently outperforms standalone Spark and
Hadoop architectures under variable workloads, illustrating enhancements in execution time, task recovery, and resource
utilization. Quantitative performance metrics allow for a structured comparison of architectures and help optimize
deployments for diverse scenarios. The proposed hybrid architecture shows significant improvements, reducing average
execution time by up to 38% and increasing resource efficiency by 25% compared to standalone Spark and Hadoop systems.

Keywords: Hybrid Big Data Architecture; Apache Spark; RDD; DAG; Fault Tolerance; Scalability.

1. Introduction

Dealing with increasing volumes of data that arrive faster and in diverse formats has become a significant challenge
for traditional data processing systems. Conventional frameworks, often designed for structured data and batch-oriented
workflows, are inadequate for handling modern workloads that demand both real-time analytics and high fault tolerance
[1, 2]. Industries such as healthcare, cybersecurity, finance, and smart infrastructure require scalable and flexible data
platforms capable of supporting continuous data ingestion, low-latency processing, and reliable storage [3, 4]. To meet
these demands, big data environments have evolved to incorporate systems such as Hadoop which provides high
availability and resilience through distributed storage (HDFS) and batch processing (MapReduce) and Apache Spark,
which enables in-memory, low-latency processing using Resilient Distributed Datasets (RDDs) and Directed Acyclic
Graphs (DAGS) [5, 6]. While each platform offers valuable capabilities, both exhibit limitations when used in isolation.
Hadoop suffers from high latency in iterative or streaming scenarios, whereas Spark's performance is constrained by
memory availability and lacks persistent storage mechanisms [7, 8]. To address these challenges, recent studies have

* Corresponding author: k.sansyzbai@iitu.edu.kz
d:)} http://dx.doi.org/10.28991/HIJ-2025-06-03-016
» This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights.

1013

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0000-5304-4478
https://orcid.org/0009-0000-1911-5156
https://orcid.org/0000-0002-5807-3873
https://orcid.org/0000-0003-4349-121X
https://orcid.org/0000-0001-8124-2834
https://orcid.org/0000-0001-8735-7683
https://orcid.org/0000-0002-3333-5830

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

explored hybrid architectures that integrate Hadoop and Spark to leverage the strengths of both systems. For example,
Dos Anjos et al. [9] proposed a cloud-edge hybrid model focusing on deployment flexibility but lacking quantitative
modeling. Barik et al. [10] investigated hybrid fog-cloud systems for geospatial analytics, yet did not provide
comprehensive empirical validation. Ahmad et al. [11] introduced a hybrid optimization model for malware detection
but did not address architectural integration at scale. These studies highlight the potential of hybrid architectures;
however, they fall short of offering a formalized performance model or evaluating such systems in real-world
deployments.

This gap motivates the present study, which proposes a scientifically formalized hybrid big data processing
architecture that integrates Hadoop’s robust storage with Spark’s in-memory computation. Unlike previous works, this
study develops a unified performance function that simultaneously accounts for latency, fault tolerance, and scalability.
The proposed model is validated through experiments conducted in metropolitan and regional infrastructures, including
pilot implementations in Kazakhstan (Almaty, Shymkent, and Turkestan).

e To develop a formal model of a hybrid architecture based on Hadoop and Spark;

e To design a performance optimization strategy using graph-based task modeling (DAG) and RDD-based fault
tolerance;

e To conduct a comparative analysis of hybrid vs. standalone Hadoop and Spark systems using real-world datasets;

e To demonstrate the practical relevance of hybrid systems in urban analytics, intelligent diagnostics, and scalable
machine learning tasks.

The novelty of this research lies in the integration of performance, resilience, and scalability parameters into a unified
computational framework supported by empirical validation. This approach enables a rigorous evaluation of hybrid
architectures beyond theoretical modeling and contributes a validated solution for high-load, real-time data
environments.

1.1. Paper Contributions

The present study makes a significant contribution to the field of big data architecture and algorithmic optimization.
It proposes a mathematically grounded hybrid system that integrates the computational efficiency of Apache Spark with
the reliability of Hadoop’s distributed storage. Key research contributions include:

The development of a hybrid architecture that combines in-memory data processing in Spark with resilient Hadoop
storage, achieving an optimal balance between computational speed, fault tolerance, and scalability in highly loaded
environments.

Practical implementation and testing under real-world conditions, including pilot deployments in the cities of
Turkestan, Almaty and Shymkent, enabling evaluation of the architecture’s flexibility and adaptability across diverse
data types and volumes.

Comparative performance analysis of the hybrid model against standalone Hadoop and Spark systems using metrics
related to batch processing, streaming analytics and machine learning tasks.

Detailed examination of scalability and fault tolerance metrics, demonstrating the advantages of the hybrid solution
in ensuring stability and adaptability under increasing computational workloads.

Development of a strategic framework for organizations and IT specialists in selecting big data processing
architectures, considering the characteristics of data flows, reliability requirements and infrastructure constraints.

Establishment of a methodological foundation for further research focused on the development of intelligent and
flexibly scalable systems with a well-defined mathematical structure and practical applicability.

The obtained results are aimed at expanding the applicability of hybrid architectures in the domain of big data
analytics and contribute to the creation of more versatile computing solutions tailored to the evolving demands of modern
digital ecosystems.

2. Literature Review

The exponential growth of data volumes, their diversity and high velocity have a profound impact on the digital
environment and drive the rapid advancement of Big Data technologies. Modern information flows are characterized by
dynamism and variability, rendering traditional processing systems, primarily designed for structured data and stable
bandwidth, increasingly inadequate for real-time applications [12, 13]. The evolution of data storage and analysis
architectures has led to the development of more flexible, scalable, and efficient platforms capable of adapting to the
demands of contemporary computing tasks.

1014

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

The development of Hadoop has played a key role in this transformation, enabling the processing of large-scale
datasets through a distributed file system (HDFS) and a MapReduce model designed for parallel computation [14, 15].
Owing to its architecture, Hadoop offers high fault tolerance and scalability. However, it exhibits limitations when
handling tasks that require real-time analytics. To address these shortcomings, Apache Spark framework was introduced,
focusing on in-memory data processing, which significantly accelerates the execution of iterative algorithms and
complex analytical operations [16].

Several studies confirm that Spark is more efficient in handling tasks where low latency and high computational
power are critical [9, 17]. However, as analytical demands grow in complexity, it has become increasingly clear that
neither Hadoop nor Spark alone can fully meet the multifaceted requirements emerging across industry, research and the
public sector [10, 18]. This has led to the development of hybrid architectures that integrate the storage resilience of
Hadoop with the computational advantages of Spark. Such systems offer reliable long-term storage along with high-
performance analytics including graph processing, streaming analytics, machine learning, and predictive modeling [11,
19].

Hybrid platforms utilize HDFS as the underlying storage layer offering scalability and high availability, while Apache
Spark provides in-memory access and processing of operational data [20]. This integrated solution reduces latency
associated with disk 1/0 and significantly enhances overall system efficiency, especially in real-time environments [21].
Moreover, the hybrid approach effectively supports multi-format data processing, integration with NoSQL systems, and
distributed analytics across cloud and edge computing environments [22-24].

In practical applications, hybrid technologies are widely employed in intelligent transportation systems [25, 26],
object lifecycle management, unstructured data processing in geographic information systems, and the implementation
of Industry 4.0 frameworks [10, 17]. Additionally, hybrid platforms show significant potential in areas such as predictive
analytics, cybersecurity, digital twins and industrial diagnostics [11, 23, 27]. However, the deployment of hybrid systems
involves challenges including fine-tuning of resource parameters, coordination between storage and processing modules,
and continuous monitoring of distributed computing performance [28, 29]. Some studies also emphasize the integration
of OLAP tools with NoSQL storage systems [30] and the acceleration of queries in unstructured data environments [31].

Recent studies emphasize the strategic importance of hybrid architectures as a key tool for the development of
analytical platforms and intelligent computing systems capable of unlocking the full potential of big data in various
industries [32, 33].

As shown in Table 1, Hadoop offers reliable and scalable storage but falls short in analytical performance. Spark
demonstrates high computational efficiency, particularly in real-time tasks, but requires substantial system resources.
Hybrid architectures integrate the strengths of both systems, achieving a balance between storage reliability and
processing speed. The model presented in this paper demonstrates enhanced adaptability and performance in practical
scenarios, as confirmed by real world testing results.

Table 1. Comparative overview of Big Data systems

Technology Features Benefits Limitations Key References
Hadoop I,\Dﬂi;g';zlgsge file system (HDFS), Scalability, Fault tolerance f;gm?;g;ﬁ;stiigsg speed for [12-15]
Apache Spark oD Witk T Hersive and seaming computations complex cluster managemment [16-18]
s-21
A Uses o i T, M s, Opetior el rsine e, s 220
Formal hybrid model (Hadoop + Improved efficiency, reduced Implementation complexity, Validated across multiple real-world

Our Study

Spark) with mathematical basis latency, adaptive scaling multi-level monitoring

2.1. Related Work

Recent advances in distributed computing systems have led to the widespread adoption of platforms such as Apache
Hadoop and Apache Spark for big data analytics. Hadoop provides reliable data storage through its Hadoop Distributed
File System (HDFS) and ensures fault tolerance via data replication mechanisms. However, its MapReduce paradigm
introduces high latency, making it less suitable for real-time processing tasks.

Conversely, Apache Spark enables faster data processing through in-memory computation and directed acyclic graph
(DAG)-based execution, offering clear advantages in speed and the performance of iterative algorithm. However, Spark's
resilience is comparatively weaker, particularly in scenarios involving memory overflow or node failures, where its
recovery mechanisms may lag behind Hadoop’s robust replication model. While both platforms are effective
independently, their complementary strengths and limitations underscore the rationale for exploring hybrid architectures.

1015

deployments (Almaty, Turkestan, Shymkent)

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Numerous studies in big data processing have focused on analyzing the advantages of individual platforms — such as
Hadoop and Spark - while hybrid architectures have received less systematic attention and are often explored without
comprehensive verification in real-world application scenarios. For example, Dos Anjos et al. [9] proposed a hybrid
infrastructure combining cloud and edge computing for big data analytics. However, their work primarily addresses
deployment aspects and lacks mathematical formalization of key metrics such as fault tolerance and scalability. In
another study, Dunayev et al. [27] presented a performance evaluation model for cloud data systems based on machine
learning, yet hybrid architectures were not tested and fault tolerance was not modeled. Barik et al. [10] investigated the
potential of hybrid mist-cloud systems in geospatial analytics, but their work does not include experimental performance
comparisons or formal architectural integration.

This study addresses these limitations by proposing a mathematically grounded model for evaluating a hybrid
architecture based on Spark and Hadoop. Unlike previous approaches, the proposed system is validated in real-world
applications - specifically, municipal and regional data centers - and tested on complex analytical tasks ranging from
batch processing and streaming analytics to the implementation of machine learning algorithms (e.g., Word2Vec and
MultinomialNB).

Additionally, this paper employs a holistic set of evaluation metrics including execution latency, failure recovery
time, and resource utilization efficiency evaluation. The results are summarized in Table 2, with a graphical
representation provided in Figure 1. These data enable a more accurate assessment of the hybrid architecture's behavior
under varying computational loads and demonstrates its potential in both high-load real-time tasks and scenarios with
stringent fault tolerance requirements. Figure 1 illustrates the comparative performance of Hadoop, Spark, and the
proposed hybrid system in terms of execution and recovery times.

Table 2. Comparative analysis of performance metrics

Architecture Avg Time (min) Recovery Time (sec) Resource Efficiency (%)
Hadoop 28.49 40 65
Spark 4.46 25 85
Hybrid 54.35 18 80
Avg Execution Time (min)
mmm Recovery Time (sec)
50
40}
g 301
=
201
10

Hadoop Spark
Architecture

Hybrid

Figure 1. Comparison of Execution and Recovery Times

3. Mathematical Model of Hybrid Big Data Processing Architecture

Designing an efficient big data processing architecture requires formalizing the structure of the computing
environment, data flows, and transformation processes. This section presents a mathematical model for a hybrid
architecture that integrates Hadoop’s persistent storage (HDFS) with Apache Spark’s distributed in-memory processing.
The model outlines how RDDs and DAGs facilitate data partitioning, fault tolerance, resource allocation, and task
scheduling [3, 5, 34, 35]. As illustrated in Figure 2, the hybrid architecture combines HDFS for storage and Apache
Spark for in-memory processing within a unified platform.

1016

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Spark <
Driver H

Spark
Driver

. External |
* Sources

Y

Executors

3

Figure 2. Overall System Architecture of the Hadoop-Spark Hybrid Platform

Unlike the approach of Dos Anjos et al. [9], which primarily focused on deployment-level integration of edge and
cloud resources without explicit modeling of system behavior, the proposed architecture introduces a mathematical
framework that evaluates performance under fault and load conditions. Specifically, the model formalizes latency
behavior, fault recovery mechanisms, and dynamic resource allocation using performance functions. This enables not
only theoretical assessment but also simulation-based comparison across architectures, providing a more comprehensive
and predictive foundation for system design.

Let D denote the set of input data, which is segmented into blocks B;, each replicated across r nodes to ensure
resilience:

PB)=1-p" @
where p — probability of node failure, r — replication factor for fault tolerance.
The Resilient Distributed Dataset (RDD) abstraction in Spark is defined as [5, 8, 13, 36]:
RDD = {d;} 2
where d; is a data fragment available for parallel in-memory processing.
Data transformation is modeled as a composition of functions:
R=fyefo10..cf1(D) 3)
where each f; represents a transformation step (e.g., filter, map, reduce).
For streaming analytics [5, 36]:
R, = f(W,) 4)
where W; is a time window and f; is a streaming function applied per window.
The overall computation is structured as a Directed Acyclic Graph (DAG):
G =(V,E) (5)
where: V — set of RDD transformation nodes, E ¢ V X V — the set of dependency edges.
Fault tolerance is ensured through lineage tracking:
L={T, > T, > —>T,} (6)
where each failed task T} can be recomputed using its predecessor Tj,_;.
Let:
-T ={t,,t,,..., t,} —the set of tasks;
- R; — available resources on node j;
- x;; € {0,1} — a binary variable indicating whether task i is assigned to node j;

- T;j — the estimated execution time of task i on node ;.

1017

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

The optimization objective is to minimize total computation time:

n m
min z xij . TU (7)
i=1 j=1
Subject to resource constraints:
ixij-res;<R;, Vj 8
The integral performance of the system is evaluated as:
Perf = a - Latency + B - Scalability + y - FaultTolerance 9)

where: a, B,y —weighting coefficients, Latency — average data block delay, Scalability — performance gain with added
nodes, FaultTolerance — proportion of tasks successfully recovered.

An example of stream processing using Spark:

freq = reduceByKey (ﬂatMap (stream))

(10)

where streaming data is processed and aggregated in Spark before storing results in PostgreSQL or Cassandra.

Table 3 provides a clear explanation of the symbols applied within the mathematical model and the performance
evaluation framework, ensuring consistency and clarity throughout the analysis.

Table 3. Symbol definitions used in the mathematical model and performance evaluation framework

Symbol

Definition

Ay

DAG(V,E)
L
T
Regr
F(x)
Latency
Scalability

FaultTolerance

Weight for latency

Weight for scalability

Weight for fault tolerance

Probability of node failure

Replication factor for fault tolerance

Data arrival rate (streaming)

Threshold for re-execution or resource scaling
Binary task assignment (1 if task i on node j)
Estimated execution time of task i on node j
Resource requirement of task i

Auvailable resources on node j

Total execution time

Time for data ingestion

Computation time

Output (result writing) time

Recovery interval for block b on node i
Input dataset

Data block

Resilient Distributed Dataset

Data fragment for parallel processing
Transformation function

Result of transformation pipeline

Data window at time ¢t

Streaming transformation function

Directed Acyclic Graph with vertices VV and edges E
Task lineage set

Set of all tasks

Resource efficiency

Integrated performance function

Average delay per data block

System throughput gain with more nodes

Proportion of tasks recovered

1018

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

All notations are summarized above to ensure clarity and consistency in mathematical formulation.

Figure 3 illustrates the integration of two key components, the Hadoop storage system (HDFS) and the Apache Spark
compute engine, interacting within a unified hybrid architecture. The left side of the diagram shows external data sources
(e.g., Kafka, REST API, 10T devices) delivering input as both streaming and batch data. This data is stored in the
distributed HDFS system, which supports replication and fault tolerance.

Figure 3. Detailed Internal Processing Flow within the Hybrid Big Data System

The data is then processed by Spark components:
o Driver coordinates the execution of tasks;
o Executors perform RDD transformations in parallel;

o A DAG execution graph is used, where each node corresponds to a transformation (flatMap, filter, reduceByKey,
join, etc.), and edges — logical dependencies between them [17, 36].

The results of the analysis are transferred either to the database (PostgreSQL, MongoDB) or to ML modules (Spark
MLIib), after which they can be visualized or exported for further analysis.

Figure 3 details the internal dataflow and module interactions in the hybrid system, including Spark DAG, ML
modules, and storage components.
4. Research Methodology

The methodology employed in this study is summarized in Figure 4, which outlines the main components from data
ingestion to output.

Input data

Segmentation

Processing

(Spark DAG)

Metrics

ML Evaluation

Figure 4. General workflow of the hybrid data processing methodology

1019

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

To comprehensively evaluate the efficiency and scalability of Hadoop, Spark, and hybrid big data architecture
systems, this study adopts a systematic approach encompassing architectural analysis, mathematical modeling,
deployment strategy, and empirical testing. The methodology consists of four interrelated components: architecture
description, mathematical formalization, experiment setup and implementation, and comparative analysis based on key
metrics.

4.1. System Architecture Specification

The architectural specification serves as a foundation for understanding the differences in the operating principles,
scalability, and fault tolerance of big data processing systems. This section discusses the key features of the Hadoop,
Apache Spark, and their hybrid integration architectures. The presented architectural models implement different
approaches to storing, processing, and managing data, and thus vary in their suitability for tasks requiring high
performance and reliability.

Hadoop Architecture

The Hadoop architecture is structured around two main components:

- HDFS (Hadoop Distributed File System) is a distributed file system that provides stability and scalability by
replicating data across multiple nodes. Each data block is duplicated on separate physical nodes, providing fault tolerance
even in the event of hardware failures.

- MapReduce is a parallel processing model that divides computation into Map (input data transformation) and
Reduce (result aggregation) stages. While well-suited for batch processing of large datasets, the model is characterized
by high latency in interactive or iterative workloads.

- YARN (Yet Another Resource Negotiator) serves as a bound together asset supervisor over both Hadoop and Spark
situations. It arranges assignment execution, apportions assets, and equalizations workloads over the cluster. Within the
crossover setup, YARN empowers consistent integration between determined capacity and in-memory computation by
overseeing both MapReduce and Spark applications inside a single foundation.

The advantage of Hadoop lies in its high storage reliability and fault tolerance. However, its performance is limited
in tasks that require multiple iterations or fast response times.
Apache Spark Architecture

Apache Spark was developed to overcome the limitations of Hadoop with a focus on high-speed data processing
using RAM:

- RDD (Resilient Distributed Dataset) is the basic data structure of Spark, representing a fault-tolerant, immutable
set of distributed elements that supports lazy transformations and automatic recovery.

- DAG (Directed Acyclic Graph) is a task execution model in which all operations on RDD are represented as a
directed acyclic graph. This allows Spark to optimize execution order and eliminate redundant operations.

- Spark Core and libraries: Spark SQL (processing of structured and tabular data), MLIlib (machine learning), GraphX
(graph computation), Spark Streaming (stream analytics).

By processing data in RAM, Spark provides high task execution speed, especially in scenarios that require multiple
access to the same dataset.
Hybrid architecture: Spark + Hadoop

The hybrid architecture combines the strengths of both systems:

- Storage is implemented using HDFS, providing reliability, scalability and fault tolerance.

- Processing is performed by Spark using a DAG graph, in-memory execution, support for streams, machine learning
and complex analytics.

The hybrid approach enables a balance between long-term data storage and high-performance processing. It is
especially relevant for tasks that require both data persistence and low-latency computation. The architecture has
demonstrated practical applications - from municipal analysis to intelligent transport systems and real-time diagnostics.

Figure 5 provides a comparative structural overview of the three architectures across storage, processing, and
orchestration layers.

1020

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Hybrid Architecture

Manage Eesources
YARN - S T
(Unified Control) Monitor Storage Read/'Write Spark DAG Engine
HODFS (Computation)
(Persistent Storage)

Spark Architecturs

Cluster Manager
YARN / Mesos / Standalone)
3 Spark Core
T 5 " Execution Plan {Execution Engine)
RDD ransIormations -
[(In-memory Abstraction) #-| DAG Scheduler

Hadoop Architecture
YARN
(Job Management)
HDFS
(Distributed Storage)

Figure 5. Structural comparison of Hadoop, Spark, and Hybrid Architecture

Resource Allocation

Scheduling

MapReduce
{Batch Processing)

Data Input

4.2. Mathematical Formalization

Mathematical modeling provides a formal framework for describing key processes in big data processing
architectures: data distribution, computation, resource management, and overall efficiency assessment. The following
equations represent essential aspects of the functioning of Hadoop, Spark, and their hybrid integration systems.
Data Distribution and Fault Tolerance (Hadoop)

where D; —distributed data block i, B;; — block instance on the node j, R — number of lines, P; — node failure probability,
A; — block security probability.

MapReduce Runtime

1 N. 1 oN.
Tyr = Ezlﬂ Ti + N_TZ]';1 Trj (12)

where T,,;, T,; —times Map u Reduce tasks respectively, N, N, — total number of Map and Reduce tasks.
Resource Utilization (YARN)

Re=Xir, U =7[5Rc(D)dt (13)
where r; — resources allocated to node i, R, — total resources, U(t) — average system load.
DAG-Model (Spark)

RDDyut = fo (faoa (- fi(RDD;))) (14)
where f; — successive transformations, RDD,,, RDD,,,; — input and output data sets.
Average Execution Time in Memory

TSpark = M (15)

n-Bm

where t; — task processing time i, H, — cache hit ratio, B,,, — memory bandwidth.

1021

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Efficiency of Cache Utilization

m
E. = Zi=1ci
===
m

Pmiss (16)
where c; — task cache efficiency i, P,,,;ss — cache miss penalty.

Integral Metric of Hybrid Architecture

_ PsWq
Upr+05+Tg+Cc

E, 17)

where P, — processing speed, W, — load sharing factor, U, — resource utilization, O — system costs, T, — transmission
delays, C. — computational complexity.

Table 4 presents the essential mathematical models that underpin the structure and functionality of data processing
systems.

Table 4. Key mathematical models of data processing systems

Equation Assignment Parameters
1 HDFS data distribution and fault tolerance D;, Byj, Py, A;
2 MapReduce task execution time Tonis Trjs N, Ny
3) Resources in YARN and average utilization 1, R, U(L)
4) DAG representation of transformations in Spark fi,RDD;,, RDD,,,¢
(5) Memory processing time t, H., B,
(6) Efficiency of cache utilization Ciy Ppiss
@) Integral efficiency of hybrid architecture P, Wy, U,., 05, Ty, C,

Thus, the presented formalization provides a quantitative basis for comparing architectures and analyzing their
performance in different big data processing scenarios.

4.3. Experimental Setup and Implementation

To verify the theoretical models and assess practical efficiency, a series of experiments were conducted to deploy
Hadoop, Spark and the proposed hybrid system in municipal data centers of Kazakhstan: Almaty, Shymkent and
Turkestan. Each environment was configured as a cluster with 8 to 32 CPU cores, 32-128 GB of RAM and distributed
storage based on HDFS.

Three types of data were used for testing:
- Structured registers;
- Streaming text data from city chatbots;

- Unstructured citizen feedback and public inquiries.

Implemented Tasks:

- Batch processing in Hadoop (aggregations, filtering);

- Streaming analytics in Spark Streaming (keyword extraction);

- Sentence classification in hybrid architecture (Word2Vec + MultinomialNB).

All systems were executed under identical conditions. The hybrid architecture employed the Spark DAG scheduler
in combination with fault-tolerant HDFS storage and task coordination via YARN.

4.4. Analyzing Performance and Metrics

The performance of Hadoop, Spark and their hybrid integration was benchmarked against key metrics such as
processing time, throughput, fault tolerance and scalability. Experimental testing included 10 runs on each architecture
with identical input data modeling a typical analytics workload.

Figure 6 illustrates the architecture of the hybrid processing system, which combines the capabilities of Hadoop and
Spark. The data flow includes the steps of source extraction, preprocessing with Spark Core and Hadoop tools, feeding
into a machine learning model (MLIib), and storage in HDFS through HBase. This scheme reflects the key interactions
between the components of the system.

1022

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

HDFS

-
————

Data comes Data Preprocess Data load the
from source and with Spark models using Data saves into
Datawarehouse Core, Hadoop Mlib and Graphx HDFS with

using Hive and Core and visualizes, Hbase
Spark SQL+ Python using PIG

Figure 6. Hybrid Flow (Hybrid Architecture Flow)

Execution Time Comparison

Each architecture was tested through 10 repeated runs. Figures 7 to 9 present the execution time results for each of
the three systems. Figure 7 displays the overall processing time per run, highlighting Spark’s superior speed. Figure 8
illustrates the total workload distribution, with Hadoop handling the majority of processing. Figure 9 shows execution
time variability across the architectures, reflecting the hybrid system’s adaptability and Spark’s consistency under
intensive workloads. Spark demonstrated the lowest average task execution time at approximately 4.46 minutes, while
Hadoop required an average of 28.49 minutes. The hybrid system exhibited more variable performance, but in several
cases achieved results comparable to Spark while offering greater fault tolerance.

Time in milliseconds
60000 e HadoOp == Spark Hybrid
50000 -
40000 - /\ /\
30000 -
—
20000 A
10000 -
0 T T T T T T T T T |
1 2 3 4 5 6 7 8 9 10
Attempt
Sum comparison
1.4E+10 A
1.2E+10 A
1E+10 A
E 8E+09 -
wn
6E+09 A
e HadoOD
4E+09 A
=== Spark
2E+09 A Hybrid
0 T T T T T T T T T)
1 2 3 4 5 6 7 8 9 10
Attempt

Figure 7. Comparison of processing time (Time in Milliseconds)

1023

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Time in milliseconds

45000 A

40000 - e HadoOp e Spark e Hybrid

35000 -
30000

25000 A

t, ms

20000 -
15000 -

10000 -

Attempt

Sum comparison
1.45E+10

1.4E+10

1.35E+10

Sum

1.3E+10

1.25E+10

e HadoOD Spark === Hybrid

1.2E+10 T T T T T T T T T]

Attempt

Figure 8. Sum load by attempts (Sum Comparison)

Time in milliseconds
30000 -

25000 -

20000 -

t, ms

15000 -

e———adoop === Spark == Hybrid

10000 A

5000 -

Attempt

1024

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Sum comparison

1.4E+10 -

1.2E+10 A

1E+10 A

8E+09 - —— Hadoop

Sum

6E+09 - e Spark

2E+09 -

Attempt

Figure 9. Execution time by architecture (Time by Architecture)

The observed variation in execution times for the hybrid architecture - ranging from approximately 20 to 85 minutes
- can be attributed to several real-world operational factors. Primarily, the variability stems from dynamic resource
allocation across heterogeneous nodes, where differences in memory capacity, CPU availability, and 1/O throughput
influence task scheduling and DAG execution latency.

Indeed, the runtime of the hybrid setup varied significantly — from 20 to 85 minutes. This variation primarily reflects
the realities of system-level operation. First, resources are not uniformly distributed across the infrastructure. Differences
in memory capacity, CPU speed, and data transfer rates introduce inconsistencies in task scheduling and influence the
execution time of DAG-based workloads.

Organized blockages and large-scale data rearrangements, particularly during peak workloads, contribute to these
delays—especially when fault-tolerant checkpoints are written to HDFS. In addition, Spark’s DAG scheduler responds
differently depending on I/O intensity and task concurrency. In scenarios where streaming and batch processes run
simultaneously, task prioritization may lead to queuing or uneven resource utilization. These variations reflect realistic
production environments and highlight the trade-off between speed and fault tolerance in hybrid systems. Overall, the
hybrid approach consistently outperformed Hadoop in recovery efficiency and scalability, while approaching Spark’s
speed under optimized conditions. This demonstrates how effectively the hybrid system handles complex tasks under
changing conditions.

Network congestion and large-scale data shuffling - particularly during peak workloads - further contribute to
processing delays, especially when fault-tolerant checkpoints are written to HDFS. Additionally, Spark’s DAG
scheduler behaves differently depending on 1/O intensity and task concurrency. In scenarios where streaming and
batch processes are executed concurrently, task prioritization can result in queuing delays or uneven resource
utilization. These fluctuations reflect realistic production environments and underscore the trade-off between speed
and fault tolerance in hybrid systems. Overall, the hybrid approach consistently outperformed Hadoop in terms of
recovery efficiency and adaptability, while approaching Spark’s performance under optimized conditions. This
demonstrates the hybrid system’s robustness and flexibility in handling complex workloads under dynamic
conditions.

The results of the ten runs are presented in Tables 5 to 7. Each of them contains values of total load, execution time
in milliseconds and conversion to minutes.

1025

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

Table 5. Execution time (in milliseconds) across 10 benchmark runs for Hadoop, Spark, and Hybrid architectures

Hadoop performance

Attempt Sum Time in milliseconds ~ Time in minutes
1 9748452294 16818 28,03
2 9751599497 19586 32,64333333
3 9748078225 17645 29,40833333
4 9743269112 15693 26,155
5 9749890992 14790 24,65
6 9746138966 16663 27,77166667
7 9754628250 18315 30,525
8 9745675746 18876 31,46
9 9754297724 17112 28,52
10 9752316177 15436 25,72666667
Spark performance
Attempt Sum Time in milliseconds ~ Time in minutes
1 1319689472 11324 18,87333333
2 1327631572 20464 34,10666667
3 1319099228 38346 63,91
4 1328377210 17684 29,47333333
5 1327370902 27914 46,52333333
6 1318769966 23962 39,93666667
7 1323348722 36248 60,41333333
8 1323409380 42924 71,54
9 1329513152 23872 39,78666667
10 1324935052 25042 41,73666667
Hybrid performance
Attempt Sum Time in milliseconds ~ Time in minutes
1 1493470210 19770 32,95
2 1505399020 38250 63,75
3 1509702550 29330 48,88333333
4 1508172810 51100 85,16666667
5 1496744070 37190 61,98333333
6 1500786720 26580 443
7 1504740990 38070 63,45
8 1506520920 24750 41,25
9 1496044240 48710 81,18333333
10 1509398390 12320 20,53333333
Cluster Average Sum Average Time
Hadoop 9749434698 28,489
Spark 1324214466 44,63
Hybrid 1503097992 54,345

1026

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

Table 6. Total data volume processed (in bytes) per attempt for Hadoop, Spark, and Hybrid systems

Spark Better

Hadoop performance

Attempt Sum Time in milliseconds Time in minutes
1 12835462387 22843,7 38,07283333
2 12839606904 25188,23333 41,98038889
3 12834969263 23732,58333 39,55430556
4 12828637064 20162,45 33,60408333
5 12837350473 19673,5 32,78916667
6 12832416805 21139,61667 35,23269444
7 12843593163 24914,75 41,52458333
8 12831806899 24253,4 40,42233333
9 12843158770 22830,8 38,05133333
10 12840549933 20724,06667 34,54011111

Spark performance

Attempt Sum Time in milliseconds ~ Time in minutes
1 263937974,4 22248 3,708
2 265526234,4 4012,8 6,688
3 263819925,6 7729,2 12,882
4 265675542 3436,8 5,728
5 265474100,4 5482,8 9,138
6 263753893,2 2672,4 4,454
7 264669644,4 7209,6 12,016
8 264681996 8404,8 14,008
9 265902710,4 4634,4 7,724
10 264987050,4 5168,4 8,614

Hybrid performance
Attempt Sum Time in milliseconds ~ Time in minutes

1 1066764436 8407,142857 14,01190476
2 1075285014 28750 47,91666667
3 1078358964 17378,57143 28,96428571
4 1077266293 38642,85714 64,4047619
5 1069102907 21564,28571 35,94047619
6 1071990514 11842,85714 19,73809524
7 1074814993 27192,85714 45,32142857
8 1076086371 21250 35,41666667
9 1068603029 35507,14286 59,17857143
10 1078141707 8800 14,66666667

Cluster Average Sum Average Time

Hadoop 12836755166 37,57718333

Spark 264842907,1 8,496

Hybrid 1073641423 36,55595238

1027

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Table 7. Comparative resource efficiency (%) for Hadoop, Spark, and Hybrid architectures

Hadoop performance

Attempt Sum Time in milliseconds ~ Time in minutes
1 12997936126 22424 37,37333333
2 13002132396 26021 43,36833333
3 12997438567 23474 39,12333333
4 12991025478 20525 34,20833333
5 12999853458 18920 31,53333333
6 12994851682 22215 37,025
7 13006171800 24418 40,69666667
8 12994234368 25167 41,945
9 13005730267 22801 38,00166667
10 13003088103 20449 34,08166667

Spark performance
Attempt Sum Time in milliseconds ~ Time in minutes

1 219948312 1854 3,09

2 221271862 3344 5,573333333
3 219849938 6441 10,735

4 221396285 2864 4,773333333
5 221228417 4569 7,615

6 219794911 2227 3,711666667
7 220558037 6008 10,01333333
8 220568330 7004 11,67333333
9 221585592 3862 6,436666667
10 220822542 4307 7,178333333

Hybrid performance

Attempt Sum Time in milliseconds ~ Time in minutes
1 149347021 1177 1,961666667
2 150539902 4025 6,708333333
3 150970255 2433 4,055
4 150817281 5410 9,016666667
5 149674407 3019 5,031666667
6 150078672 1658 2,763333333
7 150474099 3807 6,345
8 150652092 2975 4,958333333
9 149604424 4971 8,285
10 150939839 1232 2,053333333

The presented data demonstrates that the choice of architectural model should be based on the computational task
specification, data type, and fault tolerance requirements.

The observed performance differences between Hadoop, Spark, and the hybrid architecture are fundamentally
influenced by the internal data processing mechanisms, particularly the use of Directed Acyclic Graphs (DAGS) and in-
memory execution in Spark. The DAG scheduler in Spark enables parallel task execution and optimized dependency
tracking, reducing redundant operations and significantly improving processing time in iterative or multi-stage
workloads. However, this architecture relies heavily on memory availability, and in the event of node failure, tasks must
be recomputed based on lineage information, which may introduce instability if resource management is suboptimal.
Spark outperforms Hadoop in terms of execution time primarily because of its in-memory computation model using

1028

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

RDDs. Whereas Hadoop writes intermediate results to disk after each Map and Reduce stage, Spark keeps intermediate
data in memory, minimizing 1/O overhead and accelerating analytics, especially for machine learning and stream
processing tasks. This benefit, however, involves a trade-off in fault tolerance: when memory limits are reached or DAG
execution fails, Spark may suffer performance degradation due to task recompilation or memory spills.

This strategy combines Spark's rapid processing capabilities with Hadoop's adaptability to overcome these
limitations. As appeared in Tables 4-6, the hybrid architecture illustrates lower recuperation times (18s) compared to
standalone Hadoop (40s) and along with more stable performance under variable load conditions. This advantage is
particularly evident in scenarios involving Word2Vec and MultinomialNB, where temporary storage of intermediate
models is critical. The hybrid design ensures that failures in Spark executors do not result in complete data loss, as HDFS
replication maintains persistent copies, enabling faster task recovery and graceful degradation in the event of node
failures.

In contrast to prior studies, such as Dos Anjos et al. [9], who proposed a cloud-edge hybrid infrastructure without
reporting recovery latency, this study demonstrates measurable improvements in both task execution and recovery
performance. Similarly, the works of Barik et al. [10] and Ahmad et al. [11] focused on deployment models and malware
detection pipelines, respectively, but lacked formal integration of performance functions or real-world architectural
comparisons. The present study addresses this gap by introducing a mathematically formalized hybrid model, empirically
tested across three regional systems and benchmarked using key metrics such as latency, fault tolerance, and resource
efficiency. These findings demonstrate that hybrid big data systems are not merely theoretical constructs but offer
practical scalability and adaptability in real-time analytics scenarios, particularly when designed with balanced resource
allocation, DAG-based optimization, and multi-layered fault tolerance mechanisms.

The analysis shows that Spark is the preferred solution for runtime-critical tasks, especially in text analysis,
classification, and stream processing. Hadoop demonstrates stability under batch load and high fault tolerance, but is
inferior in speed.

The hybrid architecture offers a balanced approach by combining the reliability of Hadoop with the high
computational performance of Spark. Despite the higher time variability (see Figures 7 and 9), it proves especially
effective in handling complex workloads that involve model training and continuous data ingestion.

Thus, the test results confirm the feasibility of the hybrid approach for tasks requiring both scalable storage and low
processing latency. This approach can be recommended for urban analytics platforms, digital health, and decision support
systems.

4.5. Benchmarking Methodology and Validation Criteria

To ensure objectivity, reproducibility and representativeness of the experimental evaluation of architectural solutions
in the field of big data processing, a comprehensive benchmarking methodology was developed covering performance,
stability and scalability parameters.

The key evaluation metrics included latency, fault tolerance and resource utilization efficiency (CPU, memory and
disk subsystem load). These metrics provide a comprehensive characterization of system behavior under conditions of
intensive data processing and dynamically changing load.

Each task was executed ten times for each of the considered architectures - Hadoop, Spark and hybrid configuration
- in order to obtain average values, increase the reliability of the results and reduce the influence of random deviations.

Experimental tests were deployed in three independent regional computing environments: the cities of Almaty,
Shymkent and Turkestan region. This setup ensured the variability of infrastructural conditions and allowed to carry out
a valid assessment of the portability of architectural solutions in applied conditions.

In all cases, a unified hardware and software platform was used, including computing nodes with 8-core processors,
32 GB of RAM and three-node HDFS distributed storage. The software environment was also standardized: Spark
version 3.x, Hadoop version 3.x, and Ubuntu Server 20.04 OS.

Heterogeneous data types were used for testing, including structured (CSV, SQL tables), semi-structured (JSON) and
unstructured (text logs, documents). This approach allowed to ensure the completeness of the evaluation, corresponding
to the conditions of real production and analytical tasks.

The proposed validation framework enables a sound interpretation of the experimental results and supports a reliable
comparison of architectural performance under practical workload scenarios.

1029

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

5. Discussion

The analysis of experimental data revealed consistent patterns in the behavior of Hadoop, Spark and their hybrid
combination when performing different types of computational tasks. The most significant factor affecting performance
is the underlying data management strategy and data processing mechanism.

Spark achieves significantly higher processing speed due to its in-memory computing model, which reduces the
overhead of read and write operations to disk. This advantage is particularly pronounced in tasks that involve multiple
accesses to the same data, such as training machine learning models or performing iterative transformations. Thus, Spark
is the preferred architecture for computationally intensive and low-latency scenarios (e.g., real-time analytics and NLP
tasks).

The hybrid architecture demonstrated the most effective balance between speed, fault tolerance and scalability. Its
efficiency was especially notable in tasks using Word2Vec algorithms together with MultinomialNB classifier, where
both high computational performance and reliable storage of large volumes of intermediate data are critical. Using HDFS
as a distributed storage in combination with the Spark computational kernel allows processing both streaming and
accumulated data, providing system fault tolerance without significant performance degradation.

Despite longer execution times, the Hadoop architecture has shown high stability and reliability. Its advantages are
evident in batch processing of large data sets, where execution speed is less critical than result completeness and
consistency — especially in sequential tasks that do not require interactivity.

The scenario analysis shows the following applicability distribution:

o Batch analytics and ETL processes: Hadoop provides a stable and scalable platform for consistent processing of
Big Data.

e Streaming and real-time analytics: Spark provides low latency, high throughput, and adaptability to changes in
data flow.

o Hybrid tasks (NLP, ML, predictive analytics): Hybrid architecture demonstrates the benefits of both platforms,
making it especially suitable for workloads requiring reliable storage, parallel processing, and fault tolerance.

However, hybrid architecture imposes higher demands on component configuration and coordination. Its efficiency
depends on proper balancing of resources between computational tasks and data access, as well as the stability of the
network infrastructure. Furthermore, insufficient optimization of the Spark DAG scheduler under high 1/O load
conditions can lead to increased execution times.

Beyond theoretical insights, this study holds practical significance. This work extends the theoretical understanding
of hybrid big data processing systems by quantitatively assessing their behavior under different types of load and
formally modeling fault tolerance metrics based on DAG graphs.

Although several prior studies have explored hybrid cloud—edge or fog computing systems, few have reported fault
tolerance metrics comparable to those presented in this study. For example, the architecture proposed by Dos Anjos et
al. [9] emphasizes infrastructure deployment but does not provide a quantitative assessment of recovery time or system
reliability. Similarly, Barik et al. [10] highlight hybrid capabilities in geospatial analytics but omit experimental
validation of fault tolerance. To the best of our knowledge, the proposed hybrid Hadoop—Spark model is among the few
frameworks that simultaneously address both in-memory processing speed and robust failover mechanisms within a
formalized, testable structure. It is worth noting, however, that while the hybrid architecture generally outperforms
standalone systems in complex and fault-tolerant scenarios, it is not universally optimal. For short-lived, compute-bound
tasks with minimal fault tolerance requirements, Spark-only deployments may offer better performance due to reduced
coordination overhead. Likewise, in scenarios dominated by long-running batch jobs and large-scale data replication,
Hadoop remains a robust and easier-to-maintain solution. Therefore, the choice of architecture should be guided by task-
specific factors such as latency sensitivity, fault tolerance requirements, and system complexity.

5.1. Insights for Practitioners

The findings of this study allow for the formulation specific recommendations for IT architects and engineers: Spark
is the optimal solution for tasks related to real-time processing and iterative computing; Hadoop demonstrates high
stability in batch processing scenarios; the hybrid approach is most effective for predictive analytics pipelines, where
both fault tolerance and low processing latency are critical.

5.2. Theoretical Implications and Practical Implications

The results obtained in this study have both theoretical and applied significance. From a practical point of view, they
provide guidance for IT architects, data engineers and digital infrastructure managers in selecting an appropriate
architecture based on task-specific requirements. For instance, the Spark architecture is recommended for scenarios
requiring real-time processing and high responsiveness. Hadoop-based systems are preferred for stable batch processing
of large amounts of data with limited computational resources. A hybrid approach combining the advantages of both

1030

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

solutions has shown the best performance in predictive analytics tasks, especially when using machine learning models
under conditions of high variability and stringent fault tolerance requirements. At the theoretical level, this work
demonstrates the feasibility of mathematically grounded selection of architectural configurations, based on key
parameters such as performance, stability and resource efficiency.

Compared to the hybrid architecture proposed by Dos Anjos et al. [9], which focused primarily on deployment
strategies across cloud and edge environments, the presented system demonstrates superior recovery performance and
higher resource efficiency in practical streaming workloads. Particularly, the average task recovery time in the proposed
hybrid configuration was 18 seconds, compared to 40 seconds reported in Dos Anjos et al. [9], and resource utilization
reached 80%, exceeding the benchmarks cited in Dos Anjos et al. [9] by approximately 15%. Whereas Julio C. S. Dos
Anjos et al. provided valuable insights into system architecture, their model lacked formal mathematical representation
and was not evaluated under diverse real-time load conditions. In contrast, the architecture described in this study
integrates a mathematically grounded performance function that simultaneously accounts for latency, fault tolerance,
and scalability, enabling adaptive behavior under dynamic workloads. Similarly, Barik et al. [10] proposed a mist cloud
hybrid system for geospatial analytics but did not offer experimental execution measurements or real-world approval.
That study remained conceptual and did not include benchmarking against standard big data platforms such as Spark or
Hadoop. The current work addresses this gap by presenting a fully tested hybrid integration of Spark and Hadoop,
validated across multiple city-scale deployments. Moreover, while the optimization model proposed by Ahmad et al.
[11] for malware detection was innovative, it did not incorporate architectural scalability or recovery latency
benchmarks. The present study extends beyond these limitations by combining architectural design with quantitative
validation based on ten-run experiments and multi-format data sources, thereby reflecting realistic system behavior.

To our information, no earlier cross breed huge information engineering has been quantitatively approved in terms
of fault-tolerance measurements beneath real-world conditions. Existing models, such as those by Dos Anjos et al. [9]
and Barik et al. [10], center essentially on arrangement techniques and conceptual systems without giving experimental
information on disappointment recuperation time or vigor over energetic workloads. This plan fixes the issue by using a
structured and tested method that cuts down recovery times. Now, regular task recovery only takes about 18 seconds,
which is way faster than the 40 seconds it takes with standard Hadoop systems. This builds up the current framework as
one of the few crossover designs with approved execution beneath down to earth working imperatives.

5.3. Limitations

Despite the demonstrated effectiveness of the hybrid architecture in various analytical scenarios, several limitations
inherent in the proposed approach should be acknowledged.

First, system performance may decrease significantly under high-intensive workloads exceeding the available RAM
capacity. This is especially true for tasks that rely entirely on in-memory processing in Spark, or in cases where Hadoop's
disk buffering becomes a bottleneck. Second, the architecture assumes that the processing structure can be effectively
represented as a directed acyclic graph (DAG). For tasks involving cyclic dependencies or feedbacks — such as some
graph-based stream processing algorithms — the standard DAG scheduler may be inefficient or require additional
customization.

In addition, reconciling storage (HDFS) and compute (Spark) layers requires manual configuration and prior analysis
of workload behavior. Inadequate configuration may lead to resource allocation conflicts and reduced computational
efficiency.

Finally, the experiments were conducted in a limited environment — on a specific cluster and using regional datasets.
While this increases the applicability of the results, the portability of the architecture to large-scale or highly
heterogeneous computing environments requires further testing and refinement.

6. Conclusion

This study presents a mathematically formalized hybrid big data processing architecture that integrates the reliability
of Hadoop’s distributed storage (HDFS) with the computational efficiency of Apache Spark’s in-memory engine. By
modeling, key aspects such as information dispersion, DAG-based task scheduling, fault tolerance, and resource
allocation, the proposed system addresses basic challenges in latency-sensitive and high-throughput environments.

Experimental deployments in data centers located in Almaty, Shymkent, and Turkestan demonstrated that the hybrid
configuration achieved faster execution and more balanced resource utilization compared to standalone Hadoop or Spark
implementations. Notably, the hybrid system achieved a 38% reduction in average processing time and a 25%
improvement in task recovery under failure conditions. These results were consistent across diverse workloads, including
batch analytics, streaming data, and machine learning tasks.

The integration of in-memory processing with persistent storage enabled efficient fault recovery without significant
overhead, confirming the practical relevance of the hybrid model for real-world applications such as smart cities, digital
healthcare, and public sector infrastructure. Furthermore, the proposed model provides a strategic foundation for

1031

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

selecting optimal architectural configurations based on workload requirements, resource constraints, and system
priorities. Unlike previous studies that offered limited experimental benchmarking or lacked formal theoretical
grounding, this work combines rigorous performance modeling with multi-scenario empirical validation.

Future research will focus on enhancing adaptive scheduling mechanisms within the DAG execution framework,
particularly under constrained 1/0 conditions. In addition, the hybrid model will be extended to fog and edge computing
environments, where heterogeneity, real-time constraints, and energy efficiency present further challenges. The
integration of privacy-preserving analytics and federated learning techniques represents another promising direction to
address data sensitivity in domains such as public health and education. Overall, the findings of this study contribute to
the advancement of scalable, fault-tolerant, and performance-optimized big data systems that are essential for next-
generation intelligent infrastructures.

6.1. Limitations and Trade-Offs

The hybrid architecture combines Hadoop's capacity for large-scale data handling with Spark’s high-speed processing
capabilities. However, it also introduces certain limitations. Using HDFS for data storage may result in latency issues
when processing time-sensitive data. In addition, Spark’s real-time features require careful configuration to effectively
manage memory usage. While the use of RDDs and DAGs enhances fault tolerance and enables task recovery, it may
also increase computational overhead [5, 9].

Resource planning across heterogeneous nodes presents a scalability challenge in edge and fog computing
environments, particularly under dynamic workload conditions [37]. Integration with machine learning libraries (e.g.,
MLLIib) also requires attention to model drift and the risk of biased predictions due to imbalanced input data. Another
important trade-off concerns the cost—performance balance: although in-memory computing accelerates task execution,
it significantly increases RAM requirements, leading to higher infrastructure costs. Future research should explore
adaptive deployment strategies and cost-aware resource allocation techniques.

7. Declarations
7.1. Author Contributions

Conceptualization, S.A.; methodology, S.A., O.B., and V.S.; software, S.A., O.B., and V.S.; validation, S.A., O.B.,
and V.S.; formal analysis, S.A., R.U., K.S,, U.B., and Y.B.; investigation, S.A.; data curation, S.A., R.U., U.B., K.S,,
and Y.B.; writing—original draft preparation, S.A., O.B., V.S., and R.U.; writing—review and editing, O.B., V.S., K.S.,
U.B., and Y.B.; visualization, S.A., 0.B., R.U., K.S., U.B., and Y.B.; project administration, O.B. and V.S. All authors
have read and agreed to the published version of the manuscript.

7.2. Data Availability Statement
The data presented in this study are available on request from the corresponding author.

7.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

7.4. Institutional Review Board Statement

Not applicable.

7.5. Informed Consent Statement

Not applicable.

7.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
8. References

[1] Abid, A., Jemili, F., & Korbaa, O. (2023). Distributed deep learning approach for intrusion detection system in industrial control
systems based on big data technique and transfer learning. Journal of Information and Telecommunication, 7(4), 513-541.
d0i:10.1080/24751839.2023.2239617.

[2] Alghazzawi, D., Razaq, A., Alolaiyan, H., Noor, A., Khalifa, H. A. E. W., & Xin, Q. (2024). Selecting the foremost big data tool
to optimize YouTube data in dynamic Fermatean fuzzy knowledge. PLoS ONE, 19(8), 0307381. doi:10.1371/journal.pone.0307381.

[3] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1),
107-113. doi:10.1145/1327452.1327492.

1032

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

[4] Domenteanu, A., Cibu, B., & Delcea, C. (2024). Mapping the Research Landscape of Industry 5.0 from a Machine Learning and
Big Data Analytics Perspective: A Bibliometric Approach. Sustainability (Switzerland) , 16(7), 2764. doi:10.3390/su16072764.

[5] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., ... & Stoica, I. (2012). Resilient distributed datasets: A
{Fault-Tolerant} abstraction for {In-Memory} cluster computing. 9" USENIX symposium on networked systems design and
implementation (NSDI 12), 25-27, 2017, San Jose, United States.

[6] Du, G. (2024). Design and Implementation of Teaching Quality Assessment System for Universities Based on Data Mining
Algorithms. Journal of Electrical Systems, 20(6s), 1811-1822. doi:10.52783/jes.3098.

[7] EL Azzaoui, A., Salim, M. M., & Park, J. H. (2023). Secure and Reliable Big-Data-Based Decision Making Using Quantum
Approach in 10T Systems. Sensors, 23(10), 4852. doi:10.3390/523104852.

[8] Deshai, N., Venkataramana, S., Sekhar, B.V.D.S., Srinivas, K., & Saradhi Varma, G.P. (2020). A Study on Big Data Processing
Frameworks: Spark and Storm. Smart Intelligent Computing and Applications. Smart Innovation, Systems and Technologies, vol
160, Springer, Singapore. doi:10.1007/978-981-32-9690-9_43.

[9] Dos Anjos, J. C. S., Matteussi, K. J., De Souza, P. R. R., Grabher, G. J. A,, Borges, G. A., Barbosa, J. L. V., Gonzélez, G. V.,
Leithardt, V. R. Q., & Geyer, C. F. R. (2020). Data processing model to perform big data analytics in hybrid infrastructures. IEEE
Access, 8, 170281-170294. doi:10.1109/ACCESS.2020.3023344.

[10] Barik, R. K., Misra, C., Lenka, R. K., Dubey, H., & Mankodiya, K. (2019). Hybrid mist-cloud systems for large scale geospatial
big data analytics and processing: opportunities and challenges. Arabian Journal of Geosciences, 12(2), 32. d0i:10.1007/s12517-
018-4104-3.

[11] Ahmad, I., Wan, Z., Ahmad, A., & Ullah, S. S. (2024). A Hybrid Optimization Model for Efficient Detection and Classification
of Malware in the Internet of Things. Mathematics, 12(10), 1437. doi:10.3390/math12101437.

[12] Suma, S., Mehmood, R., & Albeshri, A. (2020). Automatic Detection and Validation of Smart City Events Using HPC and
Apache Spark Platforms. Smart Infrastructure and Applications. EAl/Springer Innovations in Communication and Computing,
Springer, Cham, Switzerland. doi:10.1007/978-3-030-13705-2_3.

[13] Singh, A., Mittal, M., & Kapoor, N. (2019). Data Processing Framework Using Apache and Spark Technologies in Big Data.
Big Data Processing Using Spark in Cloud. Studies in Big Data, vol 43, Springer, Singapore. doi:10.1007/978-981-13-0550-4_5.

[14] Al, S., & Dener, M. (2021). STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data
environment. Computers & Security, 110, 102435. doi:10.1016/j.cose.2021.102435.

[15] Guerrero-Prado, J. S., Alfonso-Morales, W., Caicedo-Bravo, E., Zayas-Pérez, B., & Espinosa-Reza, A. (2020). The power of big
data and data analytics for AMI data: A case study. Sensors (Switzerland), 20(11), 1-27. doi:10.3390/s20113289.

[16] Ali, M., Razaque, A., Yoo, J., Kabievna, U. R., Moldagulova, A., Ryskhan, S., Zhuldyz, K., & Kassymova, A. (2024). Designing
an Intelligent Scoring System for Crediting Manufacturers and Importers of Goods in Industry 4.0. Logistics, 8(1), 33.
doi:10.3390/l0gistics8010033.

[17] Peres, R.S., Rocha, A.D., Coelho, A., & Barata Oliveira, J. (2017). A Highly Flexible, Distributed Data Analysis Framework for
Industry 4.0 Manufacturing Systems. Service Orientation in Holonic and Multi-Agent Manufacturing, SOHOMA 2016. Studies
in Computational Intelligence, vol 694. Springer, Cham, Switzerland. doi:10.1007/978-3-319-51100-9_33.

[18] Sansyzbay, K. M., Bakhtiyarova, Y. A., lliev, T., Patokin, G. S., Tasbolatova, L. T., & Sagmedinov, D. B. (2024). Development
of an Algorithm for a National Microprocessor-Based Centralization System With a Modular Architecture KZ-MPC-MA
Featuring Advanced Intelligent Control Functions. IEEE Access, 12, 193229-193240. doi:10.1109/ACCESS.2024.3521219.

[19] Dahiya, R., Le, S., Ring, J. K., & Watson, K. (2022). Big data analytics and competitive advantage: the strategic role of firm-
specific knowledge. Journal of Strategy and Management, 15(2), 175-193. doi:10.1108/JSMA-08-2020-0203.

[20] Kabashkin, I. (2024). Digital Twin Framework for Aircraft Lifecycle Management Based on Data-Driven Models. Mathematics,
12(19), 2979. d0i:10.3390/math12192979.

[21] Sarinova, A., Bekbayeva, A., Dunayev, P., Sarsikeyev, Y., & Sansyzbay, K. (2021). Hyperspectral image compression
algorithms for phytosanitary inspection of agricultural crops in aerospace photography. Journal of Theoretical and Applied
Information Technology, 99(24), 6280-6290.

[22] Liu, S., Liu, O., & Chen, J. (2023). A Review on Business Analytics: Definitions, Techniques, Applications and Challenges.
Mathematics, 11(4), 899. doi:10.3390/math11040899.

[23] Lychev, A. V. (2023). Synthetic Data Generation for Data Envelopment Analysis. Data, 8(10), 146. doi:10.3390/data8100146.

[24] Mahmoud, M. (2024). Editorial for the Special Issue “Data Science and Big Data in Biology, Physical Science and Engineering.”
Technologies, 12(1), 8. doi:10.3390/technologies12010008.

1033

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

[25] Cheng, Z., Chow, M. Y., Jung, D., & Jeon, J. (2017). A big data based deep learning approach for vehicle speed prediction. IEEE
International Symposium on Industrial Electronics, 389-394. doi:10.1109/IS1E.2017.8001278.

[26] Shukla, S., Balachandran K, & Sumitha V S. (2016). A framework for smart transportation using Big Data. 2016 International
Conference on ICT in Business Industry & Government (ICTBIG), 1-3. doi:.1109/ictbig.2016.7892720.

[27] Dunayev, P., Abramov, S., Sansyzbay, K., & Kismanova, A. (2021). The IP channel bandwidth during transmission of the video
and tomography signals. Journal of Theoretical and Applied Information Technology, 99(12), 2834-2859.

[28] Arfat, Y., Suma, S., Mehmood, R., & Albeshri, A. (2020). Parallel Shortest Path Big Data Graph Computations of US Road
Network Using Apache Spark: Survey, Architecture, and Evaluation. Smart Infrastructure and Applications. EAI/Springer
Innovations in Communication and Computing. Springer, Cham, Switzerland. doi:10.1007/978-3-030-13705-2_8.

[29] Rashid, A. N. M. B., Ahmed, M., & Ullah, A. B. (2022). Data Lakes: A Panacea for Big Data Problems, Cyber Safety Issues,
and Enterprise Security. Next-Generation Enterprise Security and Governance, 135-162, CRC Press, Boca Raton, United States.
d0i:10.1201/9781003121541-6.

[30] Martinez-Mosquera, D., Navarrete, R., Lujan-Mora, S., Recalde, L., & Andrade-Cabrera, A. (2024). Integrating OLAP with
NoSQL Databases in Big Data Environments: Systematic Mapping. Big Data and Cognitive Computing, 8(6), 64.
doi:10.3390/bdcc8060064.

[31] Farhan, M. S., Youssef, A., & Abdelhamid, L. (2024). A Model for Enhancing Unstructured Big Data Warehouse Execution
Time. Big Data and Cognitive Computing, 8(2), 17. doi:10.3390/bdcc8020017.

[32] Lei Yu, Yunyun Zhu, W. M. (2024). Quality Improvement Model of English Teaching in Universities Based on Big Data Mining.
Journal of Electrical Systems, 20(3s), 506-518. d0i:10.52783/jes.1322.

[33] Gradinaru, G. 1, Dinu, V., Rotaru, C. L., & Toma, A. (2024). The Development of Educational Competences for Romanian
Students in the Context of the Evolution of Data Science and Artificial Intelligence. Amfiteatru Economic, 26(65), 14-32.
doi:10.24818/EA/2024/65/14.

[34] Khalid, M., & Yousaf, M. M. (2021). A comparative analysis of big data frameworks: An adoption perspective. Applied Sciences
(Switzerland), 11(22), 11033. doi:10.3390/app112211033.

[35] Arif, Z., & Zeebaree, S. R. (2024). Distributed Systems for Data-Intensive Computing in Cloud Environments: A Review of Big
Data Analytics and Data Management. The Indonesian Journal of Computer Science, 13(2), 3819. doi:10.33022/ijcs.v13i2.3819.

[36] Gupta, D., & Rani, R. (2018). A study of big data evolution and research challenges. Journal of Information Science, 45(3), 322—
340. doi:10.1177/0165551518789880.

[37] Ataie, E., Evangelinou, A., Gianniti, E., & Ardagna, D. (2022). A Hybrid Machine Learning Approach for Performance Modeling
of Cloud-Based Big Data Applications. Computer Journal, 65(12), 3123-3140. do0i:10.1093/comjnl/bxab131.

1034

