Auvailable online at www.HighTechJournal.org

HighTech and Innovation
« Journal wssx.2miems

YY
¢ O
080ede0e

HighTech and Innovation
HighTech and Innevation lournal

TJournal

ISSN: 2723-9535 Vol. 6, No. 3, September, 2025

Evaluating the Performance of NoSQL Databases for Big Data in
Cloud Computing Environments

Ahmet E. Topcu @, Aimen M. Rmis 2@, Yehia I. Alzoubi 3®, Ali O. Cibikdiken %,
Dababrata Chowdhury °®, Ersin Elbasi '@, Mohamed Abdel-Maguid °, Salem Almadhun ©

1 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
2 Department of Computer Science, Faculty of Science, Alasmarya Islamic University, Zliten, Libya.
% College of Business Administration, American University of the Middle East, Egaila 54200, Kuwait.
4 Department of Computer Engineering, KTO Karatay University, 42020 Karatay/Konya, Turkey.
% Faculty of Science, Engineering & Social Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom.

® Department of Computer Science, Elmergib University, Al Khums, Libya.

Received 14 May 2025; Revised 11 August 2025; Accepted 18 August 2025; Published 01 September 2025

Abstract

This study aims to evaluate the performance of NoSQL databases in distributed cloud computing environments, addressing
the lack of comprehensive benchmarking in this domain. Specifically, it investigates MongoDB and Riak KV, two widely
used NoSQL systems, across diverse cloud platforms, including Google Cloud, DigitalOcean, and OpenStack. Using the
Yahoo Cloud Serving Benchmark, we designed and implemented a benchmarking model to measure key performance
indicators, including latency, throughput, and scalability, under varying workloads and data sizes. The analysis revealed
that MongoDB integrated with Google Cloud consistently outperformed other configurations, demonstrating superior
throughput and lower latency in read and write operations. In contrast, Riak Key Value generally exhibited higher latency,
especially in scan-intensive workloads. To support practical decision-making, a decision tree model was developed based
on empirical findings to guide optimal selection of cloud computing platforms and databases. The proposed benchmarking
framework is modular and extensible, allowing adaptation to other NoSQL technologies, cloud providers, and performance
metrics. This research presents a novel, systematic methodology for evaluating NoSQL database performance in cloud
environments, providing actionable insights for selecting high-performing, scalable solutions in big data applications. This
modular design enables the addition of more database technologies, deployment options, and performance standards in the
future, thereby supporting broader research and real-world applications in distributed systems and cloud computing.

Keywords: NoSQL; Cloud Computing; MongoDB; Riak KV; Big Data; Cluster.

1. Introduction

With the growth of Cloud Computing (CC) technology, traditional network models are failing to provide adequate
services for handling the large volumes of data continuously generated at high speeds across various domains [1]. This
data is increasingly unstructured or semi-structured, making it complex and heterogeneous. Effective processing and
analysis remain a high priority, especially in areas such as telecom and transportation optimization, where a standard

* Corresponding author: ahmet.topcu@aum.edu.kw
d- |} http://dx.doi.org/10.28991/HIJ-2025-06-03-05
» This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights.

808

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1929-5358
https://orcid.org/0000-0001-5050-7887
https://orcid.org/0000-0003-4329-4072
https://orcid.org/0000-0003-3478-3157
https://orcid.org/0000-0002-3117-3997
https://orcid.org/0000-0002-8603-1435
https://orcid.org/0000-0002-5937-5259

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

model for mobile users is needed to support business decisions [2]. The rise of 10T, multimedia, and social media has
further increased the volume of unstructured data [3], intensifying the need for efficient software and hardware
techniques to process it [4]. Similar requirements exist in engineering, business, science, healthcare, and society [5].
The emergence of numerous NoSQL databases and diverse CC applications has drawn global attention, with CC-driven
big data now gaining interest from academia, industry, and governments [6, 7].

Despite the growing adoption of NoSQL databases, significant gaps persist in the literature. Prior studies have
evaluated NoSQL databases, such as MongoDB, Cassandra, and Couchbase, using benchmarks like the Yahoo Cloud
Serving Benchmark (YCSB) [3]. However, few have examined key-value stores like Riak KV in distributed big data
contexts. Moreover, existing research often lacks systematic comparisons across multiple cloud platforms (e.g., Google
Cloud, DigitalOcean, OpenStack) under diverse workloads, limiting insights into how cloud infrastructure impacts
database performance [8-10]. The field of big data remains complex, with solutions heavily dependent on the technology
and specific objectives, and there is a scarcity of practical, experimentally driven frameworks to guide database and
cloud platform selection [11, 12]. For instance, while studies such as [3] these compared MongoDB’s performance, they
did not include Riak KV or evaluate multiple cloud platforms. Additionally, Weitzenboeck et al. [10] focused on
priority-based modifications without a standardized benchmarking approach. Accordingly, this study aims to propose a
framework for a big data cluster based on a cloud platform by answering the following research question:

RQ: What is the optimal technique for analyzing large datasets in cloud computing: Riak KV or MongoDB?

This research significantly enhances our understanding of CC and big data by introducing a specialized framework
for evaluating NoSQL databases in cloud data centers. The key advantage of this framework is its comprehensive
approach, addressing the lack of robust evaluation methodologies in distributed and parallel processing environments.
It enables detailed performance analysis, including throughput and latency under various conditions, providing clear
insights into the strengths and weaknesses of databases such as Riak KV and MongoDB [13-15]. Furthermore, the
decision tree constructed from multiple experiments offers a practical tool for database selection and optimization.
Importantly, the adaptable nature of the model means it can be extended to other databases and cloud platforms, making
it a valuable, versatile tool for researchers and practitioners aiming to compare and optimize database technologies in
diverse CC environments.

Table 1 summarizes the abbreviations that appeared in this paper. The following sections of this paper are organized
as follows: Section 2 presents the research background and related literature. Section 3 discusses research methodology.
Section 4 presents the experimental results and subsequent discussion. Section 5 presents the findings, outlines future
research directions, and discusses research limitations. Conclusions are presented in Section 6.

Table 1. Table of abbreviations used in the paper

Abbreviation Definition Abbreviation Definition
BSON Binary JavaScript Object Notation PaaS Platform as a Service
CCpP Cloud Computing Provider RDBMS Relational Database Management System
CcC Cloud Computing SQL Structured Query Language
DB Data Base SSD Solid-State Drive
laaS Infrastructure as a Service SSH Secure Shell
JSON JavaScript Object Notation VM Virtual Machine
KV Key Value XML Extensible Markup Language
NoSQL Not only Structured Query Language YCSB Yahoo Cloud Serving Benchmark

2. Background and Related Literature

This section presents the background of the research. First, the CC platform is discussed, followed by an overview
of big data, and then an overview of NoSQL, including Riak KV and MongoDB. Ultimately, the recent literature related
to the focus of this study is reviewed.

2.1. Cloud Computing Platform Overview

CC involves service provisioning, where companies offer computer-based services to customers over a network,
typically following a pay-per-use model. Major platforms like Google Cloud, Amazon EC2, and Microsoft Azure
provide attractive services for running applications in the cloud [1, 16]. The CC model offers several benefits,
including lower operating costs, minimal upfront investment, elasticity, higher scalability, easy access via the web,
and reduced maintenance costs and business risks. This study focuses on three CC platforms: DigitalOcean,
OpensStack, and Google Cloud [17].

809

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

DigitalOcean is popular with developers for its infrastructure as a service (laaS) platform, offering private Virtual
Machines (VMs) called "droplets" that can be configured in size, geographic area, data center, and operating system
[18]. OpenStack, an open-source cloud software, manages a wide range of computing, networking, and storage resources
and allows users to access on-demand resources [19, 20]. Google Cloud provides integrated cloud services, such as laaS,
Platform as a Service (PaaS), and serverless computing, built on the original Google App Engine framework to support
web applications and data analytics. Each platform offers unique features and tools for managing and scaling cloud
resources efficiently [21].

2.2. Big Data Overview

Big data is understood and defined as large amounts of data that require a management tool to process at the right
time and speed [22]. It refers to various types of data, including unstructured, semi-structured, and structured data, that
can be thoroughly analyzed to uncover valuable information. It is impossible to manage this data type using a Relational
Database Management System (RDBMS) [23]. The engine of big data has become the source of growth and innovation
in the industry, which depends on various other emerging technologies, including 10T, CC, and analytics [24]. In other
words, it is a vital resource for optimizing global output due to its impact on software-intensive industries, healthcare,
administration, and education. Day by day, new data emerges from photographs and videos taken, social media posts,
and other sources. The growing complexity of data has made processing it with available DBMSs more challenging
[25]. A solution recently proposed to handle the rapid growth of data resources is to utilize more effective hardware.
However, this approach is insufficient since massive amounts of data still exceed hardware developments [11].

The nature of big data is often described using four significant characteristics, termed the 4 V’s: volume, velocity,
variety, and veracity [26]. Each of these four Vs has a unique impact on data analysis. Volume refers to the quantity of
all types of data produced and continuously expanded across a broad spectrum of sources. Most datasets are too big to
be stored and analyzed using standard RDBMS technology. As a result, deficiencies and weaknesses became more
apparent in traditional databases. With this issue in mind, distributed systems became a critical emerging form of
technology. For example, by 2020, 43 trillion gigabytes of data had been created, and about 2.3 trillion gigabytes are
generated daily [27]. Variety refers to the diverse categories of data collected through social networks, smartphones, or
sensors. These include audio, image, video, text, and data logs in unstructured both structured formats [28]. Velocity
describes the speed at which data is generated, saved, analyzed, and visualized. In the era of big data, new information
is produced in real-time [29]. Due to the absorption of supplementary datasets, previously archived data, or legacy
collection sets, streamed data from multiple sources is introduced. For example, approximately 204 million emails are
sent out every minute, 2.46 million items are shared on Facebook, 100 hours of video are uploaded to YouTube, and
more than 4 million search queries are performed on Google [30]. Veracity covers the level of certainty that the data
represents. VVarious amounts of data from differing sources move around rapidly. This requires organizations to ensure
the accuracy of the information they are exposed to [31].

2.3. NoSQL Databases Overview

NoSQL is a more modern database category developed to address the limitations of RDBMSs in meeting the needs
of big data. As a category, NoSQL describes various technologies that consider three aspects of big data: the
exponentially increasing amount of data, the rate at which that data needs to be processed, and the most significant
changes in data being created by today’s applications [31]. Due to the constant growth in database size, efficient data
access and information extraction have become recurring issues. There are many types of NoSQL databases, many of
which differ in structure and efficiency, necessitating a reevaluation and analysis of their performance. Accordingly,
several key issues need to be addressed in NoSQL databases for big data in CC. Research and development are necessary
to overcome these challenges and ensure that NoSQL databases can meet the demands of big data in CC environments
[32, 33].

Additionally, performance in various environments needs to be accurately measured, and standards should be
established for comparing different NoSQL databases. Further research is required to develop improved solutions for
addressing these challenges and to ensure that NoSQL databases can meet the demands of big data in the CC [31, 34].
Accordingly, this study assesses the performance of three major database environments (DigitalOcean, OpenStack, and
Google Cloud), deploying MongoDB and Riak KV as NoSQL tools.

2.3.1. Riak Key Value

The two NoSQL databases evaluated in this research (i.e., MongoDB and Riak KV) have different feature sets. Each
database provides a core set of characteristics that can be used as a basis for performance evaluation. Riak KV is
considered an open-source professional alternative to Riak Enterprise DS. The Enterprise Edition includes multi-data
center tracking, replication, and additional functionalities [35]. Riak KV achieves rapid efficiency and superior
operational continuity through automated data sharing across the cluster. With a masterless design that ensures high
reliability and virtually linear scaling utilizing ordinary equipment, capacity can be extended simply without a significant
operational strain [36]. The nodes of Riak create a cluster. To get the full benefits of Riak, this cluster is partitioned into
virtual nodes and formed into a ring. The ring is a 160-bit integer space divided into partitions of identical sizes. Each
node (also known as a physical node) in the ring hosts several virtual nodes (Vnodes) [37].

810

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

2.3.2. Mongo Databases

MongoDB is a case of a document-oriented database. The primary storage components in a document database (such
as MongoDB) are sets, rather than tables, in the case of RDBMS. These collections in MongoDB contain various JSON
and BSON-based sub-documents or documents. Documents with similar structures are grouped into sets. It can be done
as needed without any prior definition. MongoDB may include instances of documents, even arrays or lists of
documents, within an instance or document [6]. Documents in MongoDB can belong to any basic data type (such as
date, array, number, string, or subdocument). It has a unique variety of storage engines for a single deployment. This
order facilitates data transfer between storage device technologies [38]. MongoDB has automatic sharing properties in
which supplementary replica server nodes are added to the system. It is a high-speed database that not only provides
indexing for primary attributes but also provides auxiliary attributes. This feature is available even in subdocuments.
Using aggregation frameworks, Hadoop systems, and MapReduce, various collections can be compared [38]. To better
understand the variances between Riak KV and MongoDB, this study analyzes several characteristics of the NoSQL
databases, including replication, development language, data storage, and usage, among others.

2.4. Literature Review

As a critical property of CC, many studies have analyzed and evaluated big data in CC and distributed systems
through NoSQL databases. This section reviews the most recent literature related to the focus of this study (i.e., NoOSQL
performance in distributed big data). Here, the focus was on the last five years, with a special emphasis on 2024 and
2023. Table 2 summarizes the previous literature findings, highlights the distinctions of this study, and addresses the

research gap.

Table 2. Findings of the previous studies

Study

Year

Study domain

Findings

Beckermann (2025) [3]

Ferreira et al. (2025) [8]

Souza et al. (2025) [2]

Aralo et al. (2024) [14]

Krishan et al. (2024) [5]

Martinez-Mosquera et al.
(2024) [23]

Andreoli et al. (2023) [13]
Bansal et al. (2023) [15]
Carvalho et al. (2023) [6]

da Silva & Lima (2023) [39]

Gomes et al. (2023) [7]

Khan et al. (2023) [40]

Kim et al. (2023) [41]

Nurhadi et al. (2021) [42]

2025

2025

2025

2024

2024

2024

2023

2023

2023

2023

2023

2023

2023

2021

Evaluation of ACID-compliant NoSQL systems.

Consistency level in NoSQL (Cassandra, MongoDB,
and Redis).

NoSQL eventual consistency.

Reliability levels of NoSQL using Cassandra and
Riak KV

Investigating how major NoSQL databases handle
data consistency in distributed environments.

Integrating online analytical processing with NoSQL
databases in Big Data environments.

Modifying MongoDB to support priority-based user
performance using OS-level scheduling tools

Column, document, and Key-value NoSQL

MongoDB, CouchDB, and Couchbase performance
comparison using YCSB benchmark

Docker Swarm's affordability using Cassandra,
Citus, and HBase

A generalized stochastic Petri net-based method to
evaluate NoSQL-based cloud storage using quorum.

Clustering to segment NoSQL solutions, compare
them by data models and CAP theorem, and analyze
big graph applications across six domains.

MongoDB document storages using the GeoYCSB
benchmark

MongoDB, Casandra, Redis, and Neo4j performance
comparison

Transactional YCSB enables realistic benchmarking of NoSQL systems that
support ACID properties.

Increasing the consistency level often results in performance degradation.

Proposes a stochastic Petri net-based model to estimate energy consumption
in NoSQL systems using quorum techniques.

The findings indicate the effect of the consistency level on system
performance.

Each database offers unique mechanisms and trade-offs for maintaining
consistency.

Importance of flexible and scalable strategies for ensuring data consistency.
NoSQL databases have superior scalability and high availability advantages.

The solution proposed in the study lowers response times for high-priority
users in mixed-priority scenarios.

Architecture decisions influence NoSQL database performance.

MongoDB has the highest performance, except for scan operations.
CouchDB had the highest scale-up if the number of threads varied.

Cassandra's customizable reliability outperformed Citus and Hbase.

Experimental results confirm the practical feasibility and effectiveness of the
proposed approach.

Offered a decision tree approach and a web tool to assist users in selecting
NoSQL databases.

Couchbase and MongoDB can scale effectively under different workload
combinations.

MongoDB is the best stable NoSQL for large amounts of data.

Redis performed the best in the read operation.

. MongoDB, Casandra, Redis performance . .
Seghier & Kazar (2021) [43] comparison using YCSB tool e MongoDB performed thfz best in the scan operatlon.
e Casandra was the worst in the update operation.
Celesti et al. (2020) [44] 2020 Casandra, MongoDB, Hbase, and Neo4j e MongoDB provided the highest performance.

Rmis & Topcu (2020) [12]

Present study

2020

2024

performance comparison

Evaluated Riak KV performance using distributed
databases

MongoDB and Riak KV performance comparison for
big data in cloud environments

MongoDB also had the best NoSQL response time.

As data size expanded, so did the number of threads, resulting in higher
throughput and lower latency.

Only read operations yielded high performance.

MongDB outperformed Riak KV in several tests, including read, insert, scan,
and many modify operations.

Riak KV outperformed MongoDB in latency tests for read and insert
operations, while latency results were very close in scan and modify
operations.

Google Cloud platform outperformed other platforms, including OpenStack
and DigitalOcean.

811

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Beckermann (2025) presented Transactional YCSB, a new extension to YCSB that enables benchmarking of ACID-
compliant NoSQL systems using workloads with multi-operation transactions. Using this tool, the paper evaluates the
performance of FoundationDB, MongoDB, and OrientDB, providing insights into how these systems handle complex
transactional workloads [3]. Ferreira et al. (2025) Studied NoSQL consistency levels, highlighting their impact on data
synchronization, availability, and system performance trade-offs. Increasing the consistency level often results in
performance degradation. For example, Cassandra experiences significant slowdowns when switching to strong
consistency [8]. This trade-off is a critical consideration for database engineers when selecting appropriate consistency
levels for their applications [8]. Souza et al. (2025) proposed a stochastic Petri net-based model to estimate energy
consumption in NoSQL systems using quorum techniques. This model enables different consistency levels to be chosen,
allowing designers to balance performance and availability based on system needs [2].

Avraljo et al. (2024) suggested a stochastic Petri net-based approach to measuring the reliability levels of NoSQL
database systems using the quorum methodology. The models incorporate varying degrees of consistency and duplicate
nodes to predict the system's availability, performance, and the likelihood of obtaining the most recent data. The
experimental findings demonstrate that this strategy is feasible in practice [14]. Krishan et al. (2024) reviewed the
challenges of maintaining data consistency in popular NoSQL databases, including Redis, CouchDB, MongoDB, Neo4J,
and others. By analyzing the unique features, consistency models, and architectural approaches of each database, the
study highlights how different NoSQL technologies balance the trade-offs between consistency, availability, and
scalability. The findings emphasize the value of flexible and scalable strategies for ensuring data consistency in evolving
NoSQL systems, particularly as the digital landscape continues to transform [5]. Martinez-Mosquera et al. (2024)
reviewed literature on integrating OLAP with NoSQL databases in Big Data environments. Their findings consistently
highlight NoSQL databases’ superior scalability and high availability advantages of NoSQL database [23].

Andreoli et al. (2023) proposed a modified MongoDB to support priority-based user performance using OS-level
scheduling tools. Modified MongoDB NoSQL to support OS-level priority-based performance changes. Tests show that
this strategy prioritizes response times for high-priority consumers in mixed-client scenarios. The suggested technique
fails to compare the two approaches on a common basis adequately [13]. Bansal et al. (2023) investigated the
performance of column, document, and key-value NoSQL databases in terms of response time, speed, and database size.
The findings revealed that architecture decisions influence NoSQL database performance [15]. The suggested approach
is reliable and identifies relevant criteria for informed decision-making. Carvalho et al. (2023) compared MongoDB,
CouchDB, and Couchbase using the YCSB benchmark. The performance and scale-up were evaluated using YCSB
workloads with varying records and thread counts [6]. The findings indicated that MongoDB has the highest throughput,
except for scan operations. Furthermore, CouchDB achieved the highest scale-up when the number of threads varied.
da Silva and Lima (2023) evaluated the affordability of Docker Swarm for cloud-based availability and scalability. The
results find a balance between effectiveness and reproduction [39]. Cassandra's customizable reliability exceeded Citus
and HBase in reproduction effectiveness [39]. This research identifies the ideal balance for low-power distribution
systems. However, it lacks the efficiency and latency of the optimal technique investigated in the proposal.

Gomes et al. (2023) employed stochastic Petri nets to evaluate the stability of NoSQL systems. They assessed system
response, accessibility, and data quality. This study examines key components of NoSQL and identifies many traits [7].
Khan et al. (2023) conduct clustering to segment NoSQL solutions, compare them by data models and the CAP theorem,
and analyze big graph applications across six domains. These methods were grouped, contrasted, and applied to large
graphs in six themes. They offered a decision tree approach and a web tool to help users select NoSQL databases. It is
unique research that highlights essential aspects of NoSQL database deployments [40]. However, this work leaves open
the possibility of asking a question concerning the impact of SQL databases on identical settings. The suggested analysis
does not encompass this scope. Kim et al. (2023) evaluated Couchbase and MongoDB document storage using the
YCSB benchmark. A complex dataset was utilized to assess Apache Accumulo with the GeoMesa system,
demonstrating GeoY CSB's flexibility [41]. This is a utility-based examination of two distinct kinds of NoSQL databases.
This study compares SQL and NoSQL, presents novel performance evaluation methods, and illustrates a novel approach
for analyzing energy consumption and latency in industrial 10T [41] systems.

Nurhadi et al. (2021) investigated the NoSQL characteristics and capabilities using four indicators: efficiency,
scalability, correctness, and complexity, to assess the suitability of NoSQL for various data types. They compared four
databases: MongoDB, Cassandra, Redis, and Neo4j [42]. The experiment's results showed that MongoDB is the most
stable NoSQL when dealing with large amounts of data. Seghier & Kazar (2021) conducted a comparative investigation
of the performance of three regularly used systems, MongoDB, Redis, and Cassandra, using the YCSB tool to execute
six custom workloads. Redis outperformed all other databases in read operations, and MongoDB outperformed
Cassandra [43]. In scan operations, MongoDB outperformed both Redis and Cassandra, with Cassandra being more
efficient than Redis. Cassandra made updating operations more challenging [43].

Celesti et al. (2020) tested four NoSQL databases: Casandra, MongoDB, HBase, and Neo4j. The NoSQL document-
based strategy implemented using MongoDB proved to be the most performant option for managing large amounts of
telemonitoring data. MongoDB also had the best NoSQL response speeds across all queries [44]. Rmis & Topcu (2020)
evaluated the performance of the Riak KV database, which stores and retrieves large distributed data. The findings
revealed that as the data size expanded, so did the number of threads, resulting in higher throughput and lower latency.
Only read operations yielded high performance [12].

812

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

This study only examined literature that evaluated NoSQL on various platforms, particularly MongoDB and Riak
KV. However, a large body of research compares relational databases, such as MySQL, to non-relational databases,
including NoSQL options like MongoDB, Redis, Cassandra, HBase, Neo4j, and CouchDB. While these comparisons
are helpful, this study focused only on evaluating NoSQL technologies for distributed big data, specifically MongoDB
and Riak KV. Furthermore, the only identified work that examined Riak KV (i.e., [12]); however, in that paper, only
Riak KV was assessed in big, distributed data without comparing it to other platforms. This study distinguishes itself by
comparing two NoSQL platforms, MongoDB and Riak KV, in a big, distributed data environment.

3. Proposed Method

The performance behavior of the NoSQL database under various conditions is critical, as is the environment in which
the database will run, and the best way to evaluate platforms. Using benchmarks (like parameters, expected data, and
production configurations) and concurrent user workloads provides both businesses and IT with great insight into
platforms [45]. This section provides an overview of the YCSB as a benchmark tool for running experiments. It also
describes the methodology setting used to run the experiments. Figure 1 depicts the structure of this study. It is important
to mention here that MongoDB and Riak KV were chosen because of resource limitations and the topic of our current
study. These databases are important for having NoSQL distributed databases and were chosen because they were well-
liked and pertinent to the goals of our study. Our provided framework allows us to add new databases. However, adding
each database require to do installation, database managements and operation that need to have more insight operations.

[Hesearch Initiation]

Define Objective:
Evaluate NoSQL
Performance in Cloud

h 4

Select Databases
&Platforms

Y \ 4
Google Cloud
MongoDB ‘ - \
[Riak KV] DigitalOcean

,_r Benchmark 1,
'L Configuration

v

Run Experiments

v

Performance
|Metrics Collection)

v

Comparative
Analysis

Decision Tree
Construction

Conclusion &
Recommandations

Figure 1. flowchart of the methodolgy

3.1. Yahoo Cloud Serving Benchmark

YCSB is an open-source tool designed by Yahoo to establish benchmarking clients for various NoSQL data stores.
Usually, they do not come with a SQL interface. The YCSB tool employs a vector-based method to develop benchmarks
that accurately reflect an application’s specific performance. YCSB tools support only a subset of relational operations,

813

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

and instances of their implementation are typically very different from traditional RDBMS applications and are
unsuitable for existing tools.

The YCSB kernel package was created to evaluate various system performance characteristics, depending on a set of
workloads, to evaluate a system’s appropriateness for different project types at various locales within the performance
space [46]. The YCSB reporting framework conveys the total throughput of operations per second. The final tally is
gauged by dividing the exact number of performed operations (writes and reads) by the workload time. The execution
time refers to the duration between the commencement of the first operation in the workload and the completion of the
final process, excluding the initial setup and final cleanup times. This execution time is likewise reported individually
as the overall run time. Every workload execution generates a separate output file, which includes metadata and metrics.
The YCSB architecture consists of the following components [41, 46]:

e Workload Configuration: The workload configuration specifies the parameters of the workload generator, such as
the type and mix of operations, the number of threads, and the test duration.

e Workload: The YCSB workload specifies the types of operations that the client will perform on the database,
including read, write, update, and delete. The workload can be customized to simulate different types of
applications and data access patterns.

e Core: The YCSB core provides the benchmark's primary functionality, including the ability to generate random
data, execute database operations, and measure performance metrics. The YCSB client generates the workload and
sends requests to the database. The client can be configured to simulate various workloads, including read-only
and write-heavy workloads.

o Database or Data Store: The database can be any NoSQL database that supports the YCSB API, such as Cassandra,
MongoDB, or Riak.

Overall, the YCSB architecture is designed to be flexible and extendable, allowing users to customize the benchmark
to their specific needs and test a wide range of NoSQL databases. By simulating various workloads and measuring
performance metrics such as latency, throughput, and scalability, the YCSB can help users evaluate the performance of
different NoSQL databases and choose the one that best meets their needs.

3.2. Experiment Settings

The experiments conducted in this study included three main components of CC: benchmarks and the NoSQL
database. NoSQL data stores emerge as alternatives to traditional data processing methods, offering scalability while
managing large amounts of data. The primary reason for choosing MongoDB or Riak is their ability to handle and
manage massive data in CC easily. MongoDB is one of the first non-relational databases, so many researchers and
companies use it in comparison with new databases to know the strengths and weaknesses of recent versions of other
non-relational databases, including Riak. Many MongoDB use cases can also be applied to Riak. Riak, however, is very
competitive in terms of basic features, such as design, and is significantly easier to manage [35].

The experiments were conducted in various CC environments using a benchmark to generate a common set of
workloads and evaluate the performance of different databases. Figure 2 illustrates the experimental structure, which
outlines the functions of the main components. The workload generator is responsible for fabricating a workload that
simulates a set of operations that might be performed on a database or data store. The workload can be customized to
simulate different types of applications and usage patterns. A benchmark file was prepared that consisted of various
operations to be run on different NoSQL databases for testing purposes. The number of operations was equal to the
record count for each database. The number of threads was identified to run the desired workload. This was done for
varying proportions of data, from small to large. With each of these datasets, the number of chosen operations (read,
update, delete, and others) was then run. All file operations can specify the following properties [47]:

e The database name to use can be specified on the command line.

e Thread count: number of client threads; alternatively, this may be defined on the command line.
¢ Record count: the number of records in the dataset at the start of the workload.

e Field count: the number of fields in a record.

e Field length: the size of any field.

e Min field length: the minimum size of each field.

¢ Read proportion: it determines the percentage of data reads.

e Update proportion: it determines the percentage of data updates.

e Insert proportion: it determines the percentage of data inserted.

814

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Input Data Cloud Computil"lg

(read/write)
(number of threads)

YCSB Client
Client
Threed | | & | T s b
update Conlig Server
g MangoDB‘ Config Server
New Workload '
- : F—A—-‘ CorfpSenr
' 2 or more Shards

SRR Shard Shard
nsert) (replica set) (replica set)

load 0 A e [OOo50000000000G

oa > 'App Server i ‘App Server |

read | Router] 3 Router :
> | {mongos) (mongos))

.
:

[w)

m

g @
3 5
(-] o
a oy
T g
3 Y
g 3
3

Experimental
Results

Figure 2. Experimental structure

In summary, the goal of this research is to create workload and data access patterns on the cluster that are consistent
with real-world application workloads, and to monitor its performance in a CP. It also examined the performance of
NoSQL databases (Riak KV, MongoDB) with large amounts of data and various workload operations (read, update, or
a combination of reads and updates). Furthermore, the performance of NoSQL databases (throughput and latency) was
tracked while data was read, added, and scanned throughout update operations. Additionally, a decision tree was
developed that could be used by developers and database operators to select MongoDB and Riak KV.

To decrease the issue of limited control over communication quality in cloud environments, which could impact
benchmarking results, several measures were implemented. First, the experiments were repeated multiple times to
evaluate and verify the network communication quality. By conducting multiple runs of benchmarks and using statistical
methods to average the results, the impact of transient network issues was reduced. This approach ensures these findings
are more reliable and reflective of typical performance in cloud environments. We did use confidence intervals of 95%.

4. Experimental Results

In this study, various scenarios were conducted using different CC platforms according to these specific application
areas. The study used VMs from three Cloud Computing Providers (CCPs). For each experimental analysis, the YCSB
had a client with two sections: a set of scenarios and a workload generator. These scenarios are referred to as workloads
and consist of a combination of read, update, and write operations performed on randomly selected records. In this
study, VM was used in three CCPs. For each experimental analysis, the YCSB had a client with two sections: a) a set
of scenarios and b) a load generator. These scenarios were referred to as workloads and consisted of a combination of
read, update, and write operations. These workloads were also randomly selected. The predefined workloads are
shown in Table 3.

Table 3. The predefined workloads

Workload Read Insert Update Scans Read-Modify-Write
A 50 0 50 0 0
B 95 0 5 0 0
C 100 0 0 0 0
D 95 5 0 0 0
E 0 5 0 95 0
F 50 0 0 0 50

815

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

The default data size in the basic core varies depending on the type of basic application. From this benchmark, 100K,
5,000K, and 20,000K records were created. A record table was utilized, having ten fields per record. Each is identifiable
by a primary key, such as the text “user412356”. Every field is labeled as field_0, field_1, and so on. Each field's value
is a random ASCII string containing a 1 KB record (10 fields, 100 bytes each, plus the key) and a configurable number
of 12 threads. Each experiment consisted of 10,000 operations. The dataset is presented in Table 4.

Table 4. The dataset is used in experiments

Record count Recordsize Total size

10K 1 KB 10 MB
5000K 1 KB 5GB
20000K 1 KB 20GB

A series of tests were performed on Droplet Type A for all platforms used (i.e., Google Cloud Platform, DigitalOcean,
and OpenStack). Droplet Type A: 4 vCPUs, 4 GB RAM, 40 GB SSD. Five cluster VMs were used to perform
experiments in the noted environment, as explained in Table 5. The subsequent section presents and evaluates the results
of the YCSB-generated load (100K, 5,000K, 20,000K) records. OpenStack environment with 5 VMs running Ubuntu
14.04.5 x64 with 4 GB RAM, size: 4 vCPUs/40 GB. The tested versions of the NoSQL databases are MongoDB version
4.0, Riak KV version 2.2.3, and YCSB 0.15.0. Moreover, the OpenStack version was initially released in February 2017.
Ubuntu 14.04 was chosen to ensure compatibility with the 2017 OpenStack release used in our testbed environment
(refer to Table 5). This version also supports reproducibility, aligning our setup with conditions from prior studies (e.qg.,
[36]) to enable meaningful comparisons. One known constraint is that Ubuntu 14.04’s kernel, version 3.13, lacks modern
1/0 schedulers, such as BFQ, which may potentially limit absolute performance. However, since our study focuses on
relative performance comparisons between MongoDB and Riak KV, this limitation introduces minimal bias to the
findings. To further address potential OS-induced variability, experiments were repeated multiple times, and average
values were reported (see Section 3.2). This approach enhances the reliability of our results, ensuring that observed
performance differences stem from the database systems themselves rather than kernel-level discrepancies.

Table 5. The environment specifications used in this study

Operating-system Ubuntu- 14.04 (64-bit)
Memory 4GB
CPU 4 vCPUs /40 GB
Databases Riak KV 2.2.3, MongoDB 4.0
Benchmark tools YCSB 0.15.0
Clouds OpenStack, DigitalOcean, Google

To compare the cost-effectiveness of different cloud providers, the pricing structure for virtual machine instances
offered by Google Cloud Platform and DigitalOcean was investigated. This analysis focused specifically on the hourly
cost of various instance types. Table 6 presents a selection of instance types from both providers, along with their
corresponding hourly pricing. Based on the instance cost comparison, DigitalOcean typically offers lower hourly rates
than Google Cloud Platform for the chosen instance types. However, it is crucial to consider other factors, such as
performance, scalability, and additional features, when conducting a comprehensive assessment. These costs may vary
due to factors like region, instance configuration, and usage patterns.

Table 6. Cost-effectiveness analysis

Instance type Google Cloud Platform (3$) DigitalOcean ($)

Instance type 1 0.05 0.03
Instance type 2 0.08 0.06
Instance type 3 0.12 0.09
Instance type 4 0.16 0.12

To compare throughput and the loading rate, different-sized records were loaded (100K, 5,000K, and 20,000K), as
illustrated in Figure 3. In the figure, the results focused on data loading between OpenStack, DigitalOcean, and Google
Cloud, and it was apparent that the load time on OpenStack was higher than on DigitalOcean. Additionally, no significant
difference was evident between MongoDB and Riak KV. MongoDB possessed a shorter insert time, regardless of the

816

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

number of records, compared to Riak KV. Loading time also appeared to increase with the increase in the number of
records until it reached OpenStack Riak KV 12 and 11 for OpenStack MongoDB when inserting 20,000K records.

DigitalOcean Cloud results were better than Google Cloud in almost all record sizes.

12 A

10 A

Time (millisecond)

2.45
1.9

100k

125 111 13 105

Data Loading Phase

5,000k
Number of records

12

20,000k

m OpenStack Riak KV
m DigitalOcean MongoDB

m OpenStack MongoDB
m Google Cloud Riak KV

m DigitalOcean Riak KV
m Google Cloud MongoDB

4.1. Workload A

Figure 3. Data loading test

This workload focused on read and update operations. Figure 4-a shows that MongoDB in Google Cloud achieved
the best throughput with 100K and 5,000K keys at 98 and 81 operations/second, respectively. When the number of keys
was increased to 20,000K for Riak KV, lower throughput was obtained compared to the other database, at 19.11 versus
18 operations/second, respectively. MongoDB in Google Cloud achieved the best throughput and the lowest latency for
reads. The update operations showed that Riak KV in OpenStack provided the highest latency for updates, with the
highest latency value of 15.5 milliseconds, as shown in Figure 4-b.

100 -
90
80
70
60
50
40
30
20
10

Operations (sec)

100k

98

Workload A (50/50 reads and updates)

5,000k
Number of recordS

20,000k

m Digitalocean Riak KV"
m OpenStack MongoDB

= Digitalocean MongoDB
m Google Cloud Riak KV

m OpenStack Riak KV

u Google Cloud Mongodb

(a) Throughput performance

817

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

Milliseconds
= = = =
(o2} [ee] o N SN (o2}

N =
!

o

Read Latency in YCSB Workload A

==O== Digitalocean Riak KV"
==O== Digitalocean mongoDB
==O== OpenStack MongoDB
=== OpenStack Riak KV
==O== Google Cloud Riak KV/
=== Google Cloud Mongodb

Milliseconds
=
N £ [e2] [o0) o

Update Latency in YCSB Workload A

==0O==Digitalocean Riak KV"
==0== Digitalocean mongoDB
==0== OpenStack MongoDB
=== OpenStack Riak KV
==0== Google Cloud Riak KV
=== Google Cloud Mongodb

5,000k
Number of Records

100k

20,000k 100k

5,000k 20,000k
Number of Records

(b) Latency time

Figure 4. Throughput performance and latency time for the workload (A)

4.2. Workload B

This workload focused on read and update operations. Figure 5-a shows read and low update operations. MongoDB
in Google Cloud peaked at 102, 97, and 81 operations per second in 100K, 5,000K, and 20,000K records, respectively.
Riak KV achieved the highest latency results in OpenStack. In the read and update operations, it was 8 and 9
milliseconds, respectively. For updated operations, MongoDB in Google Cloud achieved the lowest latency for both
read and update operations; see Figure 5-b for details.

Operations (sec)

1 98.03

102
i 92

100k

Workload B (95/5 reads and updates)

97

90.1 91

5,000k
Number of recordS

20,000k

m Digitalocean Riak KV"
H OpenStack MongoDB

u Digitalocean MongoDB
u Google Cloud Riak KV

m OpenStack Riak KV
= Google Cloud Mongodb

(a) Throughput performance

Milliseconds

Read Latency in YCSB Workload B

==O==Digitalocean Riak KV"
==O== Digitalocean mongoDB
==O= OpenStack MongoDB
=== OpenStack Riak KV
==O== Google Cloud Riak KV
=== Google Cloud Mongodb

2

100k 5,000k 20,000k

Number of Records

Milliseconds

10

~

S

Update Latency in YCSB Workload B

==O== Digitalocean Riak KV"
==O== Digitalocean mongoDB
==O== OpenStack MongoDB
=== OpenStack Riak KV
==O== Google Cloud Riak KV
=== Google Cloud Mongodb

100k 5,000k

Number of Records

(b) Latency time

Figure 5. Throughput performance and latency time for the workload (B)

818

20,000k

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

4.3. Workload C

In this workload, all the operations were read-only. The results are illustrated in Figure 6-a. Google Cloud MongoDB
achieved the highest performance for all three records. The lowest latency value was achieved for Riak KV in Google
Cloud with all records in general, while the highest was for Riak in OpenStack. Figure 6-b shows the results.

Workload C (100% reads only)

200 - 187
180 -
160 -
~ 140 - 135
]
< 120 - 109
2 w02 105 98
2 100
©
g 80
© 60
40
20
0
100k 5,000k 20,000k
Number of recordS
m Digitalocean Riak KV" = Digitalocean MongoDB m OpenStack Riak KV
m OpenStack MongoDB m Google Cloud Riak KV = Google Cloud Mongodb

(a) Throughput performance

Read Latency in YCSB Workload C
10 1

9 { | =O=Digitalocean Riak KV" ==0==Digitalocean mongoDB

8 1 | —0=0OpenStack MongoDB ~ —0O— OpenStack Riak KV

=0O==Google Cloud Riak KV —0O--Google Cloud Mongodb

Milliseconds

100k 5,000k 20,000k

Number of Records

(b) Latency time

Figure 6. Throughput performance and latency time for the workload (C)

4.4. Workload D

This workload focused on read and insert operations. Workload D was run with 95% reads and 5% inserts. MongoDB
in Google Cloud showed superiority for all database volumes. Its performance was high for all dataset sizes at 113, 98,
and 73 operations/second. With an increase in data size, both MongoDB and Riak KV in Google Cloud began showing
reduced throughput, but the performance of Riak KV was not even close to that of MongoDB, as shown in Figure 7-a.
The latencies of both MongoDB and Riak KV in Google Cloud were close, although Riak KV had lower latency values.
OpenStack Riak KV achieved the highest latency for both read and insert operations. However, the lowest latency for
read operations was achieved by Google Cloud Riak KV, and for insert operations, it was achieved by OpenStack
MongoDB. Results are shown in Figure 7-b.

819

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

Workload D 95% Read and 5% Insert
120 -
112.4 113
110 -
100 H %
> 89
g 90 -
122}
g 80 -4
.g 73
(5]
o 70 A
§ 0
60 -
50 1
421
==
100k 5,000k 20,000k
Number of recordS
= Digitalocean Riak K" Digitalocean MongoDB = OpenStack Riak KV
= OpenStack MongoDB = Google Cloud Riak KV Google Cloud MongoDB
(a) Throughput performance
Read Latency in YCSB Workload D Insert Latency in YCSB Workload D
10 16 1
==O=Digitalocean Riak KV" ==0==Digitalocean Riak KV"
9 4 ==O= Digitalocean mongoDB 14 { ==O=—Digitalocean mongoDB
g ==O== OpenStack MongoDB ==0== OpenStack MongoDB
OpenStack Riak KV 12 4 OpenStack Riak KV
7 ==O== Google Cloud Riak KV === Google Cloud Riak KV
Google Cloud MongoDB Google Cloud MongoDB
8 » 10
g 6 E
] S
> (5]
7] 5]
= 5 1 2 8 1
s -—
4 1 = 6
3 4
4 4
2 O——
(=)
1.]
O T T 1 O T T 1
100k 5,000k 20,000k 100k 5,000k 20,000k
Number of Records Number of Records

(b) Latency time

Figure 7. Throughput performance and latency time for the workload (D)

4.5. Workload E

This workload focused on insert and scan operations. DigitalOcean MongoDB performed better than others in this
workload. The throughput was generally low, as observed in Figure 8-a, due to the scanning process. The performance
failed to match that of previous tests. There were no more than 53.1 operations per second when the number of records
was 100K. The latency results show very close values between MongoDB and Riak KV in Google Cloud, with slightly
lower values for MongoDB. The highest latency was achieved by OpenStack Riak KV for both scan and insert
operations. The lowest latency was achieved by Google Cloud MongoDB for insert operations and by Google Cloud
Riak KV for scan operations. Figure 8-b shows the results.

820

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Workload E 95% Scan and 5% insert

60 -

Operations (sec)

100K 5,000K 20,000K
Number of recordS
= Digitalocean Riak KV" « Digitalocean MongoDB » OpenStack Riak KV
= OpenStack MongoDB = Google Cloud Riak KV = Google Cloud MongoDB

(a) Throughput performance

Scan Latency in YCSB Workload E Insert Latency in YCSB Workload E
20 1 20 -
==O== Digitalocean Riak KV" —0— Digitalocean Riak KV"
18 | ==O=Digitalocean mongoDB 18 A O— Digitalocean mongoDB
16 - Openstack M_OHQODB 16 - ==O== OpenStack MongoDB
=== OpenStack Riak KV OpenStack Riak KV
==0== Google Cloud Riak KV .
14 1 14 { ==O==Google Cloud Riak KV
«=O==Google Cloud MongoDB
%) 2 %) === Google Cloud MongoDB
B 12 A ° 12 -
8 B
2 10 4 2 10 -
s s
8 1 8
6 6
4 A 4 1
2 1 2
0 T T) 0 T T]
100k 5,000k 20,000k 100k 5,000k 20,000k
Number of Records Number of Records

(b) Latency time

Figure 8. Throughput performance and latency time for the workload (E)

4.6. Workload F

This workload focused on read and read-modify operations. For this workload, the throughput was high for both
databases, a likely consequence of the increase in data size. While Google Cloud MongoDB achieved higher values
for both 1,000 and 5,000 reads than Google Cloud Riak KV, Riak KV in Google Cloud achieved higher performance
when the record number increased to 20,000. The latency results were higher for read-modify than for read
operation, as expected, because the process of reading and modifying takes more time than the process of reading
only. For read operations, DigitalOcean Rika KV achieved the lowest latency overall, while for read-modify,
Google Cloud MongoDB achieved the lowest, but the value was very close to Google Cloud Rika KV. See Figure
9 (a, b).

821

HighTech and Innovation Journal

Vol. 6, No. 3, September, 2025

Workload F Read/read-modify-write ratio: 50/50
100 -
89
90 1 o 81
79
)
&
2
2
©
]
Q.
o
100k 5,000k 20,000k
Number of recordS
m Digitalocean Riak KV" m Digitalocean MongoDB m OpenStack Riak KV
m OpenStack MongoDB m Google Cloud Riak KV u Google Cloud MongoDB
(a) Throughput performance
Read Latency in YCSB Workload F Read-Modify Latency in YCSB Workload F
10 - 26
==O==Digitalocean Riak KV" =0 Digitalocean Riak KV"
==O== Digitalocean mongoDB 24 ==0==Digitalocean mongoDB
==O== OpenStack MongoDB 22 ==O== OpenStack MongoDB
8 1 —0— OpenStack Riak KV 20 0= OpenStack Riak KV
==0O== Google Cloud Riak KV —O— Google Cloud Riak KV
~—©——Google Cloud MongoDB 18 === Google Cloud MongoDB
B 6. 2 16
8 8
o 3 14
3 S
41 10
8
5 | 6
4
2
0 T T 0 T T]
100k 5,000k 20,000k 100k 5,000k 20,000k
Number of Records Number of Records
(b) Latency time
Figure 9. Throughput performance and latency time for the workload (F)
5. Discussion

This study aims to investigate the key performance factors of big databases in a CC environment. To do that, RQ1
(the key performance factors) and RQ2 (the difference between MongoDB and Riak KV) were answered in Section 4.
This section discusses the results by providing a thorough evaluation of the results and suggesting a decision tree that
can help identify the key considerations in adopting the NoSQL database and the CC environment that suit a more
specific application. The research and practical implications are also discussed, as well as study limitations and future

research directions.

5.1. Overall Evaluation

5.1.1. Performance Comparison

This study highlights MongoDB’s superior throughput performance across a range of workloads when deployed on
Google Cloud, confirming findings from earlier research (e.g., [6, 48, 49). Table 7 presents the total throughput for all

822

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025
tested databases across all workloads. In Workload A (50% read, 50% update), MongoDB achieved 232 operations per
second (ops/sec), outperforming Riak KV’s 77.88 ops/sec. This performance advantage is attributed to MongoDB’s
document-oriented architecture, which leverages BSON storage and in-memory processing to optimize mixed
operations. Similarly, in Workload C (100% read), MongoDB delivered 390 operations per second (ops/sec) compared
to Riak KV’s 255 ops/sec, benefiting from efficient indexing and caching mechanisms that minimize read latency. An
exception was noted in Workload E (scan-insert), where Riak KV exhibited lower latency (5.5 ms) than MongoDB (6.1
ms), due to its distributed hash table structure, which performs well in scatter-gather queries.

Table 7. The sum of throughput (operations/second)

Workload A B C D E F
DigitalOcean 205.34 263.1 288.02 236.05 154.01 158
MongoDB OpensStack 152 260 296 208 110 148
Google Cloud 232 280 390 284 145 226
DigitalOcean 72.89 130.32 239.08 168.33 79.57 159
Riak KV OpenStack 67 122 193 170 73 144
Google Cloud 77.88 141 255 202.55 113 229

Overall, MongoDB outperformed Riak KV in Workloads A, B, C, and D on Google Cloud and showed better results
than on DigitalOcean and OpenStack in most cases. However, for scan and read-modify workloads (E and F), MongoDB
performed more efficiently in the DigitalOcean environment. MongoDB’s scale-out architecture, combined with its
flexibility, consistency, fault tolerance, and agility, positions it as a highly adaptable solution for modern data-intensive
applications. Its ability to manage evolving data schemas, support rapid development, and ensure low downtime further
strengthens its appeal for developers working in dynamic cloud-based environments. These results reinforce
MongoDB’s value in Big Data analytics and operational scenarios requiring high performance and scalability.

In write-heavy workloads (D and F), MongoDB demonstrated consistent performance, maintaining stable throughput
around 200 operations per second. This stability is largely due to its use of journaling and replication, which enhance
data durability and write efficiency. In contrast, Riak KV exhibited greater variability, with latency spikes fluctuating
by up to £20%. This inconsistency is attributed to its quorum-based write mechanism, which, while designed for high
availability, can introduce delays under certain conditions [12]. For read-modify-write operations (Workload F), Riak
KV performed nearly on par with MongoDB, achieving 229 ops/sec compared to MongoDB’s 226 ops/sec. This close
performance gap highlights Riak KV’s effectiveness in handling transactional tasks, largely due to its use of atomic
counters—a feature that supports consistent updates across distributed nodes. These findings suggest that while
MongoDB is generally more stable in high-write scenarios, Riak KV can be a strong contender for specific transactional
workflows. The results also emphasize the importance of understanding workload characteristics when selecting a
NoSQL solution, as different architectures yield varying performance outcomes depending on the type of operation.

Table 8 compares the latency between MongoDB and Riak KV in the three cloud environments. MongoDB in Google
Cloud achieved the lowest latency in workload C (read operation), workload E (scan and insert operations), and
workload F (read and read-modify operations) compared to Digital Ocean and OpenStack environments. However, the
latency results for workload A (read 50% and update 50% operations), workload B (read 95% and update 5%
operations), and workload D (read and insert operations) showed mixed values. In workload A, DigitalOcean
demonstrated lower latency compared to Google Cloud and OpenStack. Moreover, in workload B, Google Cloud
showed the lowest latency in update operations, while OpenStack showed the lowest latency in read operations.
Similarly, in workload D, Google Cloud showed the lowest latency in read operations, while OpenStack showed the
lowest latency in insert operations.

Table 8. Mean latency (operations/second) R: Read; U: Update; I: Insert; S: Scan. RM: Read-Modify

A B C D E F

Workload: MongoDB

DigitalOcean R=22,U=59 R=31,U=28 R=3.0 R=451=55 S=6.1,1=55 R=28RM=121
OpenStack R=56,U=7.6 R=24,U=44 R=43 R=50,1=43 $=6.0,1=93 R=5 RM=13.3

Google Cloud R=24,U=63 R=31,U=26 R=24 R=41,1=56 S=58,1=4.6 R=28,RM=86

A B C D E F
Workload: Riak KV

DigitalOcean R=25U=71 R=37,U=3.0 R=28 R=44,1=53 S=76,1=7.0 R=27,RM =118
OpensStack R=85,U=10.7 R=37,U=48 R=5 R=551=70 $=11.0,1=8.0 R=6.3,RM =143

Google Cloud R=26,U=738 R=31,U=21 R=18 R=31,1=50 S$=551=55 R=4.0,RM =8.6

823

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Riak KV in Google Cloud exhibited lower latency values compared to Riak KV in DigitalOcean and Riak KV in
OpensStack across workloads B, C, D, E, and the read-modify operation in workload F. However, Riak KV in
DigitalOcean showed the lowest latency in workload A and for read operations in workload F. On the other hand, when
comparing MongoDB and Riak KV, Riak KV achieved lower latency in workloads C and D, while MongoDB achieved
lower latency in workloads A, B, E, and F in general.

5.1.2. Cloud Platform Efficiency Comparison

Google Cloud Riak KV showed higher performance when compared to other cloud environments for all workloads.
This again emphasizes the capabilities of Google Cloud. Moreover, Google Cloud MongoDB showed higher
performance values compared to Google Cloud Riak KV in all workloads, except for workload F (read and read-modify),
where Riak KV showed slightly higher performance. Google Cloud emerged as the dominant environment for NoSQL
performance in this study, particularly in supporting MongoDB workloads. For instance, in Workload D (read and
insert), MongoDB on Google Cloud achieved 284 operations per second (ops/sec), outperforming its performance on
DigitalOcean (236 ops/sec). This performance advantage is mainly due to Google Cloud’s robust infrastructure,
including its proprietary fiber-optic network, which significantly reduces latency [21]. Additionally, the optimized
virtual machine configurations, such as instances with four vCPUs and 4 GB of RAM, are well-suited to MongoDB’s
memory-mapped storage engine, ensuring efficient resource utilization.

In contrast, OpenStack demonstrated the weakest performance, with the highest latency observed for Riak KV in
Workload F (14.3 ms). This underperformance is likely linked to the absence of proprietary optimizations found in
commercial cloud platforms, which can negatively impact input/output (1/0) throughput [19]. Notably, Riak KV also
performed better on Google Cloud than on other platforms across all workloads, reinforcing Google Cloud’s technical
advantage. However, MongoDB consistently outperformed Riak KV within the Google Cloud environment in all
workloads except for Workload F (read and read-modify), where Riak KV held a slight edge [38]. These results
underscore Google Cloud’s effectiveness in handling high-performance NoSQL deployments. Its advanced networking,
infrastructure tuning, and optimized resource provisioning make it a compelling choice for scalable, low-latency, data-
intensive applications. The findings demonstrate that both MongoDB and Riak KV benefit from Google Cloud’s
capabilities, with MongoDB showing especially strong performance across a broad range of analytical workloads.

5.2. Suggested Decision Tree

Based on the results discussed in Sections 4 and 5.1, a decision tree was developed to help developers and researchers
determine whether to use MongoDB or Riak KV. Some difficulties and possible solutions for overcoming problems in
selecting the correct database and the right CC environment, considering various variables, are addressed here. The
decision tree, presented in Figure 10, is divided into six sections based on the operation type, as discussed below.

e The top split in the tree is workload A, which comprises 50/50 reads and updates. The highest performance was
achieved with MongoDB in Google Cloud. Riak KV in OpenStack may be avoided. MongoDB in DigitalOcean
has the lowest latency for reads and updates.

e The second split, for workload B, yields the same results as for workload A; however, the difference in low latency
represents the most suitable option. MongoDB in Google Cloud is recommended for both read and update
operations.

e Workload C focuses on read operations only. The highest performance was achieved with MongoDB in Google
Cloud. Riak KV in Google Cloud has the lowest latency for read operations. However, Riak KV in OpenStack
may be avoided for both low performance and high latency for read-only operations.

e In the fourth split of the decision tree, for workload D, Google Cloud gives MongoDB the highest performance
and the lowest latency with read operations. MongoDB in OpenStack achieves the lowest latency for insert
operations.

¢ In workload E, short ranges of records are queried. The highest performance was achieved by DigitalOcean
MongoDB. Most of the poor results in OpenStack with Riak KV are due to the limited support for this cloud and
the difficulty in managing it. OpenStack with Riak KV achieved the highest latency for both scan and insert
operations, while Google Cloud Riak KV achieved the lowest latency for scan operations, and Google Cloud
MongoDB achieved the lowest latency for insert operations.

e Workload F involves the client reading a record, modifying it, and then writing back the modifications. Google
Cloud also achieved the highest performance and lowest latency for both read and read-modify operations, while
OpenStack Riak KV again achieved the lowest performance and the highest latency for both read and read-modify
operations.

824

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

MongoDB- Google Cloud

Throughput

Workload A
50%: Read &

p» Riak KV- OpenStack

Update la m} Riak KV-OpenStack-
tency b Read&Update
Low

» MongoDB- DigitalOcean
Read&Update

High
Throughput —— MongoDB- Google Cloud
-

Low

Workload B ——— Riak KV- OpenStack

5% Read & :
Upitate High _ Riak Kv-OpenStack
Latency - Read&Update
Low » MongoDB- Google Cloud
Read&Update
High)
B Throughput i # MongoDB- Google Cloud
Workload C \—.L':'W Riak KV- OpenStack

100%: Read High . Riak Kv-OpensStack-Read

Latency
Low _ Riak KV-Google Cloud-Read
High i . N
S Throughput MaongpDB- Google Cloud
/ Workload D Low . piak KV- OpenStack
— 95% Read & ! it
5% Insert = Riak KV-OpenStack-Read &
Latency Ins
S 15ert
Low

Riak KV-oogle Cloud- Read
MongoDB-Openstack- Insert

High MongoDB- DigitalOcean

. “ Throughput i
Workload E\ | Low _ Riak KN- OpenStack

95%; Scan &

High
5% Insert

» Riak K\V-OpenStack-
Latency : Scan&insert

Low . piak KV-Google Cloud-Scan
MongoDB-Google Cloud-Insert

High _ MongoDB- Google Gloud
—P
Throughput

7| Low . Riak KV- OpenStack

_High _ piak kv-Openstack-
Latency | Read&Read Madify
Low

» MongoDB- Google Cloud-
Read&Read Modfiy

Figure 10. Decision tree for evaluating and testing in CC platforms

5.3. Research Implications

Although numerous studies have assessed the performance of NoSQL databases, including MongoDB and Riak KV,
under diverse conditions, there is presently no direct research that examines database performance in a model identical
to or closely resembling ours, especially within cloud environments utilizing Google Cloud, DigitalOcean, and
OpenStack. This study offers a comparative analysis of MongoDB and Riak KV, emphasizing performance measures
such as throughput and latency within a cloud-based context. Although other research (e.g., [42, 43, 48, 49]) has
juxtaposed MongoDB with alternative NoSQL systems, such as Cassandra, Redis, and Neo4j, none have explicitly
concentrated on OpenStack-based infrastructure or employed the identical benchmarking methodology used in this
study.

825

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

The findings of this study indicate that MongoDB performed better than Riak KV. These results are in line with
previous findings, such as [48, 49] those reported by, who reported that MongoDB can achieve high performance
compared to Cassandra, HBase, and Microsoft SQL. Additionally, the findings validated those of [42] those who
noted that MongoDB's performance was higher than that of Cassandra, Redis, and Neo4j. This is partly because
MongoDB's registration conversion is copied into memory, which enhances the reading rate [43]. However, these
results opposed the finding [43] that Redis outperformed all other databases in read operations. This may be because
Redis stores and retrieves information using volatile memory. Given the consistent performance superiority of
MongoDB over Riak KV, further investigation is warranted to examine the specific architectural and operational
factors that contribute to MongoDB's efficiency. Future research could delve into the intricate details of MongoDB's
memory management and query optimization strategies to uncover the underlying mechanisms that drive its high
performance.

The findings also support the findings of Carvalho et al. [6], who reported that MongoDB has the best runtime, except
for workloads constituted by scan operations. The results showed that in scan operations, Riak KV showed less latency
than MongoDB. However, this opposed the findings reported by Seghier et al. [43] MongoDB, which performed the
best in scan operations. The discrepancy in findings regarding MongoDB's latency in scan operations highlights the need
for further investigation into the factors that influence scan operation efficiency across different database systems. Future
research could focus on analyzing the specific configurations, indexing strategies, and data access patterns that
contribute to outcomes in scan operations. Understanding these nuances can provide valuable insights into optimizing
database performance for specific types of workloads.

The findings confirm that Google Cloud performed better than other cloud platforms, particularly in conjunction with
MongoDB. Google Cloud has a significant advantage in its relationship with Google; its ability to access Google’s
private fiber networking infrastructure facilitates stronger performance compared to standard network infrastructures
[50]. These results indicate Google Cloud's superior performance and highlight the potential influence of cloud platform
infrastructure on database performance. This suggests a need for further investigation into the specific technical
capabilities and optimizations offered by cloud providers, particularly in terms of networking infrastructure and resource
allocation mechanisms [51]. Future research could explore the underlying mechanisms and architectural features that
contribute to Google Cloud's performance advantages, providing insights into best practices for leveraging cloud
platforms to optimize database performance.

5.4. Practical Implications

For organizations seeking optimal database solutions for their applications, the empirical evidence suggesting
MongoDB's superior performance compared to Riak KV underscores the practical advantage of considering MongoDB
as a preferred choice, particularly in scenarios where read operations play a crucial role. Understanding the performance
characteristics of different databases can inform strategic decision-making in database selection and architecture design,
potentially leading to improved system efficiency and user experience.

Developers aiming for high-performance analytics should opt for MongoDB on Google Cloud, which offers superior
read throughput and stable performance across diverse workloads. However, for loT-driven data streams where low
scan latency is critical, Riak KV proves more suitable due to its efficient handling of scatter-gather operations.
Developers should avoid deploying latency-sensitive applications on OpenStack unless the environment is optimized
explicitly for NoSQL workloads, as it tends to exhibit higher latency and inconsistent performance.

The divergent findings regarding MongoDB's performance in scan operations highlight the importance of
conducting thorough performance evaluations tailored to the specific requirements of the application. While
MongoDB may exhibit superior runtime in many scenarios, the observed latency in scan operations highlights the
need to evaluate database performance across a range of workload types. This underscores the importance of
comprehensive testing and benchmarking when selecting databases to ensure optimal performance across diverse
usage scenarios.

For organizations and cloud architects considering cloud platforms for hosting databases, the demonstrated
performance advantage of Google Cloud, particularly when coupled with MongoDB, underscores the practical benefits
of leveraging Google's Cloud infrastructure. Understanding the technical advantages afforded by Google Cloud's private
fiber networking infrastructure can inform strategic decisions regarding cloud platform selection and resource allocation.
By leveraging Google Cloud's robust networking capabilities, organizations can potentially achieve enhanced database
performance and reliability, thereby improving overall system efficiency and user experience. When designing cloud
infrastructure, architects should consider the cost-performance trade-off. While Google Cloud delivers higher
throughput, DigitalOcean’s lower hourly rate ($0.06/hour vs. Google’s $0.08/hour for similar VM configurations) makes
it a viable option for small-scale or budget-sensitive deployments, especially where peak performance is not the primary
concern. Strategic platform selection can help balance operational costs with performance goals.

826

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

6. Conclusion

Selecting the appropriate NoSQL database and CC environment remains a daunting task for both designers and
business stakeholders. The primary objectives of this study were twofold: to assess the performance of big data in
CC environments and to delineate the challenges and unresolved issues associated with big data in CC. This study
includes a comparative analysis of performance across MongoDB and Riak KV databases. We scrutinized the
throughput and latency analysis for these two databases within diverse CC environments, including Google Cloud,
DigitalOcean, and OpenStack. We employed YCSB as the benchmark, owing to its widespread implementation in
NoSQL database testing.

The experiments consistently demonstrated MongoDB's superior performance within the Google Cloud environment.
However, limitations in MongoDB's performance were observed within both DigitalOcean and OpenStack clouds.
Moreover, OpenStack Riak KV showed high latency compared to others. A decision tree was subsequently devised to
establish performance criteria for selecting databases and CC platforms. Future research endeavors could expand upon
this study by comparing the leading NoSQL databases across different CCPs to identify the optimal database. Such
analysis could encompass various benchmarks, including throughput, latency, scalability, and cost, while evaluating
performance under diverse workloads and data types. This comparative assessment holds the potential to guide the
selection of the most suitable database and CCP for specific use cases.

6.1. Research Limitations and Future Research Directions

While the study provides insightful results, it is essential to acknowledge certain limitations that affect the ability to
definitively conclude which cloud platform is superior. The integration of MongoDB with Google Cloud demonstrated
significant performance gains, particularly in managing extensive data reading and writing operations. Additionally,
Google Cloud's infrastructure demonstrated superior manageability and efficiency in handling distributed environments
and large datasets compared to other cloud platforms. However, these observations cannot be fully generalized due to
the lack of detailed information regarding the specific instance types used in the comparison. Instance types, which
define the virtual hardware configurations in cloud environments, play a crucial role in performance outcomes. Different
instance types can have varying amounts of CPU, memory, storage, and network capabilities, which significantly
influence the performance of database operations and big data processing. Without knowing the exact instance types
used for Google Cloud, as well as for the other platforms, it is challenging to attribute the performance gains solely to
the cloud platform itself.

This study focuses solely on MongoDB and Riak KV as the NoSQL databases under evaluation. While these are
popular choices, the NoSQL landscape is rapidly evolving, with numerous other databases offering different
architectures and performance characteristics, such as Cassandra, Couchbase, and HBase. Broadening the study to
encompass a wider variety of NoSQL databases would provide a more comprehensive view of the relative advantages,
disadvantages, and applicability of different databases for various big data workloads in cloud environments. This
extension would enhance comprehension and facilitate the identification of the most suitable databases for specific use
cases. Similarly, the study deploys only the YCSB benchmark. Incorporating additional benchmarks or workload
generators that can simulate more realistic and diverse workload scenarios, including mixed workloads, ad-hoc queries,
and data models with varying complexities, would provide a more comprehensive evaluation. Additionally, the study
focuses on three cloud platforms: DigitalOcean, OpenStack, and Google Cloud. While these are popular choices, the
cloud computing landscape is rapidly evolving, with new platforms and services emerging constantly (e.g., Amazon
Web Services, Microsoft Azure, IBM Cloud, etc.). Expanding the research to include these additional platforms would
provide a more comprehensive understanding of the cloud ecosystem.

The decision tree which was proposed is specifically modeled based on experiments conducted with text-based data
which were the focus of the performance evaluation. While it provides useful guidance for similar workloads, it may
not be directly applicable to other data types, such as multimedia files, which have distinct storage and access
requirements. Furthermore, in this work, communication is used solely for setting up the nodes and, subsequently,
running the benchmark on the cloud platform. This means we cannot control or manage the communication quality on
the cloud server, as it is controlled by the server’s infrastructure. Future research could explore techniques for mitigating
the impact of fluctuating communication on benchmarking results. This may include adaptive workload distribution
strategies or performance profiling approaches that consider network latency and bandwidth constraints. The recognition
of inherent limitations in controlling communication quality underscores the importance of designing experiments that
are robust to fluctuations in network performance. This may involve implementing redundancy measures, optimizing
data transfer protocols, or selecting cloud regions with reliable network infrastructure. Additionally, transparent
reporting of communication constraints and their potential impact on benchmarking results can facilitate informed
decision-making and the interpretation of performance metrics in cloud-based evaluation.

827

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

7. Declarations
7.1. Author Contributions

Conceptualization, A.T. and Y.A.; methodology, A.R.; software, A.R.; validation, E.E. and A.C.; formal analysis,
E.E. and A.T.; investigation, A.R.; resources, D.C.; data curation, M.A.; writing—original draft preparation, S.A., M.A.,
E.E., AR, and A.T.; writing—review and editing, Y.A., D.C., N.M., and A.C.; visualization, E.E.; supervision, A.T.
and A.R. All authors have read and agreed to the published version of the manuscript.

7.2. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

7.3. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

7.4. Institutional Review Board Statement

Not applicable.

7.5. Informed Consent Statement

Not applicable.

7.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

8. References

[1] Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., ... & Pathirana, P. N. (2022). A survey
on blockchain for big data: Approaches, opportunities, and future directions. Future Generation Computer Systems, 131, 209-
226. doi:10.1016/j.future.2022.01.017.

[2] Souza, F., Tavares, E., & Araljo, C. (2025). A modelling approach for estimating energy consumption of NoSQL-based storage
systems. Journal of Supercomputing, 81(6), 797. doi:10.1007/s11227-025-07298-4.

[3] Beckermann, B. M. (2025). Transactional YCSB: Benchmarking ACID-Compliant NoSQL Systems with Multi-Operation
Transactions. Datenbanksysteme fiir Business, Technologie und Web (BTW 2025), 1019-1030. doi:10.18420/BTW2025-67.

[4] Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data.
Journal of Big Data, 6(1), 1-38. doi:10.1186/s40537-019-0254-8.

[5] Krishan, K., Gupta, G., & Bhathal, G. S. (2024). Striking the Balance: Comprehensive Insights into Data Consistency in NoSQL
Realms. Proceedings of the 18th INDIAcom; 2024 11th International Conference on Computing for Sustainable Global
Development, INDIACom 2024, 715-720. d0i:10.23919/INDIACom61295.2024.10498626.

[6] Carvalho, 1., S&, F., & Bernardino, J. (2023). Performance Evaluation of NoSQL Document Databases: Couchbase, CouchDB,
and MongoDB. Algorithms, 16(2), 78. doi:10.3390/a16020078.

[7] Gomes, C., Meuse, M. N., Nogueira, B., Maciel, P., & Tavares, E. (2023). NoSQL-based storage systems: influence of consistency
on performance, availability and energy consumption. Journal of Supercomputing, 79(18), 21424-21448. doi:10.1007/s11227-
023-05488-6.

[8] Ferreira, S., Mendonga, J., & Andrade, E. (2025). Experimental Performance Analysis of Data Consistency Levels in NoSQL
Databases. Software - Practice and Experience, 55(6), 1059-1070. doi:10.1002/spe.3412.

[9] Pramanik, S., & Bandyopadhyay, S. K. (2023). Analysis of big data. Encyclopedia of data science and machine learning, 1GI
Global, 97-115. d0i:10.4018/978-1-7998-9220-5.ch006.

[10] Weitzenboeck, E. M., Lison, P., Cyndecka, M., & Langford, M. (2022). The GDPR and unstructured data: is anonymization
possible? International Data Privacy Law, 12(3), 184-206. doi:10.1093/idpl/ipac008.

[11] Sandhu, A. K. (2022). Big Data with Cloud Computing: Discussions and Challenges. Big Data Mining and Analytics, 5(1), 32—
40. doi:10.26599/BDMA.2021.9020016.

[12] Rmis, A. M., & Topcu, A. E. (2020). Evaluating RIAK key value cluster for big data. Tehnicki Vjesnik, 27(1), 157-165.
doi:10.17559/TV-20180916120558.

828

https://doi.org/10.1186/s40537-019-0254-8

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

[13] Andreoli, R., Cucinotta, T., & De Oliveira, D. B. (2023). Priority-Driven Differentiated Performance for NoSQL Database-As-
A-Service. IEEE Transactions on Cloud Computing, 11(4), 3469-3482. doi:10.1109/TCC.2023.3292031.

[14] Aradjo, C., Oliveira, M., Nogueira, B., Maciel, P., & Tavares, E. (2024). Performability evaluation of NoSQL-based storage
systems. Journal of Systems and Software, 208, 111885. doi:10.1016/j.jss.2023.111885.

[15] Bansal, N., Sachdeva, S., & Awasthi, L. K. (2024). Are NoSQL Databases Affected by Schema? IETE Journal of Research,
70(5), 4770-4791. doi:10.1080/03772063.2023.2237478.

[16] Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for
Healthcare 4.0. Journal of Industrial Information Integration, 18, 100129. doi:10.1016/j.jii.2020.100129.

[17] Awaysheh, F. M., Aladwan, M. N., Alazab, M., Alawadi, S., Cabaleiro, J. C., & Pena, T. F. (2022). Security by Design for Big
Data Frameworks Over Cloud Computing. IEEE Transactions on Engineering Management, 69(6), 3676-3693.
doi:10.1109/TEM.2020.3045661.

[18] Gillis, A.S. (2022). DigitalOcean. Available online: https://www.techtarget.com/searchcloudcomputing/definition/DigitalOcean
(accessed on August 2025).

[19] Al-Dhagm, A., Ikuesan, R. A., Kebande, V. R., Razak, S. A., Grispos, G., Choo, K. K. R., Al-Rimy, B. A. S., & Alsewari, A.
A. (2021). Digital Forensics Subdomains: The State of the Art and Future Directions. IEEE Access, 9, 152476-152502.
doi:10.1109/ACCESS.2021.3124262.

[20] Singh, B., Martyr, R., Medland, T., Astin, J., Hunter, G., & Nebel, J. C. (2022). Cloud based evaluation of databases for stock
market data. Journal of Cloud Computing, 11(1), 53. d0i:10.1186/s13677-022-00323-4.

[21] Barkat, A., Dos Santos, A. D., & Ho, T. T. N. (2015). Open stack and cloud stack: Open source solutions for building public
and private clouds. Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2014, 429-436. d0i:10.1109/SYNASC.2014.64.

[22] Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620—
633. doi:10.1016/j.future.2018.06.046.

[23] Martinez-Mosquera, D., Navarrete, R., Lujan-Mora, S., Recalde, L., & Andrade-Cabrera, A. (2024). Integrating OLAP with
NoSQL Databases in Big Data Environments: Systematic Mapping. Big Data and Cognitive Computing, 8(6), 64.
doi:10.3390/bdcc8060064.

[24] Kanchan, S., Kaur, P., & Apoorva, P. (2020). Empirical Evaluation of NoSQL and Relational Database Systems. Recent
Advances in Computer Science and Communications, 14(8), 2637—2650. doi:10.2174/2666255813999200612113208.

[25] Alzoubi, Y. I., Topcu, A. E., & Erkaya, A. E. (2023). Machine Learning-Based Text Classification Comparison: Turkish
Language Context. Applied Sciences (Switzerland), 13(16), 9428. doi:10.3390/app13169428.

[26] Topcu, A. E., Alzoubi, Y. I., & Karacabey, H. A. (2023). Text Analysis of Smart Cities: A Big Data-based Model. International
Journal of Intelligent Systems and Applications in Engineering, 11(4), 724-733.

[27] Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: a new era has begun. Small
Business Economics, 55(3), 529-539. doi:10.1007/s11187-019-00202-4.

[28] Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C. C. (2020). Challenges
and Future Directions of Big Data and Artificial Intelligence in Education. Frontiers in Psychology, 11, 580820.
doi:10.3389/fpsyg.2020.580820.

[29] Kenitar, S. B., Arioua, M., & Yahyaoui, M. (2023). A Novel Approach of Latency and Energy Efficiency Analysis of 10T with
SQL and NoSQL Databases Communication. IEEE Access, 11, 129247-129257. doi:10.1109/ACCESS.2023.3332483.

[30] Hofmann, E. (2017). Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip
effect. International Journal of Production Research, 55(17), 5108-5126. doi:10.1080/00207543.2015.1061222.

[31] Khan, W., Kumar, T., Zhang, C., Raj, K., Roy, A. M., & Luo, B. (2023). SQL and NoSQL Database Software Architecture
Performance Analysis and Assessments—A Systematic Literature Review. Big Data and Cognitive Computing, 7(2), 97.
doi:10.3390/bdcc7020097.

[32] Mishra, A., Jabar, T. S., Alzoubi, Y. I., & Mishra, K. N. (2023). Enhancing privacy-preserving mechanisms in Cloud storage: A
novel conceptual framework. Concurrency and Computation: Practice and Experience, 35(26), 7831. doi:10.1002/cpe.7831.

[33] Park, J., & Lee, D. H. (2022). Parallelly Running and Privacy-Preserving k-Nearest Neighbor Classification in Outsourced Cloud
Computing Environments. Electronics (Switzerland), 11(24), 4132. doi:10.3390/electronics11244132.

[34] Zeghib, N. E. ., Alwan, A. A., Abualkishik, A. Z., & Gulzar, Y. (2022). Multi-Route Plan for Reliable Services in Fog-Based
Healthcare Monitoring Systems. International Journal of Grid and High Performance Computing, 14(1), 1-20.
doi:10.4018/1IJGHPC.304908.

829

HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

[35] Riak. (2025). Riak — a distributed, decentralised data storage system. Available online: https://github.com/basho/riak (accessed
on August 2025).

[36] Topcu, A. E., & Rmis, A. M. (2020). Analysis and evaluation of the Riak cluster environment in distributed databases. Computer
Standards and Interfaces, 72, 103452. doi:10.1016/j.csi.2020.103452.

[37] Eyada, M. M., Saber, W., El Genidy, M. M., & Amer, F. (2020). Performance Evaluation of loT Data Management Using
MongoDB Versus MySQL Databases in Different Cloud Environments. IEEE Access, 8, 110656-110668.
doi:10.1109/ACCESS.2020.3002164.

[38] MongoDB. (2025). What is MongoDB? Available online: https://www.mongodb.com/docs/manual/ (accessed on August 2025).

[39] da Silva, L. F., & Lima, J. V. F. (2023). An evaluation of relational and NoSQL distributed databases on a low-power cluster.
Journal of Supercomputing, 79(12), 13402-13420. doi:10.1007/s11227-023-05166-7.

[40] Khan, S., Liu, X., Ali, S. A., & Alam, M. (2023). Bivariate, cluster, and suitability analysis of NoSQL solutions for big graph
applications. Advances in Computers, 128, 39-105. doi:10.1016/bs.adcom.2021.09.006.

[41] Kim, S., Hoang, Y., Yu, T. T., & Kanwar, Y. S. (2023). GeoYCSB: A Benchmark Framework for the Performance and
Scalability Evaluation of Geospatial NoSQL Databases. Big Data Research, 31, 100368. doi:10.1016/j.bdr.2023.100368.

[42] Nurhadi, Kadir, R. B. A., & Surin, E. S. B. M. (2021). Evaluation of NoSQL Databases Features and Capabilities for Smart City
Data Lake Management. Lecture Notes in Electrical Engineering: VVol. 739 LNEE, 383-392. doi:10.1007/978-981-33-6385-
4 35,

[43] Seghier, N. Ben, & Kazar, O. (2021). Performance Benchmarking and Comparison of NoSQL Databases: Redis vs MongoDB
vs Cassandra Using YCSB Tool. Proceedings - 2021 IEEE International Conference on Recent Advances in Mathematics and
Informatics, ICRAMI 2021, 9585956. doi:10.1109/ICRAMI52622.2021.9585956.

[44] Celesti, A., Lay-Ekuakille, A., Wan, J., Fazio, M., Celesti, F., Romano, A., Bramanti, P., & Villari, M. (2020). Information
management in 10T cloud-based tele-rehabilitation as a service for smart cities: Comparison of NoSQL approaches.
Measurement: Journal of the International Measurement Confederation, 151, 107218. doi:10.1016/j.measurement.2019.107218.

[45] Kausar, M. A., & Nasar, M. (2019). SQL Versus NoSQL Databases to Assess Their Appropriateness for Big Data Application.
Recent Advances in Computer Science and Communications, 14(4), 1098-1108. doi:10.2174/2213275912666191028111632.

[46] Copper, B. F. (2020). Core YCSB Properties. GitHub. Available online: https://github.com/brianfrankcooper/Y CSB/wiki/Core-
Properties (accessed on August 2025).

[47] Cribbs, S. (2025). Schema design in Riak — introduction. Available online: https://riak.com/posts/technical/schema-design-in-
riak-introduction/index.html (accessed on August 2025).

[48] Capris, T., Melo, P., Garcia, N. M., Pires, . M., & Zdravevski, E. (2022). Comparison of SQL and NoSQL databases with
different workloads: MongoDB vs MySQL evaluation. 2022 International Conference on Data Analytics for Business and
Industry, ICDABI 2022, 214-218. doi:10.1109/ICDABI56818.2022.10041513.

[49] Antas, J., Silva, R. R., & Bernardino, J. (2022). Assessment of SQL and NoSQL Systems to Store and Mine COVID-19 Data.
Computers, 11(2), 29. doi:10.3390/computers11020029.

[50] Negi, S., Rauthan, M. M. S., Vaisla, K. S., & Panwar, N. (2021). CMODLB: an efficient load balancing approach in cloud
computing environment. Journal of Supercomputing, 77(8), 8787-8839. doi:10.1007/s11227-020-03601-7.

[51] Fernandez, R. (2023). Google cloud platform: What is it, and should you wuse it? Available online:
https://www.techrepublic.com/article/google-cloud-platform-the-smart-persons-guide/ (accessed on August 2025).

830

https://github.com/basho/riak
https://www.mongodb.com/docs/manual/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties
https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties
https://riak.com/posts/technical/schema-design-in-riak-introduction/index.html
https://riak.com/posts/technical/schema-design-in-riak-introduction/index.html
https://www.techrepublic.com/article/google-cloud-platform-the-smart-persons-guide/

