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Abstract 

This research develops a comprehensive framework for optimizing green business information management systems to 

achieve carbon neutrality goals through digital transformation. The study conducted cross-sector carbon footprint 

assessments of information systems across six industries, analyzing emission patterns based on operational scales, industry 

characteristics, and technological architectures. A multi-tiered optimization model was developed targeting infrastructure, 

data management, and application layers, validated through empirical data from enterprises undergoing digital 

transformation. Results reveal a strong negative correlation (r = -0.73) between digital maturity indices and emission 

intensity, with organizations implementing comprehensive digital transformation achieving average carbon reductions of 

31% over five years. The proposed multi-tiered optimization approach enabled 42.6% emission reductions, with 

technology companies achieving 68% reductions. Economic analysis demonstrates return on investment ranging from 132-

278% over five-year periods, with payback periods of 14-36 months. This study advances information management theory 

by integrating technological architecture with environmental performance governance, providing quantifiable carbon 

assessment methodologies across system layers and practical implementation matrices for industry-specific applications. 

The framework enables organizations to balance carbon reduction objectives with operational efficiency, addressing the 

critical gap between theoretical potential and practical implementation in carbon-neutral transformations. 

Keywords: Green Information Management Systems; Carbon Neutrality; Digital Transformation; Sustainability Optimization. 

 

1. Introduction 

The global pursuit of carbon neutrality has emerged as a crucial response to the deteriorating environmental issues 

that affect almost all business sectors [1]. Information management technologies have been viewed as systems that not 

only streamline business activities but also significantly influence the carbon footprint of the business in terms of energy 

consumption and resource utilization [2]. Recently, there has been increased attention directed towards the 

environmental impacts of information systems, prompting scholars to develop more digitally friendly approaches to 

transformations aimed at supporting systemic carbon neutrality objectives for environmental goals [3]. The integration 

of green practices within information management alongside digital transformation presents significant opportunities 

for enhancing operational efficiency and performance for businesses in a carbon-constrained environment [4]. 

Recent advances in digital transformation for carbon neutrality reveal both progress and gaps. Han et al. [5] 

demonstrated digital platforms' role in carbon neutral innovation varies by region. Zhang et al. [6] confirmed circular 
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economy and digitalization drive decarbonization in G7 countries. Han et al. [7] identified external pressure as a key 

moderator in digital transformation's carbon impact. Pourhejazy et al. [8] noted current supply chain initiatives lack 

comprehensive approaches. However, these studies focus on macro-level impacts without providing systematic 

optimization frameworks for business information systems. Actionable methodologies for multi-layered carbon 

reduction while maintaining operational efficiency remain absent. This research gap is particularly critical as 

organizations face increasing pressure to achieve carbon neutrality while maintaining competitiveness. 

These goals have induced remarkable operational and technological changes across various fields, which require a 

complete change in management and information systems [9]. The shift to net-zero carbon emissions requires complex 

carbon accounting, monitoring, and optimization along with minimal self-inflicted environmental damage from the 

information systems [10]. Information systems are required by organizations to facilitate automated resource scheduling, 

energy savings, and emissions tracking in sophisticated organizational systems [11]. Supporting these systems is vital 

due to the 2-3% contribution the IT industry makes to global carbon emissions, as showcased by Raja’s study that IT 

companies need to adopt greener computing within their digital infrastructures [12]. 

Digital transformation initiatives establish primary competencies which enable achieving carbon neutrality targets 

through improved data infrastructure, data collection, analytics, and decision support systems [13]. With the 

implementation of green information systems, companies have recorded considerably enhanced environmental 

performance, including average emissions reductions ranging from 15% to 25% in diverse operational contexts [14]. 

The evolution of green information technologies has created unprecedented opportunities for the integration of 

sustainability into core business functions by employing sophisticated monitoring, predictive analytics, and automated 

optimization [15]. While these systems show operational benefits, critical gaps remain. Literature lacks quantitative 

methodologies for carbon footprint assessment across system layers and optimization frameworks balancing 

environmental with operational objectives. Organizations need practical implementation guidance to maximize carbon 

reduction. This disconnect between theoretical potential and practical application limits transformation effectiveness. 

The synergy of geographic information systems and lifecycle assessment techniques allows exhaustive carbon footprint 

analysis across value chains, supporting the creation of economically and environmentally beneficial performance 

strategies [16]. 

Carbon-neutral policies are increasingly acknowledging, as discussed in Wei et al. [17], that information systems 

serve as critical facilitators for transforming businesses into low- and carbon-emitting entities. An information 

architecture capable of sophisticated sustainability data processing requires advanced silos for strategic and operational 

decision-making at organizational ecosystems at carbon neutrality [18]. Research conducted on managing low carbon 

emissions in supply chains emphasizes the remarkable advantages of integrated information systems in several 

physically dispersed organizations networks mapped or scoped to implement and coordinate sustainability activities 

[19]. Such systems assist in the real-time monitoring of emissions, refinement of compliance management to expedite 

compliance processes, and the management of business operations towards carbon emission reduction targets. 

This study develops an integrated optimization framework addressing these gaps through quantitative assessment 

methods and progressive implementation pathways across infrastructure, data management, and application layers. Our 

multi-tiered approach enables organizations to achieve measurable carbon reductions while enhancing operational 

performance. Section 2 presents methodology including system framework, carbon assessment, and optimization 

models. Section 3 reports cross-sector empirical results. Section 4 discusses implications. Section 5 concludes. 

2. Design and Methodology 

2.1. Green Business Information Management System Framework Design 

This work proposes a novel approach to the green business information systems management by incorporating an 

element of environmental sustainability alongside advanced information technology frameworks. Following the 

foundational work of Sarkis et al. [10], the framework includes four layers nested within an overarching governance 

model that aligns with organizational sustainability goals and compliance obligations. Figure 1 depicts the data 

acquisition layer that harvests internal data from enterprise subsystems associated with monitoring energy, materials, 

and processes, as well as external data from regulatory databases and environmental monitoring systems. The processing 

infrastructure layer leverages cloud computing to implement big data technologies, analytics engines, machine learning 

models, and visualization methods that present carbon-related information in decision-useful formats, as emphasized by 

Guan et al. [20]. This cloud-based approach reduces the system's overall carbon footprint by optimizing resource 

utilization and eliminating redundant on-premises infrastructure. The modules layer encompasses carbon accounting 

and emission tracking across Scopes 1-3, while the user interface layer provides stakeholder-specific dashboards for 

decision-making at all organizational levels. These resources operate dynamically to support effective carbon 

management across diverse operational scenarios. As Dalene [21] notes, such adaptive information management 

capabilities are crucial for maintaining optimal environmental performance in complex organizational environments. 
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This multi-level system sits within a governance structure that polices carbon management across the company, 

allowing corporations to control, study, and enhance their operational carbon flows while still being agile and 

competitive during the shift to carbon neutrality. To demonstrate the practical application of this framework, we examine 

its implementation in a real-world financial services context. The bank's branch network of 2,500 locations feeds energy 

data into the system through IoT sensors. Energy consumption patterns emerge from readings taken at 15-minute 

intervals throughout each business day. The cloud-based system processes 50TB of operational data each month. This 

analysis revealed that morning startup routines drive energy use 40% above baseline levels. When the carbon accounting 

system calculated total annual emissions at 15,200 tCO₂e, data centers emerged as the primary contributor at 68%. The 

assessment also identified opportunities to reduce emissions by 35% through strategic interventions. Different user 

groups access customized dashboards suited to their responsibilities. Facility managers track real-time consumption 

while executives monitor strategic carbon reduction progress. Within 18 months, the bank reduced emissions by 22% 

and achieved significant operational cost savings. 

Governance Framework

User Interface Layer

Role-Specific Dashboards | Visualization Tools Decision Support interfaces | Mobile Access

Functional Modules Layer

Carbon Accounting Carbon Accounting Scenario Modeling
Compliance 

Management

Processing Infrastructure Layer

Cloud Computing Analytics Engines | Machine Learning | Simulation Tools | Database Systems 

Green Computing Optimization | Energy Efficiency Management

Data Acquisition Layer

Internal Data Sources (ERP, SCM. IoT)
External Data Sources (Requlations,  

Benchmarks)

Green Business Information Management System Framework

Data Flow Direction

 
Figure 1. Green business information management system framework 

2.2. Information System Carbon Footprint Assessment Method 

Considering the carbon footprint of an information system is critically important for developing a strategy towards 

carbon neutrality. Following Raja’s [12] and Dias & Arroja’s [22] work, this paper proposes a comprehensive approach 

for assessing the carbon emissions associated with business information management systems throughout their lifecycle. 

The information systems’ carbon footprints incorporate operating energy emissions as well as hardware, software, 

and end-of-life system disposal emission impacts throughout the system’s lifecycle. The energy consumed in the 

system’s operational phase mainly incurs direct emissions, while indirect emissions encompass carbon contained within 

the hardware components, emissions associated with software development, and debris disposal associated with the 

system at the end of its useful life. The outlined carbon footprint total for an information system can be expressed as: 

tot dir indCF CF CF          (1) 
where, 𝐶𝐹𝑑𝑖𝑟 represents direct operational emissions and 𝐶𝐹𝑖𝑛𝑑 represents indirect emissions throughout the system 

lifecycle. Direct emissions calculations are primarily done with the following formula: 

1

( )
n

dir i i

i

CF E EF


          (2) 

where, 𝐸𝑖 represents the energy consumption of component 𝑖 in kilowatt-hours (kWh), 𝐸𝐹𝑖 represents the emission factor 

for the relevant energy source in kgCO₂e/kWh, and n represents the number of system components. Carbon footprint 
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calculation methodologies follow established frameworks reviewed by Li et al. [23], with lifecycle inventory data 

sourced from the Ecoinvent database [24]. For server systems operating in a cloud environment, Uddin et al. [25] propose 

a revised formula that takes into account the server utilization rates: 

1

( )
m

cld j j j j

j

CF P U T EF


             (3) 

where, 𝑃𝑗 represents the power consumption of server 𝑗 at full utilization in kilowatts (kW), 𝑈𝑗 represents the utilization 

rate of server 𝑗 as a percentage, 𝑇𝑗 represents the operational time in hours, and 𝐸𝐹𝑗 represents the emission factor for 

the energy source powering server 𝑗 (kgCO₂e/kWh), and m denotes the total number of servers. To illustrate the 

application, consider a data center with 20 servers, each consuming 0.5 kW at 65% utilization rate. Operating 

continuously (8,760 hours annually) with a typical grid emission factor of 0.438 kgCO₂e/kWh, the calculation yields: 

𝐶𝐹𝑐𝑙𝑑= 20 × 0.5 × 0.65 × 8,760 × 0.438 = 24,940 kgCO₂e annually. Cloud migration scenarios typically improve 

utilization to 85% while reducing server count by 60%, potentially achieving 40% emission reduction. 

Indirect emissions are calculated using a lifecycle assessment approach: 

ind mfg trp dev dspCF CF CF CF CF                    (4) 

where, 𝐶𝐹𝑚𝑓g represents emissions from manufacturing, 𝐶𝐹𝑡𝑟𝑝 from transportation, 𝐶𝐹𝑑𝑒𝑣 from development processes, 

and 𝐶𝐹𝑑𝑠𝑝 from disposal activities. 

The carbon intensity related to information processing (𝐶𝐼𝑖𝑛𝑓) is an important benchmark to measure numerous 

systems used in managing information: 

tot

inf

prc

CF
CI

D
                 (5) 

where, 𝐶𝐹𝑡𝑜𝑡 represents the total carbon footprint calculated from Equation 1 measured in tCO₂e, and 𝐷𝑝𝑟𝑐 represents 

the volume of data processed during the assessment period in TB. The measure will allow companies to measure their 

carbon efficiency in their information systems and identify areas that need improvement. 

In order to account for temporal variations related to carbon impacts, we calculate the following time-weighted carbon 

footprint (𝐶𝐹𝑤g𝑡): 

1

( )
T

wgt t t

t

CF CF 


                 (6) 

where, 𝐶𝐹𝑡 represents the carbon footprint at time period t, 𝛿𝑡 represents the temporal weighting factor, and T represents 

the total number of time periods in the assessment. 

For comparative analysis between systems, a relative carbon efficiency index (CEI) is introduced: 

,

,

100
inf bl

inf cr

CI
CEI

CI
                 (7) 

where, 𝐶𝐼𝑖𝑛𝑓,𝑏𝑙 represents the carbon intensity of the baseline system and 𝐶𝐼𝑖𝑛𝑓,𝑐𝑟  represents the carbon intensity of the 

current system. A CEI above 100 suggests that there has been a positive change in carbon efficiency relative to the 

baseline.   

To aid in the implementation of carbon reduction strategies and guide governance decisions along with the scope of 

a digital transformation program, a MCRV is set which stands for Marginal Carbon Reduction Value: 

totCF
MCRV

Inv





               (8) 

where, Δ𝐶𝐹𝑡𝑜𝑡 represents the change in total carbon footprint and Δ𝐼𝑛𝑣 represents the incremental investment required 

for implementation. It permits businesses to prioritize actions aimed at reducing carbon emissions relative to investment 

made. 

This analytical structure aids firms in distinguishing significant carbon contributors within their information systems, 

establishing standard emission levels, and estimating the potential advantages of reducing carbon emissions for various 

options of digital transformation. This framework develops information management strategies that integrate emissions 

management within the context of organizational carbon neutrality goals by offering an integrated assessment of direct 

and indirect emissions, thus fostering intelligent decision-making during the digital transformation. 
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2.3. Digital Transformation Pathway Optimization Model 

Incorporating sustainability into business management models alongside other strategies requires purposeful 

strategizing to achieve carbon reduction while maintaining operational streamlining and financial health. Based on the 

studies by Yang et al. [26] and Zampou et al. [27], we propose an integrated multi-objective optimization model that 

enables firms to choose the most appropriate pathways for the transformations needed for organizations to achieve their 

carbon neutrality goals. 

These components of digital transformation optimization are defined by three core aspects: an organizational carbon 

footprint (C), an organizational level performance (P), and an implementation capability (F). The grand optimization 

function integrates carbon impact, business performance, and feasibility into one evaluation metric, enabling holistic 

pathway assessment rather than isolated optimization. The grand optimization function (Z) can be formulated as: 

max min min min

max min max min max min

C C P P F F
Z

C C P P F F
  
   

      
   

              (9) 

where, 𝛼, 𝛽, and 𝛾 refers to weights allocated to the carbon impact, business performance, and implementation 

feasibility, respectively, in addition to 𝛼 + 𝛽 + 𝛾 = 1. The variables 𝐶𝑚𝑖𝑛, 𝑃𝑚𝑖𝑛 , 𝐹𝑚𝑖𝑛, and 𝐶𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥, 𝐹𝑚𝑎𝑥 represent 

the minimum and maximum possible values for each dimension, enabling normalization across different measurement 

scales. Weight determination employs multi-criteria decision methods combining expert judgment through structured 

approaches with organizational benchmarks [28]. The method integrates qualitative assessments from stakeholders with 

quantitative performance metrics, allowing flexible calibration based on sectoral priorities and organizational contexts. 

The carbon impact dimension (C) is quantified using a composite index that incorporates both absolute carbon 

reduction potential and relative improvement efficiency: 

1 2

r
a

CF
C CF

I
 


                 (10) 

where, Δ𝐶𝐹𝑎 represents the absolute carbon footprint reduction (in tCO₂ e), Δ𝐶𝐹𝑟 represents the relative improvement 

percentage, I represents the required investment, and 𝜔1 and 𝜔2 are weighting factors with 𝜔1 + 𝜔2 = 1. 

The business performance dimension (P) is evaluated using a weighted combination of key performance indicators: 

1

n

i i

i

P w K


               (11) 

where, 𝐾𝑖 represents the normalized value of the i-th key performance indicator, 𝑤𝑖  represents the corresponding weight, 

and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

Following Yao et al. [29], the implementation feasibility dimension (F) incorporates technical readiness, 

organizational capability, and transition risk factors: 

1 2 3r c tF T O R                     (12) 

where, 𝑇𝑟 represents the technical readiness level, 𝑂𝑐 represents organizational capability, 𝑅𝑡 represents the transition 

risk factor, and 1 , 2 , and 3  are weighting coefficients with 1 2 3 1     . Simultaneous three-layer implementation 

faces barriers including resource constraints, system integration complexity, and organizational coordination challenges, 

necessitating the staged approach in Equation 14. 

The optimization model is subject to several constraints, including budgetary limitations, time constraints, and 

minimum performance requirements: 

1

1,2,...,max ( )

m

j j t

j

j m j j m

t

x C B

x T T

P P





 

 





              (13) 

where, 𝑥𝑗 is a binary decision variable indicating whether transformation option 𝑗 is selected (1) or not (0), 𝐶𝑗 and 𝑇𝑗 

represent the cost and implementation time for option 𝑗, 𝐵𝑡  represents the available budget, 𝑇𝑚 represents the maximum 

allowable implementation timeframe, and 𝑃𝑡 represents the minimum acceptable business performance level. 

Consider a hypothetical 5,000 tCO₂e enterprise comparing cloud migration versus infrastructure optimization. With 

weights α=β=0.4, γ=0.2, the model balances investment costs against emission reduction potential, demonstrating multi-

objective optimization dynamics. 
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The model employs a staged implementation approach, defining the transformation pathway as a sequence of 

implementation phases: 

1 2, ,..., kPath S S S               (14) 

where, Path represents the complete transformation pathway,
1 2, ,..., kS S S denote the sequential implementation stages 

from first to last, and k indicates the total number of stages.  

Each stage represents a distinct set of transformation initiatives to be implemented concurrently. The 

interdependencies between different initiatives are captured through precedence constraints: 

, ,

1 1

T T

i t j t

t t

t y t y
 

                  (15) 

where, 𝑦𝑖,𝑡 is a binary variable indicating whether initiative 𝑖 is implemented at time period t, and initiative j depends on 

the prior implementation of initiative 𝑖. 

To address the dynamic nature of digital transformation, the model incorporates an adaptive learning component that 

updates pathway parameters based on implementation feedback: 

1 ( )t t tZ                     (16) 

where, 𝜃𝑡 represents the model parameters at time 𝑡, 𝜂 represents the learning rate, and ∇𝑍(𝜃𝑡) represents the gradient 

of the objective function with respect to the parameters. The adaptive mechanism updates parameters iteratively based 

on implementation outcomes, with conservative learning rates preventing system instability while enabling gradual 

optimization. 

The optimization problem employs integer programming for project selection integrated with dynamic programming 

for execution sequencing. This unified approach enables organizations to implement phased transformation that 

maximizes carbon reduction while maintaining operational continuity, determining optimal execution sequences for 

achieving carbon neutrality. 

2.4. Data Collection and Analysis Process 

An all-encompassing green business information management system review requires a blended approach of carbon 

footprint accounting and operational performance metrics that is methodically grounded. This study integrates the 

frameworks proposed by Bhatia et al. [30] and He et al. [31] sequentially to devise an orderly multi-phase process for 

systematic evaluation of the environment’s impact from information systems and the most effective pathways for digital 

transformation. The process begins with set data collection that commences with listing system components ranging 

from hardware infrastructure to software packages, network equipment, and data centers. The data collection 

encompasses functional specifications and operational details for baseline configuration profile development. Following 

Mao et al.’s [32] work, this study employs a combined measurement approach involving direct instrumentation, 

simulation modelling, and analytical estimating to address the sophisticated high dimensionality of carbon impacts 

associated with information systems. Energy-use operational metering data for smart meters and power distribution units 

provide trend data for the server system’s energy consumption. System use trends are also monitored through employing 

performance monitoring tools that report process load, memory and network consumption. These primary data collection 

frameworks were supplemented with secondary data consisting of lifecycle emission factors, embodied carbon metrics, 

and requisite industry benchmarks for an all-inclusive analysis. 

Constructed Carbon Footprint Framework was figured out in section 2.2 and involves carbon footprint calculation 

algorithms that take into account the pre-processed data aimed at quality and consistency as presented in Figure 2. The 

analysis of carbon focuses on ensuring synergies with performance measurement and estimating operational efficiency 

recursively across several business processes for the purpose of generating optimized recommended solutions tailored 

to prioritized needs in view of achieving carbon neutrality goals within the entity. The entire process features closure 

that enables continuous enhancement operationalized through collection of routine data incrementally refining 

techniques aligned with emerging best practices which enables new best practices to be added to existing ones in a 

smooth and uncomplicated manner through refinement of concepts and techniques targeted analytical frameworks and 

concepts design steps make strategies formulated adaptable to changing technologies and innovative business needs. 

Such a rounded approach guarantees initiatives towards digital transformation are not only aimed at achieving carbon 

neutrality goals but also anticipate future technological changes and emerging needs of the business enabling shift 

responsive frameworks. 
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Carbon Intensity 
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Optimization Recommendations

Information System Carbon Footprint Assessment Process

 

Figure 2. Information system carbon footprint assessment process 

3. Results 

3.1. Carbon Emission Status Analysis of Business Information Management Systems 

Business Information management systems constitute a vital piece of the puzzle when it comes to assessing a firm’s 

environmental footprint, albeit an often overlooked one. A thorough assessment within frameworks of varying business 

geographies reveals sophisticated emission patterns that are highly dependent on the industry makeup, scale of 

production, and technologies in use. As Table 1 shows, financial services have the highest overall emissions (7,850 to 

12,400 tCO₂e per year) that mainly result from their large data centers, while tech companies have comparatively less 

emission intensity (74 to 125 kgCO₂e/TB) despite their high computational demands. Manufacturing enterprises 

generate moderate emission levels (4,200-8,600 tCO₂e) with operational technology systems constituting their primary 

emission source (52%). Technology companies achieve 68% reduction potential through cloud-native architectures 

eliminating legacy infrastructure dependencies, contrasting sharply with manufacturing's operational constraints and 

financial services' compliance-driven system rigidity. 

The research identifies a strong negative correlation (r = -0.73) between digital maturity indices and emission 

intensities, with organizations implementing comprehensive digital transformation initiatives achieving average 31% 

carbon footprint reductions over five-year periods. As illustrated in Figure 3, servers and computational infrastructure 

represent the dominant emission source in both on-premises (42%) and cloud-based deployments (38%), followed by 

storage systems (21% and 25% respectively), enabling targeted mitigation strategies. Deployment architecture 

significantly influences emissions, with cloud-based implementations demonstrating 27% lower carbon footprints 

through improved resource utilization and cooling efficiencies, though benefits vary (12%-41%) depending on regional 

energy characteristics. 

Lifecycle analysis indicates operational energy consumption accounts for 68% of total emissions, with 32% attributed 

to embodied carbon, emphasizing the importance of comprehensive lifecycle approaches. Temporal analysis identifies 

evolving emission patterns, with storage systems increasing their proportional contribution by 8.3 percentage points 

over the past decade while printing systems declined by 6.1 percentage points, reflecting transitions toward digital 

workflows and expanded analytics capabilities. As shown in Table 1, the digital maturity index serves as a critical 

indicator of organizational capability to implement carbon-efficient information management practices, with enterprises 

demonstrating higher digital maturity consistently exhibiting lower emission intensities across sectors, supporting digital 

transformation as a foundational pathway toward carbon neutrality. 
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Figure 3. Carbon emission distribution across information system components 

Table 1. Comparison of carbon emission characteristics across different enterprise information systems 

Enterprise 

Type 

Annual Carbon 

Emissions (tCO₂e) 

Emission Intensity 

(kgCO₂e/TB) 
Primary Emission Sources Energy Efficiency Measures 

Digital Maturity 

Index 

Financial 

Institutions 
7,850 - 12,400 152 - 275 

Data centers (65%), Client devices (18%), 

Network infrastructure (12%) 

Server virtualization, Dynamic 

cooling systems 
3.8/5.0 

Manufacturing 

Enterprises 
4,200 - 8,600 95 - 187 

OT systems (52%), Enterprise applications 

(28%), Client devices (15%) 

Equipment upgrades, Green 

procurement policies 
2.9/5.0 

Retail 

Organizations 
3,100 - 5,800 108 - 196 

Point of sale systems (32%), Data centers (29%), 

Network infrastructure (26%) 

Cloud migration, Energy 

management software 
3.2/5.0 

Technology 

Companies 
5,400 - 9,800 74 - 125 

Software development environments (42%), Data 

centers (37%), Testing infrastructure (18%) 

Renewable energy, Advanced 

cooling technologies 
4.6/5.0 

Healthcare 

Providers 
3,900 - 7,200 136 - 242 

Electronic health records (38%), Imaging systems 

(25%), Administrative systems (24%) 

Device consolidation, Smart 

building integration 
3.0/5.0 

Public Sector 

Agencies 
4,800 - 8,900 128 - 215 

Administrative systems (35%), Public service 

platforms (32%), Legacy systems (27%) 

Centralized IT services, 

Equipment lifecycle management 
2.5/5.0 

Note: Emission intensity is calculated as carbon emissions per terabyte of data processed; Digital Maturity Index evaluates the organizational adoption of digital technologies 

on a scale of 1.0 to 5.0 

3.2. Multi-Level Optimization Path of Green Business Information Management System 

3.2.1. Information Infrastructure Layer Optimization Paths 

Information infrastructure constitutes the foundation of business information management systems and represents a 

critical intervention point for carbon neutrality transformations. Comprehensive analysis reveals multiple optimization 

pathways with varying carbon reduction potentials and implementation complexities. Server consolidation and 

virtualization emerge as primary approaches, delivering carbon reductions of 25-38% through improved utilization rates 

and reduced hardware requirements, with organizations achieving average PUE improvements from 2.1 to 1.4. Storage 

optimization through tiered architectures demonstrates 18-23% energy efficiency improvements by aligning storage 

performance characteristics with data access patterns and retention requirements. 

Energy-efficient hardware procurement delivers consistent carbon reductions across organizational contexts. As 

illustrated in Figure 4(a), the carbon abatement potential of energy-efficient servers increases substantially with 

implementation scale, achieving 31-42% emissions reductions in enterprise-wide deployments compared to baseline 

scenarios. This non-linear relationship highlights the importance of comprehensive implementation approaches. 

Infrastructure refresh cycles significantly impact carbon reduction potential, with accelerated refresh strategies (3-4 

years) delivering 15-22% greater carbon reductions compared to extended cycles due to rapid evolution of energy 

efficiency technologies. 

Network infrastructure optimization through software-defined networking offers 12-18% efficiency improvements 

via dynamic resource allocation. As shown in Figure 4(b), SDN efficiency gains demonstrate strong sensitivity to 
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workload variability, with highly variable traffic patterns achieving substantially greater benefits. Cooling infrastructure 

optimization represents another critical pathway, with advanced technologies delivering 28-35% efficiency 

improvements, while liquid cooling systems demonstrate 45-60% improvements in high-density computing 

environments. Renewable energy integration constitutes a transformative pathway, with direct procurement enabling 

70-95% reductions in infrastructure carbon footprints, while on-site generation provides complementary benefits 

through improved resilience. As demonstrated in Figure 4, combined implementation of energy efficiency measures and 

renewable energy integration delivers carbon reduction potentials significantly exceeding those achieved through 

isolated interventions, underscoring the importance of holistic approaches addressing both supply-side and demand-side 

dimensions. The 32% embodied carbon component necessitates longer equipment retention periods, even when newer 

technologies offer superior efficiency. 

 

Figure 4. Information infrastructure, energy efficiency optimization and carbon reduction potential analysis 

3.2.2. Data Management Layer Optimization Paths 

The data management layer represents a critical intervention point for carbon neutrality initiatives within business 

information systems, offering substantial reduction potential through optimized storage, processing, and lifecycle 

management strategies. Data deduplication emerges as a foundational approach, with enterprise implementations 

achieving 27-38% storage reduction ratios and corresponding carbon emissions decreases of 21-29%. Organizations 

implementing comprehensive deduplication across primary storage, backup systems, and archives have demonstrated 

average electricity consumption reductions of 256-410 kWh per terabyte managed annually. Advanced deduplication 

technologies incorporating machine learning algorithms have further enhanced these benefits, achieving reduction ratios 

up to 45% in environments with highly repetitive data patterns. 

Data compression technologies offer complementary optimization opportunities, with context-adaptive compression 

algorithms demonstrating 18-31% storage efficiency improvements. As shown in Table 2, columnar compression 

techniques for analytical databases have delivered particularly impressive results, with carbon footprint reductions of 

24-36% achieved through reduced storage requirements and optimized I/O operations. The combination of deduplication 

and compression technologies demonstrates strong synergistic effects, with integrated implementations achieving 

carbon reductions 15-22% greater than the sum of individual interventions, highlighting the importance of coordinated 

optimization strategies. 

Data lifecycle management represents another critical pathway with significant carbon reduction potential. 

Automated tiering solutions that dynamically allocate data across performance and capacity tiers based on access 

patterns have demonstrated energy efficiency improvements of 32-45% compared to traditional approaches. As 

illustrated in Table 2, lifecycle management strategies have shown particularly strong carbon reduction potential in 

regulated industries with substantial compliance-driven data retention requirements. Distributed data architectures 

leverage geographic distribution to reduce both carbon emissions and latency, with edge data processing frameworks 

demonstrating transmission volume reductions of 65-82% compared to centralized approaches. The integration of data 

management optimization with broader carbon neutrality initiatives requires carefully planned implementation strategies 

aligned with organizational characteristics and priorities. As shown in Table 2, the selection of optimal pathways 

demonstrates significant sensitivity to factors including data growth rates, access patterns, regulatory requirements, and 

existing infrastructure characteristics. 
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Table 2. Data management optimization strategies and implementation matrix 

Optimization 

Strategy 

Carbon Reduction 

Potential 

Implementation 

Complexity 

Organizational 

Prerequisites 

Recommended 

Implementation Phases 
Primary Benefits 

Data Deduplication 21-29% Medium 
Data visibility, Storage 

management maturity 

Phase 1: Primary storage 

Phase 2: Backup systems 

Phase 3: Archives 

Storage reduction, Backup 

efficiency, Energy savings 

Advanced 

Compression 
18-31% Medium-High 

Workload performance analysis, 

Data classification 

Phase 1: Structured databases 

Phase 2: Unstructured content 

Phase 3: Real-time data 

Storage efficiency, I/O reduction, 

Processing optimization 

Information Lifecycle 

Management 
35-52% High 

Data governance framework, 

Retention policies, 

Classification schema 

Phase 1: Policy development 

Phase 2: Archive implementation 

Phase 3: Automated enforcement 

Regulatory compliance, Storage 

optimization, Process efficiency 

Automated Data 

Tiering 
32-45% Medium-High 

Access pattern analysis, 

Performance monitoring 

Phase 1: Static tiering 

Phase 2: Policy-based automation 

Phase 3: AI-driven optimization 

Cost optimization, Performance 

improvement, Energy efficiency 

Edge Data Processing 65-82%* High 
Distributed infrastructure, Edge 

capabilities 

Phase 1: Edge filtering 

Phase 2: Local analytics 

Phase 3: Autonomous operation 

Transmission reduction, Latency 

improvement, Bandwidth 

optimization 

Database Architecture 

Optimization 
35-48% High 

Database expertise, Workload 

analysis 

Phase 1: Query optimization 

Phase 2: Indexing strategies 

Phase 3: Database refactoring 

Processing efficiency, Response 

time, Resource utilization 

Data Locality 

Strategies 
18-29% Medium 

Workload distribution analysis, 

Geographic data mapping 

Phase 1: Access pattern analysis 

Phase 2: Geographic replication 

Phase 3: Dynamic optimization 

Processing efficiency, 

Transmission reduction, Latency 

improvement 

* Note: Reduction in data transmission volume rather than direct carbon footprint; overall carbon impact depends on network infrastructure characteristics and regional 

energy mix. 

3.2.3. Business Application Layer Optimization Paths 

The business application layer presents significant opportunities for carbon reduction through targeted optimization 

strategies that enhance both operational efficiency and environmental performance. Analysis reveals inefficient 

application architectures can contribute up to 35% of total information system emissions, underscoring the critical 

importance of application optimization in carbon neutrality initiatives. Application consolidation emerges as a primary 

optimization pathway, with comprehensive rationalization strategies achieving carbon footprint reductions of 28-42% 

through eliminated redundancies and improved resource utilization. As shown in Figure 5(a), carbon reduction potential 

demonstrates a non-linear relationship with consolidation ratio, with initial efforts yielding substantial benefits while 

marginal returns diminish as optimization progresses. Enterprise application integration frameworks have demonstrated 

additional carbon reductions of 15-22% by eliminating energy-intensive data transformation and synchronization 

processes. 

The migration from monolithic to microservice architectures enables a business application optimization leap, 

offering a carbon efficiency improvement of 31% to 47%. Enhanced deployment flexibility, improved scalability, 

accuracy in resource allocation, and application component containerization are some reasons cited for this claim. The 

growing popularity of containerization has also provided these organizations an additional 18% to 26% efficiency due 

to reduced overheads and better resource utilization. As demonstrated in Figure 5(b), such design modifications have a 

remarkable potential for dynamic carbon reduction that can dramatically change depending on business context, 

workload fluctuation, and evolving needs verticals. 

In the case of output energy, application code optimization can translate to an improvement of 22-35% because of 

more streamlined processing and minimizing computational waste. Static code analysis tools allow mitigation of 

targeted carbon output just-in-time during business operations. Transfiguration of Cloud-native applications provides 

the most comprehensive optimization pathway since such architecture transforms result in enhanced resource use, 

automation in scaling, and deployment of low carbon emitting infrastructure—leading to a 35-48% reduction in carbon 

footprint. The carbon-neutrality-oriented model for application disassembly and reconstitution sheds light on conquering 

optimization challenges while correlating Figure 5 posed to framework agility-contraction architecture-building 

complexity and carbon efficiency. The findings show that structural simplification leads to average emission reduction 

of 28 to 39% without compromising on functionalities. 
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Figure 5. Carbon footprint-based application reconstruction model 

3.3. Green Digital Transformation Path Benefit Assessment 

The approaches to achieving green digital transformation add value in several aspects including ecological, economic, 
and operational, thereby through systematic undertaking strategies yielding substantial rewards to firms. Cross-sector 
assessments indicate that there is considerable impact from transformation efforts; on average, there is a 42.6% reduction 

in emissions. In tech companies, as shown in Figure 6(a), they lead the pack for reduction capability with an astonishing 
68%, followed by financial institutions at 53%, and manufacturing enterprises at 41%. Temporal analysis identifies non-
linear benefit accumulation patterns, with initial implementation phases delivering 15-20% reductions, while subsequent 
optimization stages achieve 35-45% incremental gains through synergistic integration. These environmental 
improvements strongly correlate with digital maturity indices (r=0.78), reinforcing the relationship between 
technological sophistication and carbon efficiency. 

Economic assessment validates the business case for transformation initiatives, with programs delivering average 
ROI values of 132-278% over five-year periods. As detailed in Table 3, financial performance varies by sector, with 

payback periods ranging from 14 months in technology companies to 36 months in manufacturing enterprises. 
Operational expenditure reductions constitute the primary economic benefit (52%), complemented by enhanced resource 
utilization (27%) and infrastructure optimization (21%). Enterprise-wide implementations demonstrate 35% higher ROI 
compared to departmental initiatives, with 83% of assessed projects achieving positive risk-adjusted NPV under 
conservative scenarios, establishing the financial viability of comprehensive transformation approaches. These ROI 
calculations derive from cross-industry medians without accounting for regional variation. Local electricity markets, 

carbon policies, and infrastructure maturity significantly influence actual returns. 

As illustrated in Figure 6(b), transformation initiatives generate substantial operational and strategic benefits beyond 

environmental improvements, including significant enhancements in system availability (28%), processing efficiency 
(43%), and infrastructure scalability (52%). Critical success factor analysis identifies organizational elements essential 
for effective implementation, with leadership commitment emerging as the primary determinant (correlation coefficient 
0.74), followed by business strategy integration (0.68) and dedicated resources (0.62). The comprehensive assessment 
framework demonstrated in Figure 6 and detailed in Table 3 provides organizations with structured methodologies for 
evaluating transformation initiatives, underscoring the importance of holistic approaches that integrate carbon neutrality 

considerations with broader business value creation strategies. 

Table 3. Green digital transformation project return on investment analysis 

Industry 

Sector 

Project  

Scale 

Implementation 

Duration 

Investment 

(USD) 

Annual Carbon 

Reduction (tCO₂e) 

5-Year 

ROI 

Payback Period 

(months) 
Primary Value Drivers 

Technology Enterprise 24 months $1,850,000 4,250 278% 14 
Energy cost reduction (42%), Operational efficiency 

(35%), Infrastructure optimization (23%) 

Financial 
Services 

Divisional 30 months $2,650,000 5,700 215% 18 
Compliance benefits (38%), Energy cost reduction 

(31%), Resource optimization (21%) 

Manufacturing Enterprise 36 months $3,200,000 6,800 167% 26 
Resource optimization (44%), Process efficiency 

(32%), Energy cost reduction (24%) 

Healthcare Departmental 18 months $950,000 1,850 132% 22 
Operational resilience (38%), Compliance benefits 

(33%), Energy cost reduction (29%) 

Retail Enterprise 28 months $2,100,000 3,900 196% 20 
Infrastructure optimization (41%), Energy cost 

reduction (36%), Customer experience (23%) 

Public Sector Divisional 32 months $1,750,000 2,950 145% 36 
Compliance benefits (47%), Resource optimization 

(32%), Energy cost reduction (21%) 
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Figure 6. Green Digital transformation comprehensive benefit assessment 

4. Discussion 

The development of green information technology presents huge opportunities for organizations in their efforts to 

achieve carbon neutrality targets. As per the vast body of research carried out by Shang & Lv [33], adoption of green 

technologies in management systems that manage data presents huge potential, thus allowing data-based decision-

making that maximizes resource allocation while minimizing ecological footprints. The deployment of digital platforms 

in carbon management has synergistic advantages that improve operational efficiency as well as environmental 

performance. Information systems have an important role to play by providing analytical tools that help in measuring, 

monitoring, and minimizing carbon emissions in organizational settings, effectively influencing the way firms define 

and pursue sustainability targets in their digital platforms. Our findings demonstrate this potential, with 42.6% emission 

reduction substantially exceeding the 15-25% range reported by Gholami et al. [14], reflecting advances in cloud 

adoption and measurement methodologies since 2013. 

Data governance is known to play an important role in facilitating sustainable management practice. Sheng et al. [34] 

explore the role of digital transformation in managing low-carbon operations, noting that advances in organizational 

performance depend in large measure on efficient data governance models. Such models clearly define data acquisition, 

data assurance, and analytical processing rules, thus enabling carbon-based decision-making. Organizations with 

complete data governance approaches have more capabilities for emissions monitoring, compliance with regulations, 

and making sustainability reports, with data governance process advancements positively associated with carbon 

management effectiveness. This suggests that data accuracy, in this case, acts as a fundamental driver of environmental 

performance for firms undergoing digital transformation, thereby requiring sophisticated data management practices as 

a tactical prerequisite to achieving carbon neutrality. 

Controlling the lifecycle of carbon-emission-related IT systems requires holistic coverage of emissions during the 

design, deployment, operational, and dismantling phases. Liu et al. [35] propose models tailored to carbon assets in 

digital decision-support systems that aid firms in calculating the ecological footprint of their IT investments throughout 

all business process cycles. This perspective reveals numerous opportunities for maximizing system architecture, 

deployment techniques, and operational processes. Notably, cloud-based architectures have shown considerable 

potential in reducing lifecycle emissions by streamlining resource allocation and enhancing energy efficiency. 

Furthermore, dynamic workload management techniques add to such benefits by optimizing computational resources to 

match available computational demands, minimizing idle capacity, as well as unnecessary energy consumption. 

However, efficiency improvements often trigger consumption increases that partially erode anticipated gains, while 

accelerated refresh cycles generate substantial embodied emissions and e-waste.   

The development of green information management capabilities requires considerable investment in both 

technological infrastructure and human expertise. Jagger et al. [36] recognize skills challenges as key barriers to 

delivering low-carbon transitions, referring to the need to create specialist expertise that encompasses technical 

competencies such as energy-efficient system design and carbon analytics, as well as managerial competencies such as 

sustainability governance, stakeholder management, and stakeholder relations. The challenges that arise from efforts to 

implement carbon-neutral information management are complex mitigation strategies that address technical and 

organizational problems. Kannan et al. [37] analyze the implementation barriers, observing that information asymmetry 

and technological complexity materialize as key challenges, manifesting in turn as challenges related to emissions 

measurement, data integration across organizations, and deploying carbon-aware technologies. Mitigating these 
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challenges requires solutions that cover technological advancements, organizational change management techniques, 

and strategic investments on the part of management to achieve a smooth transition to carbon-neutral information 

management systems. Looking ahead, emerging technologies offer promising pathways, with machine learning enabling 

dynamic energy optimization, blockchain providing transparent carbon tracking, and IoT infrastructure supporting 

granular emissions monitoring. These implementations require careful assessment of computational overhead relative 

to emission benefits. 

5. Conclusion 

This study creates an integrated framework to improve digital transformation trajectories in carbon-neutral green 

business information management systems. By systematic comparison of carbon footprints related to information 

systems in varying enterprise settings, this research establishes unique emission patterns that demonstrate high 

variability across differing sectors, operational sizes, and tech architectures. The finding of high-level negative 

correlation (r = -0.73) between digital maturity scores and intensity levels reveals that organizations that effectively 

execute digital transformation projects experience high carbon reduction rates, averaging 31% over five years. The 

developed process for optimized digital transformation in three tiers covers levels related to information infrastructure, 

data administration, and business application, allowing organizations to realize an average emission reduction of 42.6% 

due to overall transformation efforts, with tech companies realizing greatest reduction rates at 68%. Economic validation 

supports business value extracted from transformation efforts by showcasing average measures for return on investment 

(ROI) scores varying from 132% to 278% over five years. This research contributes to practice-based theory in 

information management by linking technological structure to ecological performance, thereby enhancing decision-

support models for green digital transformation. The proposed quantification approach enables efficient measurement 

of operations-related as well as lifecycle-related emissions, creating necessary baselines for intervention, while 

implementation matrices offer domain-specific recommendations, enabling executable approaches to reducing carbon 

footprints while maintaining operations efficiency as well as business competitiveness. However, implementations must 

address challenges including rebound effects and embodied carbon from equipment refresh cycles. Future research 

should explore integration of emerging technologies such as machine learning, blockchain, and IoT while assessing their 

computational overhead against emission reduction benefits. 
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