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Abstract

This research develops a comprehensive framework for optimizing green business information management systems to
achieve carbon neutrality goals through digital transformation. The study conducted cross-sector carbon footprint
assessments of information systems across six industries, analyzing emission patterns based on operational scales, industry
characteristics, and technological architectures. A multi-tiered optimization model was developed targeting infrastructure,
data management, and application layers, validated through empirical data from enterprises undergoing digital
transformation. Results reveal a strong negative correlation (r = -0.73) between digital maturity indices and emission
intensity, with organizations implementing comprehensive digital transformation achieving average carbon reductions of
31% over five years. The proposed multi-tiered optimization approach enabled 42.6% emission reductions, with
technology companies achieving 68% reductions. Economic analysis demonstrates return on investment ranging from 132-
278% over five-year periods, with payback periods of 14-36 months. This study advances information management theory
by integrating technological architecture with environmental performance governance, providing quantifiable carbon
assessment methodologies across system layers and practical implementation matrices for industry-specific applications.
The framework enables organizations to balance carbon reduction objectives with operational efficiency, addressing the
critical gap between theoretical potential and practical implementation in carbon-neutral transformations.

Keywords: Green Information Management Systems; Carbon Neutrality; Digital Transformation; Sustainability Optimization.

1. Introduction

The global pursuit of carbon neutrality has emerged as a crucial response to the deteriorating environmental issues
that affect almost all business sectors [1]. Information management technologies have been viewed as systems that not
only streamline business activities but also significantly influence the carbon footprint of the business in terms of energy
consumption and resource utilization [2]. Recently, there has been increased attention directed towards the
environmental impacts of information systems, prompting scholars to develop more digitally friendly approaches to
transformations aimed at supporting systemic carbon neutrality objectives for environmental goals [3]. The integration
of green practices within information management alongside digital transformation presents significant opportunities
for enhancing operational efficiency and performance for businesses in a carbon-constrained environment [4].

Recent advances in digital transformation for carbon neutrality reveal both progress and gaps. Han et al. [5]
demonstrated digital platforms' role in carbon neutral innovation varies by region. Zhang et al. [6] confirmed circular
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economy and digitalization drive decarbonization in G7 countries. Han et al. [7] identified external pressure as a key
moderator in digital transformation's carbon impact. Pourhejazy et al. [8] noted current supply chain initiatives lack
comprehensive approaches. However, these studies focus on macro-level impacts without providing systematic
optimization frameworks for business information systems. Actionable methodologies for multi-layered carbon
reduction while maintaining operational efficiency remain absent. This research gap is particularly critical as
organizations face increasing pressure to achieve carbon neutrality while maintaining competitiveness.

These goals have induced remarkable operational and technological changes across various fields, which require a
complete change in management and information systems [9]. The shift to net-zero carbon emissions requires complex
carbon accounting, monitoring, and optimization along with minimal self-inflicted environmental damage from the
information systems [10]. Information systems are required by organizations to facilitate automated resource scheduling,
energy savings, and emissions tracking in sophisticated organizational systems [11]. Supporting these systems is vital
due to the 2-3% contribution the IT industry makes to global carbon emissions, as showcased by Raja’s study that IT
companies need to adopt greener computing within their digital infrastructures [12].

Digital transformation initiatives establish primary competencies which enable achieving carbon neutrality targets
through improved data infrastructure, data collection, analytics, and decision support systems [13]. With the
implementation of green information systems, companies have recorded considerably enhanced environmental
performance, including average emissions reductions ranging from 15% to 25% in diverse operational contexts [14].
The evolution of green information technologies has created unprecedented opportunities for the integration of
sustainability into core business functions by employing sophisticated monitoring, predictive analytics, and automated
optimization [15]. While these systems show operational benefits, critical gaps remain. Literature lacks quantitative
methodologies for carbon footprint assessment across system layers and optimization frameworks balancing
environmental with operational objectives. Organizations need practical implementation guidance to maximize carbon
reduction. This disconnect between theoretical potential and practical application limits transformation effectiveness.
The synergy of geographic information systems and lifecycle assessment techniques allows exhaustive carbon footprint
analysis across value chains, supporting the creation of economically and environmentally beneficial performance
strategies [16].

Carbon-neutral policies are increasingly acknowledging, as discussed in Wei et al. [17], that information systems
serve as critical facilitators for transforming businesses into low- and carbon-emitting entities. An information
architecture capable of sophisticated sustainability data processing requires advanced silos for strategic and operational
decision-making at organizational ecosystems at carbon neutrality [18]. Research conducted on managing low carbon
emissions in supply chains emphasizes the remarkable advantages of integrated information systems in several
physically dispersed organizations networks mapped or scoped to implement and coordinate sustainability activities
[19]. Such systems assist in the real-time monitoring of emissions, refinement of compliance management to expedite
compliance processes, and the management of business operations towards carbon emission reduction targets.

This study develops an integrated optimization framework addressing these gaps through quantitative assessment
methods and progressive implementation pathways across infrastructure, data management, and application layers. Our
multi-tiered approach enables organizations to achieve measurable carbon reductions while enhancing operational
performance. Section 2 presents methodology including system framework, carbon assessment, and optimization
models. Section 3 reports cross-sector empirical results. Section 4 discusses implications. Section 5 concludes.

2. Design and Methodology
2.1. Green Business Information Management System Framework Design

This work proposes a novel approach to the green business information systems management by incorporating an
element of environmental sustainability alongside advanced information technology frameworks. Following the
foundational work of Sarkis et al. [10], the framework includes four layers nested within an overarching governance
model that aligns with organizational sustainability goals and compliance obligations. Figure 1 depicts the data
acquisition layer that harvests internal data from enterprise subsystems associated with monitoring energy, materials,
and processes, as well as external data from regulatory databases and environmental monitoring systems. The processing
infrastructure layer leverages cloud computing to implement big data technologies, analytics engines, machine learning
models, and visualization methods that present carbon-related information in decision-useful formats, as emphasized by
Guan et al. [20]. This cloud-based approach reduces the system's overall carbon footprint by optimizing resource
utilization and eliminating redundant on-premises infrastructure. The modules layer encompasses carbon accounting
and emission tracking across Scopes 1-3, while the user interface layer provides stakeholder-specific dashboards for
decision-making at all organizational levels. These resources operate dynamically to support effective carbon
management across diverse operational scenarios. As Dalene [21] notes, such adaptive information management
capabilities are crucial for maintaining optimal environmental performance in complex organizational environments.

1419



HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

This multi-level system sits within a governance structure that polices carbon management across the company,
allowing corporations to control, study, and enhance their operational carbon flows while still being agile and
competitive during the shift to carbon neutrality. To demonstrate the practical application of this framework, we examine
its implementation in a real-world financial services context. The bank's branch network of 2,500 locations feeds energy
data into the system through IoT sensors. Energy consumption patterns emerge from readings taken at 15-minute
intervals throughout each business day. The cloud-based system processes SOTB of operational data each month. This
analysis revealed that morning startup routines drive energy use 40% above baseline levels. When the carbon accounting
system calculated total annual emissions at 15,200 tCO,e, data centers emerged as the primary contributor at 68%. The
assessment also identified opportunities to reduce emissions by 35% through strategic interventions. Different user
groups access customized dashboards suited to their responsibilities. Facility managers track real-time consumption
while executives monitor strategic carbon reduction progress. Within 18 months, the bank reduced emissions by 22%
and achieved significant operational cost savings.

Green Business Information Management System Framework

Governance Framework

User Interface Layer
Role-Specific Dashboards | Visualization Tools Decision Support interfaces | Mobile Access

L
Functional Modules Layer
Carbon Accounting Carbon Accounting Scenario Modeling Compliance
Management
L

Processing Infrastructure Layer

Cloud Computing Analytics Engines | Machine Learning | Simulation Tools | Database Systems
Green Computing Optimization | Energy Efficiency Management

v

Data Acquisition Layer

External Data Sources (Requlations,
Benchmarks)

—ﬁ Data Flow Direction

Figure 1. Green business information management system framework

Internal Data Sources (ERP, SCM. loT)

2.2. Information System Carbon Footprint Assessment Method

Considering the carbon footprint of an information system is critically important for developing a strategy towards
carbon neutrality. Following Raja’s [12] and Dias & Arroja’s [22] work, this paper proposes a comprehensive approach
for assessing the carbon emissions associated with business information management systems throughout their lifecycle.

The information systems’ carbon footprints incorporate operating energy emissions as well as hardware, software,
and end-of-life system disposal emission impacts throughout the system’s lifecycle. The energy consumed in the
system’s operational phase mainly incurs direct emissions, while indirect emissions encompass carbon contained within
the hardware components, emissions associated with software development, and debris disposal associated with the
system at the end of its useful life. The outlined carbon footprint total for an information system can be expressed as:

CFtot = CI:dir +CFind

1)
where, CF,;, represents direct operational emissions and CF;,,, represents indirect emissions throughout the system
lifecycle. Direct emissions calculations are primarily done with the following formula:

CF, = 3 (E xEF) @)

i=1

where, E; represents the energy consumption of component i in kilowatt-hours (kWh), EF; represents the emission factor
for the relevant energy source in kgCO,e/kWh, and n represents the number of system components. Carbon footprint

1420



HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

calculation methodologies follow established frameworks reviewed by Li et al. [23], with lifecycle inventory data
sourced from the Ecoinvent database [24]. For server systems operating in a cloud environment, Uddin et al. [25] propose
a revised formula that takes into account the server utilization rates:

CF,y =Y (P, xU, xT, xEF,) 3

=1

where, P; represents the power consumption of server j at full utilization in kilowatts (kW), U; represents the utilization
rate of server j as a percentage, T; represents the operational time in hours, and EF; represents the emission factor for
the energy source powering server j (kgCO,e/kWh), and m denotes the total number of servers. To illustrate the
application, consider a data center with 20 servers, each consuming 0.5 kW at 65% utilization rate. Operating
continuously (8,760 hours annually) with a typical grid emission factor of 0.438 kgCO ,e/kWh, the calculation yields:
CF.,4= 20 x 0.5 x 0.65 x 8,760 x 0.438 = 24,940 kgCO,e annually. Cloud migration scenarios typically improve
utilization to 85% while reducing server count by 60%, potentially achieving 40% emission reduction.

Indirect emissions are calculated using a lifecycle assessment approach:

CF.4 :CFmfg +CF_ +CF +CFdsp 4

trp dev

where, CFy, ¢ represents emissions from manufacturing, CFy,,, from transportation, € Fg,,, from development processes,
and CFg, from disposal activities.

The carbon intensity related to information processing (Clinf) is an important benchmark to measure numerous
systems used in managing information:
_ CF,

Cly = 2% 6)

prc
where, CF,, represents the total carbon footprint calculated from Equation 1 measured in tCOze, and Dy, represents
the volume of data processed during the assessment period in TB. The measure will allow companies to measure their
carbon efficiency in their information systems and identify areas that need improvement.

In order to account for temporal variations related to carbon impacts, we calculate the following time-weighted carbon
footprint (CFyg;):

T

CFq = 2 (CF x4,) (6)

t=1

where, CF; represents the carbon footprint at time period ¢, §; represents the temporal weighting factor, and 7 represents
the total number of time periods in the assessment.

For comparative analysis between systems, a relative carbon efficiency index (CEJ) is introduced:

CIinf bl
CEl =—" «100 7

inf ,cr

where, Cli, ¢, Tepresents the carbon intensity of the baseline system and Clipf o represents the carbon intensity of the
current system. A CEI above 100 suggests that there has been a positive change in carbon efficiency relative to the
baseline.

To aid in the implementation of carbon reduction strategies and guide governance decisions along with the scope of

a digital transformation program, a MCRYV is set which stands for Marginal Carbon Reduction Value:
ACF,
MCRV = —— ®)
Alnv

where, ACF,,; represents the change in total carbon footprint and AInv represents the incremental investment required
for implementation. It permits businesses to prioritize actions aimed at reducing carbon emissions relative to investment
made.

This analytical structure aids firms in distinguishing significant carbon contributors within their information systems,
establishing standard emission levels, and estimating the potential advantages of reducing carbon emissions for various
options of digital transformation. This framework develops information management strategies that integrate emissions
management within the context of organizational carbon neutrality goals by offering an integrated assessment of direct
and indirect emissions, thus fostering intelligent decision-making during the digital transformation.
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2.3. Digital Transformation Pathway Optimization Model

Incorporating sustainability into business management models alongside other strategies requires purposeful
strategizing to achieve carbon reduction while maintaining operational streamlining and financial health. Based on the
studies by Yang et al. [26] and Zampou et al. [27], we propose an integrated multi-objective optimization model that
enables firms to choose the most appropriate pathways for the transformations needed for organizations to achieve their
carbon neutrality goals.

These components of digital transformation optimization are defined by three core aspects: an organizational carbon
footprint (C), an organizational level performance (P), and an implementation capability (F). The grand optimization
function integrates carbon impact, business performance, and feasibility into one evaluation metric, enabling holistic
pathway assessment rather than isolated optimization. The grand optimization function (Z) can be formulated as:

c-cC, P-P, F-F,
Z =max| ax 4+ Bx min x min 9
( max _Cmin ﬂ Pmax - Pmin g Fmax - I:min ) ( )

where, a, B, and y refers to weights allocated to the carbon impact, business performance, and implementation
feasibility, respectively, in additionto « + § + y = 1. The variables Cp,in, Pmin» Fmin: @4 Craxs Brax Fnax represent
the minimum and maximum possible values for each dimension, enabling normalization across different measurement
scales. Weight determination employs multi-criteria decision methods combining expert judgment through structured
approaches with organizational benchmarks [28]. The method integrates qualitative assessments from stakeholders with
quantitative performance metrics, allowing flexible calibration based on sectoral priorities and organizational contexts.

The carbon impact dimension (C) is quantified using a composite index that incorporates both absolute carbon
reduction potential and relative improvement efficiency:

C =, xACF, + @, x ACI;Fr (10)

where, ACF, represents the absolute carbon footprint reduction (in tCO, e), ACE, represents the relative improvement
percentage, | represents the required investment, and w; and w, are weighting factors with w; + w, = 1.

The business performance dimension (P) is evaluated using a weighted combination of key performance indicators:
P= Z\Ni x K, (11)
i=1

where, K; represents the normalized value of the i-th key performance indicator, w; represents the corresponding weight,
and by w; = 1.

Following Yao et al. [29], the implementation feasibility dimension (F) incorporates technical readiness,
organizational capability, and transition risk factors:
F=06,xT, +0,x0,-5,xR, (12)
where, T, represents the technical readiness level, O, represents organizational capability, R, represents the transition
risk factor, and ¢,, J,,and ¢, are weighting coefficients with &, + &, + J, =1. Simultaneous three-layer implementation
faces barriers including resource constraints, system integration complexity, and organizational coordination challenges,
necessitating the staged approach in Equation 14.

The optimization model is subject to several constraints, including budgetary limitations, time constraints, and
minimum performance requirements:

ixjxcj <B,

j=1

maX; ., »(xT;)<T, (13)
P>P

where, x; is a binary decision variable indicating whether transformation option j is selected (1) or not (0), C; and T;

represent the cost and implementation time for option j, B, represents the available budget, T,, represents the maximum
allowable implementation timeframe, and P, represents the minimum acceptable business performance level.

Consider a hypothetical 5,000 tCO,e enterprise comparing cloud migration versus infrastructure optimization. With
weights 0==0.4, y=0.2, the model balances investment costs against emission reduction potential, demonstrating multi-
objective optimization dynamics.
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The model employs a staged implementation approach, defining the transformation pathway as a sequence of
implementation phases:

Path=S,,S,,...,S, (14)

where, Path represents the complete transformation pathway, S,,S,,...,S, denote the sequential implementation stages
from first to last, and k indicates the total number of stages.

Each stage represents a distinct set of transformation initiatives to be implemented concurrently. The
interdependencies between different initiatives are captured through precedence constraints:

T T
th Vi Sthyj" (15)
t=1 t=1

where, y; . is a binary variable indicating whether initiative i is implemented at time period t, and initiative j depends on
the prior implementation of initiative i.

To address the dynamic nature of digital transformation, the model incorporates an adaptive learning component that
updates pathway parameters based on implementation feedback:

0.,=6,+7xVZ(8) (16)

where, 6, represents the model parameters at time t, n represents the learning rate, and VZ(8,) represents the gradient
of the objective function with respect to the parameters. The adaptive mechanism updates parameters iteratively based
on implementation outcomes, with conservative learning rates preventing system instability while enabling gradual
optimization.

The optimization problem employs integer programming for project selection integrated with dynamic programming
for execution sequencing. This unified approach enables organizations to implement phased transformation that
maximizes carbon reduction while maintaining operational continuity, determining optimal execution sequences for
achieving carbon neutrality.

2.4. Data Collection and Analysis Process

An all-encompassing green business information management system review requires a blended approach of carbon
footprint accounting and operational performance metrics that is methodically grounded. This study integrates the
frameworks proposed by Bhatia et al. [30] and He et al. [31] sequentially to devise an orderly multi-phase process for
systematic evaluation of the environment’s impact from information systems and the most effective pathways for digital
transformation. The process begins with set data collection that commences with listing system components ranging
from hardware infrastructure to software packages, network equipment, and data centers. The data collection
encompasses functional specifications and operational details for baseline configuration profile development. Following
Mao et al.’s [32] work, this study employs a combined measurement approach involving direct instrumentation,
simulation modelling, and analytical estimating to address the sophisticated high dimensionality of carbon impacts
associated with information systems. Energy-use operational metering data for smart meters and power distribution units
provide trend data for the server system’s energy consumption. System use trends are also monitored through employing
performance monitoring tools that report process load, memory and network consumption. These primary data collection
frameworks were supplemented with secondary data consisting of lifecycle emission factors, embodied carbon metrics,
and requisite industry benchmarks for an all-inclusive analysis.

Constructed Carbon Footprint Framework was figured out in section 2.2 and involves carbon footprint calculation
algorithms that take into account the pre-processed data aimed at quality and consistency as presented in Figure 2. The
analysis of carbon focuses on ensuring synergies with performance measurement and estimating operational efficiency
recursively across several business processes for the purpose of generating optimized recommended solutions tailored
to prioritized needs in view of achieving carbon neutrality goals within the entity. The entire process features closure
that enables continuous enhancement operationalized through collection of routine data incrementally refining
techniques aligned with emerging best practices which enables new best practices to be added to existing ones in a
smooth and uncomplicated manner through refinement of concepts and techniques targeted analytical frameworks and
concepts design steps make strategies formulated adaptable to changing technologies and innovative business needs.
Such a rounded approach guarantees initiatives towards digital transformation are not only aimed at achieving carbon
neutrality goals but also anticipate future technological changes and emerging needs of the business enabling shift
responsive frameworks.
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Information System Carbon Footprint Assessment Process

Phase 1: Data Collection

Hardware Inventory

Energy Consumption

System Ultilization

Emission Factors

Data Metrics
: ~N
4 Phase 2: Data Processing
Data Normalization Outlier Detection Missing \(alue Data Integration
Imputation
\ =/
. N
4 Phase 3: Carbon Footprint Analysis
Direct Emissions Indirect Emissions Carbon Intensity Performance
Calculation Calculation Metrics Benchmarking
\ =/

!
[ Optimization Recommendations }

Figure 2. Information system carbon footprint assessment process

3. Results
3.1. Carbon Emission Status Analysis of Business Information Management Systems

Business Information management systems constitute a vital piece of the puzzle when it comes to assessing a firm’s
environmental footprint, albeit an often overlooked one. A thorough assessment within frameworks of varying business
geographies reveals sophisticated emission patterns that are highly dependent on the industry makeup, scale of
production, and technologies in use. As Table 1 shows, financial services have the highest overall emissions (7,850 to
12,400 tCOye per year) that mainly result from their large data centers, while tech companies have comparatively less
emission intensity (74 to 125 kgCO.e/TB) despite their high computational demands. Manufacturing enterprises
generate moderate emission levels (4,200-8,600 tCO,e) with operational technology systems constituting their primary
emission source (52%). Technology companies achieve 68% reduction potential through cloud-native architectures
eliminating legacy infrastructure dependencies, contrasting sharply with manufacturing's operational constraints and
financial services' compliance-driven system rigidity.

The research identifies a strong negative correlation (r = -0.73) between digital maturity indices and emission
intensities, with organizations implementing comprehensive digital transformation initiatives achieving average 31%
carbon footprint reductions over five-year periods. As illustrated in Figure 3, servers and computational infrastructure
represent the dominant emission source in both on-premises (42%) and cloud-based deployments (38%), followed by
storage systems (21% and 25% respectively), enabling targeted mitigation strategies. Deployment architecture
significantly influences emissions, with cloud-based implementations demonstrating 27% lower carbon footprints
through improved resource utilization and cooling efficiencies, though benefits vary (12%-41%) depending on regional
energy characteristics.

Lifecycle analysis indicates operational energy consumption accounts for 68% of total emissions, with 32% attributed
to embodied carbon, emphasizing the importance of comprehensive lifecycle approaches. Temporal analysis identifies
evolving emission patterns, with storage systems increasing their proportional contribution by 8.3 percentage points
over the past decade while printing systems declined by 6.1 percentage points, reflecting transitions toward digital
workflows and expanded analytics capabilities. As shown in Table 1, the digital maturity index serves as a critical
indicator of organizational capability to implement carbon-efficient information management practices, with enterprises
demonstrating higher digital maturity consistently exhibiting lower emission intensities across sectors, supporting digital
transformation as a foundational pathway toward carbon neutrality.
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(a) On-Premises Systems (b) Cloud-Based Systems
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Figure 3. Carbon emission distribution across information system components

Table 1. Comparison of carbon emission characteristics across different enterprise information systems
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Note: Emission intensity is calculated as carbon emissions per terabyte of data processed; Digital Maturity Index evaluates the organizational adoption of digital technologies
on a scale of 1.0 to 5.0

3.2. Multi-Level Optimization Path of Green Business Information Management System
3.2.1. Information Infrastructure Layer Optimization Paths

Information infrastructure constitutes the foundation of business information management systems and represents a
critical intervention point for carbon neutrality transformations. Comprehensive analysis reveals multiple optimization
pathways with varying carbon reduction potentials and implementation complexities. Server consolidation and
virtualization emerge as primary approaches, delivering carbon reductions of 25-38% through improved utilization rates
and reduced hardware requirements, with organizations achieving average PUE improvements from 2.1 to 1.4. Storage
optimization through tiered architectures demonstrates 18-23% energy efficiency improvements by aligning storage
performance characteristics with data access patterns and retention requirements.

Energy-efficient hardware procurement delivers consistent carbon reductions across organizational contexts. As
illustrated in Figure 4(a), the carbon abatement potential of energy-efficient servers increases substantially with
implementation scale, achieving 31-42% emissions reductions in enterprise-wide deployments compared to baseline
scenarios. This non-linear relationship highlights the importance of comprehensive implementation approaches.
Infrastructure refresh cycles significantly impact carbon reduction potential, with accelerated refresh strategies (3-4
years) delivering 15-22% greater carbon reductions compared to extended cycles due to rapid evolution of energy
efficiency technologies.

Network infrastructure optimization through software-defined networking offers 12-18% efficiency improvements
via dynamic resource allocation. As shown in Figure 4(b), SDN efficiency gains demonstrate strong sensitivity to
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workload variability, with highly variable traffic patterns achieving substantially greater benefits. Cooling infrastructure
optimization represents another critical pathway, with advanced technologies delivering 28-35% efficiency
improvements, while liquid cooling systems demonstrate 45-60% improvements in high-density computing
environments. Renewable energy integration constitutes a transformative pathway, with direct procurement enabling
70-95% reductions in infrastructure carbon footprints, while on-site generation provides complementary benefits
through improved resilience. As demonstrated in Figure 4, combined implementation of energy efficiency measures and
renewable energy integration delivers carbon reduction potentials significantly exceeding those achieved through
isolated interventions, underscoring the importance of holistic approaches addressing both supply-side and demand-side
dimensions. The 32% embodied carbon component necessitates longer equipment retention periods, even when newer
technologies offer superior efficiency.

(a) Energy-Efficient Server Implementation Scale vs. Carbon Reduction (b) Network Traffic Variability vs. SDN Energy Efficiency Gai

50 T T T 25 T T
—@— Mean Carbon Reduction —@— Mean Efficiency Gain 229,
a5r Carbon Reduction Range 42,,/' Efficiency Gain Range p
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< 40} i g 20
= c
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3 >

L Q -
S 30 2 15
c 2
© [}
E]
3 20} 3 10}
- g
& 15} wi
2 z
© [m]
O 10 » 5t

5 L
0 ) ) ) ) ) 0 . ) ) )
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Server Efficiency Implementation Scale (%) Network Traffic Variability (%)

Figure 4. Information infrastructure, energy efficiency optimization and carbon reduction potential analysis

3.2.2. Data Management Layer Optimization Paths

The data management layer represents a critical intervention point for carbon neutrality initiatives within business
information systems, offering substantial reduction potential through optimized storage, processing, and lifecycle
management strategies. Data deduplication emerges as a foundational approach, with enterprise implementations
achieving 27-38% storage reduction ratios and corresponding carbon emissions decreases of 21-29%. Organizations
implementing comprehensive deduplication across primary storage, backup systems, and archives have demonstrated
average electricity consumption reductions of 256-410 kWh per terabyte managed annually. Advanced deduplication
technologies incorporating machine learning algorithms have further enhanced these benefits, achieving reduction ratios
up to 45% in environments with highly repetitive data patterns.

Data compression technologies offer complementary optimization opportunities, with context-adaptive compression
algorithms demonstrating 18-31% storage efficiency improvements. As shown in Table 2, columnar compression
techniques for analytical databases have delivered particularly impressive results, with carbon footprint reductions of
24-36% achieved through reduced storage requirements and optimized 1/O operations. The combination of deduplication
and compression technologies demonstrates strong synergistic effects, with integrated implementations achieving
carbon reductions 15-22% greater than the sum of individual interventions, highlighting the importance of coordinated
optimization strategies.

Data lifecycle management represents another critical pathway with significant carbon reduction potential.
Automated tiering solutions that dynamically allocate data across performance and capacity tiers based on access
patterns have demonstrated energy efficiency improvements of 32-45% compared to traditional approaches. As
illustrated in Table 2, lifecycle management strategies have shown particularly strong carbon reduction potential in
regulated industries with substantial compliance-driven data retention requirements. Distributed data architectures
leverage geographic distribution to reduce both carbon emissions and latency, with edge data processing frameworks
demonstrating transmission volume reductions of 65-82% compared to centralized approaches. The integration of data
management optimization with broader carbon neutrality initiatives requires carefully planned implementation strategies
aligned with organizational characteristics and priorities. As shown in Table 2, the selection of optimal pathways
demonstrates significant sensitivity to factors including data growth rates, access patterns, regulatory requirements, and
existing infrastructure characteristics.

1426



HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Table 2. Data management optimization strategies and implementation matrix

Optimization Carbon Reduction Implementation Organizational Recommended

Strategy Potential Complexity Prerequisites Implementation Phases Primary Benefits

Phase 1: Primary storage

Data visibility, Storage Storage reduction, Backup

Data Deduplication 21-29% Medium . Phase 2: Backup systems L ]
management maturity efficiency, Energy savings
Phase 3: Archives
Phase 1: Structured databases
Advanced Workload performance analysis, Storage efficiency, 1/0 reduction,

Data classification Phase 2: Unstructured content Processing optimization

Phase 3: Real-time data

A 18-31% Medium-High
Compression

Data governance framework, Phase 1: Policy development

Information Lifecycle 35-52% High Retention policies, Phase 2: Archive implementation

Regulatory compliance, Storage

Management e optimization, Process efficiency
Classification schema Phase 3: Automated enforcement
Phase 1: Static tiering
Automated Data . . Access pattern analysis . . Cost optimization, Performance
_AEO ~ ) . g )
Tiering 32-45% Medium-High Performance monitoring Phase 2: Policy-based automation improvement, Energy efficiency
Phase 3: Al-driven optimization
. . Distributed infrastructure, Edge Phase 1: Edge ﬁlte”n.g Trar_]smission reduction, Latency
Edge Data Processing 65-82%* High capabilities ! Phase 2: Local analytics improvement, Bandwidth
Phase 3: Autonomous operation optimization
) Phase 1: Query optimization
Databasc-_) Arch_ltectu re 35-48% High Database expertls_e, Workload Phase 2: Indexing strategies Progessmg efflmency_, _Res_ponse
Optimization analysis time, Resource utilization
Phase 3: Database refactoring
Phase 1: Access pattern analysis . -
. . . Processing efficiency,
Data Locality o . Workload distribution analysis, . . Lo o :
Strategies 18-29% Medium Geographic data mapping Phase 2: Geographic replication  Transmission reduction, Latency

Phase 3: Dynamic optimization improvement

* Note: Reduction in data transmission volume rather than direct carbon footprint; overall carbon impact depends on network infrastructure characteristics and regional
energy mix.

3.2.3. Business Application Layer Optimization Paths

The business application layer presents significant opportunities for carbon reduction through targeted optimization
strategies that enhance both operational efficiency and environmental performance. Analysis reveals inefficient
application architectures can contribute up to 35% of total information system emissions, underscoring the critical
importance of application optimization in carbon neutrality initiatives. Application consolidation emerges as a primary
optimization pathway, with comprehensive rationalization strategies achieving carbon footprint reductions of 28-42%
through eliminated redundancies and improved resource utilization. As shown in Figure 5(a), carbon reduction potential
demonstrates a non-linear relationship with consolidation ratio, with initial efforts yielding substantial benefits while
marginal returns diminish as optimization progresses. Enterprise application integration frameworks have demonstrated
additional carbon reductions of 15-22% by eliminating energy-intensive data transformation and synchronization
processes.

The migration from monolithic to microservice architectures enables a business application optimization leap,
offering a carbon efficiency improvement of 31% to 47%. Enhanced deployment flexibility, improved scalability,
accuracy in resource allocation, and application component containerization are some reasons cited for this claim. The
growing popularity of containerization has also provided these organizations an additional 18% to 26% efficiency due
to reduced overheads and better resource utilization. As demonstrated in Figure 5(b), such design modifications have a
remarkable potential for dynamic carbon reduction that can dramatically change depending on business context,
workload fluctuation, and evolving needs verticals.

In the case of output energy, application code optimization can translate to an improvement of 22-35% because of
more streamlined processing and minimizing computational waste. Static code analysis tools allow mitigation of
targeted carbon output just-in-time during business operations. Transfiguration of Cloud-native applications provides
the most comprehensive optimization pathway since such architecture transforms result in enhanced resource use,
automation in scaling, and deployment of low carbon emitting infrastructure—leading to a 35-48% reduction in carbon
footprint. The carbon-neutrality-oriented model for application disassembly and reconstitution sheds light on conquering
optimization challenges while correlating Figure 5 posed to framework agility-contraction architecture-building
complexity and carbon efficiency. The findings show that structural simplification leads to average emission reduction
of 28 to 39% without compromising on functionalities.
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Figure 5. Carbon footprint-based application reconstruction model

3.3. Green Digital Transformation Path Benefit Assessment

The approaches to achieving green digital transformation add value in several aspects including ecological, economic,
and operational, thereby through systematic undertaking strategies yielding substantial rewards to firms. Cross-sector
assessments indicate that there is considerable impact from transformation efforts; on average, there is a 42.6% reduction
in emissions. In tech companies, as shown in Figure 6(a), they lead the pack for reduction capability with an astonishing
68%, followed by financial institutions at 53%, and manufacturing enterprises at 41%. Temporal analysis identifies non-
linear benefit accumulation patterns, with initial implementation phases delivering 15-20% reductions, while subsequent
optimization stages achieve 35-45% incremental gains through synergistic integration. These environmental
improvements strongly correlate with digital maturity indices (r=0.78), reinforcing the relationship between
technological sophistication and carbon efficiency.

Economic assessment validates the business case for transformation initiatives, with programs delivering average
ROI values of 132-278% over five-year periods. As detailed in Table 3, financial performance varies by sector, with
payback periods ranging from 14 months in technology companies to 36 months in manufacturing enterprises.
Operational expenditure reductions constitute the primary economic benefit (52%), complemented by enhanced resource
utilization (27%) and infrastructure optimization (21%). Enterprise-wide implementations demonstrate 35% higher ROI
compared to departmental initiatives, with 83% of assessed projects achieving positive risk-adjusted NPV under
conservative scenarios, establishing the financial viability of comprehensive transformation approaches. These ROI
calculations derive from cross-industry medians without accounting for regional variation. Local electricity markets,
carbon policies, and infrastructure maturity significantly influence actual returns.

As illustrated in Figure 6(b), transformation initiatives generate substantial operational and strategic benefits beyond
environmental improvements, including significant enhancements in system availability (28%), processing efficiency
(43%), and infrastructure scalability (52%). Critical success factor analysis identifies organizational elements essential
for effective implementation, with leadership commitment emerging as the primary determinant (correlation coefficient
0.74), followed by business strategy integration (0.68) and dedicated resources (0.62). The comprehensive assessment
framework demonstrated in Figure 6 and detailed in Table 3 provides organizations with structured methodologies for
evaluating transformation initiatives, underscoring the importance of holistic approaches that integrate carbon neutrality
considerations with broader business value creation strategies.

Table 3. Green digital transformation project return on investment analysis

Industry Project  Implementation Investment Annual Carbon 5-Year Payback Period Primary Value Drivers
Sector Scale Duration (USD) Reduction (tCOze) ROI (months) y
. o Energy cost reduction (42%), Operational efficiency
Technology Enterprise 24 months $1,850,000 4,250 278% 14 (35%), Infrastructure optimization (23%)
Financial o o Compliance benefits (38%), Energy cost reduction
Services Divisional 30 months $2,650,000 5,700 215% 18 (31%), Resource optimization (21%)
. . Resource optimization (44%), Process efficiency
0,
Manufacturing  Enterprise 36 months $3,200,000 6,800 167% 26 (32%), Energy cost reduction (24%)
Operational resilience (38%), Compliance benefits
0,
Healthcare ~ Departmental 18 months $950,000 1,850 132% 22 (33%), Energy cost reduction (29%)
. . Infrastructure optimization (41%), Energy cost
0,
Retail Enterprise 28 months $2,100,000 3,900 196% 20 reduction (36%), Customer experience (23%)
. o S
Public Sector  Divisional 32 months $1,750,000 2,950 145% 36 Compliance benefits (47%), Resource optimization

(32%), Energy cost reduction (21%)
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Figure 6. Green Digital transformation comprehensive benefit assessment

4. Discussion

The development of green information technology presents huge opportunities for organizations in their efforts to
achieve carbon neutrality targets. As per the vast body of research carried out by Shang & Lv [33], adoption of green
technologies in management systems that manage data presents huge potential, thus allowing data-based decision-
making that maximizes resource allocation while minimizing ecological footprints. The deployment of digital platforms
in carbon management has synergistic advantages that improve operational efficiency as well as environmental
performance. Information systems have an important role to play by providing analytical tools that help in measuring,
monitoring, and minimizing carbon emissions in organizational settings, effectively influencing the way firms define
and pursue sustainability targets in their digital platforms. Our findings demonstrate this potential, with 42.6% emission
reduction substantially exceeding the 15-25% range reported by Gholami et al. [14], reflecting advances in cloud
adoption and measurement methodologies since 2013.

Data governance is known to play an important role in facilitating sustainable management practice. Sheng et al. [34]
explore the role of digital transformation in managing low-carbon operations, noting that advances in organizational
performance depend in large measure on efficient data governance models. Such models clearly define data acquisition,
data assurance, and analytical processing rules, thus enabling carbon-based decision-making. Organizations with
complete data governance approaches have more capabilities for emissions monitoring, compliance with regulations,
and making sustainability reports, with data governance process advancements positively associated with carbon
management effectiveness. This suggests that data accuracy, in this case, acts as a fundamental driver of environmental
performance for firms undergoing digital transformation, thereby requiring sophisticated data management practices as
a tactical prerequisite to achieving carbon neutrality.

Controlling the lifecycle of carbon-emission-related IT systems requires holistic coverage of emissions during the
design, deployment, operational, and dismantling phases. Liu et al. [35] propose models tailored to carbon assets in
digital decision-support systems that aid firms in calculating the ecological footprint of their IT investments throughout
all business process cycles. This perspective reveals numerous opportunities for maximizing system architecture,
deployment techniques, and operational processes. Notably, cloud-based architectures have shown considerable
potential in reducing lifecycle emissions by streamlining resource allocation and enhancing energy efficiency.
Furthermore, dynamic workload management techniques add to such benefits by optimizing computational resources to
match available computational demands, minimizing idle capacity, as well as unnecessary energy consumption.
However, efficiency improvements often trigger consumption increases that partially erode anticipated gains, while
accelerated refresh cycles generate substantial embodied emissions and e-waste.

The development of green information management capabilities requires considerable investment in both
technological infrastructure and human expertise. Jagger et al. [36] recognize skills challenges as key barriers to
delivering low-carbon transitions, referring to the need to create specialist expertise that encompasses technical
competencies such as energy-efficient system design and carbon analytics, as well as managerial competencies such as
sustainability governance, stakeholder management, and stakeholder relations. The challenges that arise from efforts to
implement carbon-neutral information management are complex mitigation strategies that address technical and
organizational problems. Kannan et al. [37] analyze the implementation barriers, observing that information asymmetry
and technological complexity materialize as key challenges, manifesting in turn as challenges related to emissions
measurement, data integration across organizations, and deploying carbon-aware technologies. Mitigating these
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challenges requires solutions that cover technological advancements, organizational change management techniques,
and strategic investments on the part of management to achieve a smooth transition to carbon-neutral information
management systems. Looking ahead, emerging technologies offer promising pathways, with machine learning enabling
dynamic energy optimization, blockchain providing transparent carbon tracking, and IoT infrastructure supporting
granular emissions monitoring. These implementations require careful assessment of computational overhead relative
to emission benefits.

5. Conclusion

This study creates an integrated framework to improve digital transformation trajectories in carbon-neutral green
business information management systems. By systematic comparison of carbon footprints related to information
systems in varying enterprise settings, this research establishes unique emission patterns that demonstrate high
variability across differing sectors, operational sizes, and tech architectures. The finding of high-level negative
correlation (r = -0.73) between digital maturity scores and intensity levels reveals that organizations that effectively
execute digital transformation projects experience high carbon reduction rates, averaging 31% over five years. The
developed process for optimized digital transformation in three tiers covers levels related to information infrastructure,
data administration, and business application, allowing organizations to realize an average emission reduction of 42.6%
due to overall transformation efforts, with tech companies realizing greatest reduction rates at 68%. Economic validation
supports business value extracted from transformation efforts by showcasing average measures for return on investment
(ROI) scores varying from 132% to 278% over five years. This research contributes to practice-based theory in
information management by linking technological structure to ecological performance, thereby enhancing decision-
support models for green digital transformation. The proposed quantification approach enables efficient measurement
of operations-related as well as lifecycle-related emissions, creating necessary baselines for intervention, while
implementation matrices offer domain-specific recommendations, enabling executable approaches to reducing carbon
footprints while maintaining operations efficiency as well as business competitiveness. However, implementations must
address challenges including rebound effects and embodied carbon from equipment refresh cycles. Future research
should explore integration of emerging technologies such as machine learning, blockchain, and 10T while assessing their
computational overhead against emission reduction benefits.
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