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Abstract 

In the context of urban logistics, uncertainty in travel times poses a critical challenge for planning efficient routes. A multi-

objective simulated annealing (SA) algorithm is proposed to solve the Vehicle Routing Problem with Stochastic Travel 

Times and Soft Time Windows (VRPSTTW), prioritizing the minimization of the number of vehicles and travel costs. The 

methodology follows three phases: (1) calibration of the SA on 12 Solomon instances with 100 customers, achieving an 

average GAP of 1.9% and a maximum of 3.4%; (2) modeling of travel times using the Box-Muller transformation on 

43,200 Google Maps records, segmented into four scenarios according to peak hours and type of day; and (3) parameter 

tuning through a 3³ factorial design. With the optimal configuration (T₀ = 1500, α = 0.9, 4000 iterations), the algorithm 

solved a real instance with 100 customers in 0.5 minutes, achieving 10 vehicles, 614.7 km, 75 minutes of travel time, and 

a CV of 0.013%; perturbations of ±10% only increased the energy by 0.019%. Compared to recent literature, the distance 

was reduced by 3.2% without resorting to hybrid algorithms. The main novelty lies in integrating real traffic data and soft 

windows into a pure SA approach with complexity O(C·n²), offering a robust, realistic, and scalable tool for dynamic urban 

environments. 

Keywords: Simulated Annealing; VRPSTTW; Stochastic Travel Times; Multi-Objective Optimization; Google Maps. 

1. Introduction 

The Vehicle Routing Problem (VRP) has been widely studied in the scientific literature due to its relevance in 

optimizing distribution systems. Over time, various VRP variants have been developed to more accurately represent 

complex operational scenarios. Among these variants, the VRP with Time Windows and the VRP with Stochastic Travel 

Times stand out [1]. The combination of both approaches gives rise to the Vehicle Routing Problem with Stochastic 

Travel Times and Time Windows (VRPSTTW), a formulation that considers not only the time constraints imposed by 

customers but also the uncertainty in travel times caused by factors such as traffic or road conditions. This variant allows 

for a more realistic modeling of distribution systems by integrating stochastic elements and flexible time constraints that 

closely reflect real-world operating conditions. 

The choice between hard or soft time windows directly depends on the type of constraints one aims to model, always 

considering realistic conditions. Unlike hard windows, which impose severe penalties for any deviation from the allowed 

interval, soft windows introduce a degree of flexibility by applying penalties proportional to the level of non-compliance. 

This approach is particularly useful in urban contexts with heavy traffic congestion, where strictly meeting each delivery 

time is often unfeasible. For example, a delivery company in Lima might face unexpected delays due to accidents or 
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traffic detours; in such cases, imposing hard windows could lead to infeasible or excessively costly solutions, whereas 

using soft windows enables operational efficiency under such conditions. 

Given that these factors play a crucial role in distribution logistics, developing a robust methodology becomes 

essential to transform and optimize these systems, enabling better connectivity and greater efficiency in meeting demand. 

To achieve this, it is necessary to assess the costs associated with distribution and apply strategies that improve route 

planning. In this context, the VRP is consolidated as a key mathematical model to address the challenges in assigning 

and optimizing routes for a fleet of vehicles, ensuring that services are more efficient, cost-effective, and adaptable to 

real-world conditions [2, 3]. 

Recent studies such as those by Abdullahi et al. [4] and Rajabi-Bahaabadi et al. [5] have addressed the VRP under 

scenarios with uncertainty but limit their focus to theoretical traffic distributions or simulations not connected to real 

data. In contrast, Muñoz-Villamizar et al. [6] have begun incorporating empirical information through the Google Maps 

API, applying it to the traditional VRP using a Mixed-Integer Linear Programming (MILP) model. While this approach 

is often less efficient than metaheuristic methods, it represents a significant advance by opening the possibility of 

realistically modeling the stochastic variable in more complex problem variants. 

However, to date, no study has jointly addressed the use of stochastic travel times derived from real data and soft 

time windows within a metaheuristic optimization framework. This gap represents a critical omission in the current 

literature, especially in urban contexts where traffic variability and the need for time flexibility are constant. 

This paper proposes a multi-objective algorithm to address the Vehicle Routing Problem with Stochastic Travel 

Times and Soft Time Windows (VRPSTTW). The approach focuses on minimizing the number of vehicles used and 

reducing the associated costs, considering travel distance, travel time, and penalties. The implemented methodology 

integrates stochastic elements and flexible time constraints, providing companies and service providers with an effective 

tool to optimize logistics planning and minimize operational costs in dynamic and realistic environments. 

2. Literature Review 

Combinatorial optimization has paid special attention to the Vehicle Routing Problem (VRP) due to its relevance in 

improving logistics efficiency and goods distribution. With the aim of providing a detailed classification of the various 

approaches developed, Braekers et al. (2009) [7] carried out an exhaustive taxonomic analysis of the VRP, offering a 

fundamental reference framework for subsequent research. 

Among the different VRP variants, the Vehicle Routing Problem with Time Windows (VRPTW) stands out for its 

inherent complexity, being classified as an NP-hard problem. This difficulty has encouraged the use of approximate 

techniques based on search agents, such as metaheuristics. In this regard, Pratiwi et al. (2018) [8] proposed a solution 

based on nature-inspired algorithms, hybridizing the bat algorithm with simulated annealing to improve performance by 

replacing the worst generated solutions. Complementarily, Gibbons & Ombuki-Berman (2024) [9] developed a memetic 

algorithm (MA-BCRCD) for the VRPSPDTW, using real data and combining evolutionary techniques with local search, 

achieving better results than previous methods across all evaluated instances. 

In parallel, uncertainty in travel times has become a critical dimension in the study of stochastic routing problems. 

The first model to formally address the VRP with Stochastic Travel Times (VRPST) was presented by Laporte et al. 

(1992) [10]. In their proposal, they considered vehicles without capacity limitations, using a formulation based on chance 

constraints and simple recourse stochastic programming, which was solved via a branch-and-cut strategy on small 

networks (10 to 20 nodes and up to five scenarios). Later, Guevara et al. (2025) [11] tackled travel and service time 

stochasticity through a simheuristic approach combining Tabu Search and Monte Carlo simulation, evaluating solutions 

under probabilistic scenarios and improving performance compared to deterministic approaches. Meanwhile, Van 

Woensel et al. (2008) [12] incorporated traffic congestion as a source of randomness in travel times, modeling it using 

queuing theory and applying optimization techniques based on Tabu Search. 

The integration of time windows and stochastic travel times gave rise to the Vehicle Routing Problem with Stochastic 

Travel Times and Soft Time Windows (VRPSTTW), a variant that allows for more accurate modeling of logistics 

scenarios where soft time constraints and travel time uncertainty interact significantly. Nguyen et al. (2016) [13] 

developed a Tabu Search-based algorithm to address this variant, focusing on operational scenarios closer to real 

conditions. However, their proposal was tested and validated only on the classic Solomon benchmark instances [14], 

without considering critical factors such as real traffic, weather conditions, or specific operational constraints. This 

omission limits the applicability of the model in highly dynamic and unpredictable contexts, reducing its effectiveness 

in complex logistics environments. 

In contrast, the present proposal aims to take this approach one step further, using the real-world environment as a 

testing ground to evaluate the algorithm’s effectiveness in authentic and global scenarios. In this way, not only is the 

performance validated on the Solomon instances, but it also pushes towards the development of a VRPSTTW that can 

be universally applied, leveraging available technology to integrate real-world data and bring the solution closer to more 

complex operational contexts. 
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2.1. The Simulated Annealing Algorithm 

Simulated annealing has been widely used in combinatorial optimization problems due to its ability to escape local 

optima by probabilistically accepting worse solutions during the early stages of the process. This probabilistic strategy 

allows for a more effective exploration of the solution space than deterministic approaches, which is particularly useful 

in routing problems with complex constraints, such as the VRPSTTW. 

Kirkpatrick et al. (1983) [15] proposed a metaheuristic inspired by the physical annealing process in metals, where 

the metal is heated to a high temperature and then gradually cooled at a controlled rate. During this process, multiple 

solutions are generated and evaluated using an energy function. As the temperature decreases, the probability of 

accepting lower-quality solutions also decreases, following a probabilistic function that depends on the current 

temperature and the change in the objective function. This strategy enables the algorithm to escape local optima and 

explore potentially better solutions. 

Černý (1985) [16] described the simulated annealing algorithm in the following stages: 

● Stage 1 (Parameters): In a simulated annealing algorithm, three fundamental parameters are defined: Initial 

temperature, Cooling schedule, and maximum number of iterations. These parameters determine the behavior of 

the algorithm during the search and solution adjustment process. 

● Stage 2 (Initial Solution): A list is created containing the indices of the data points that should be included in the 

solution, which are randomly distributed to build the initial solution. 

● Stage 3 (Generation of Neighboring Solutions): The current solution is altered through a combinatorial process, 

generating a neighboring solution that can meet the problem's requirements. 

● Stage 4 (Energy Evaluation): The energy is calculated as the value of the problem’s objective function, which 

allows quantifying the current state of the system. This energy value facilitates the evaluation of the new solution, 

providing a clear metric to compare its quality with the previous solution. 

● Stage 5 (Acceptance of New Solutions): If the new solution is better, it is accepted. If it is worse, it is accepted 

with a probability that depends on the temperature and the change in energy, see Equation 1. 

𝑃 =𝑒𝑥𝑝 (−𝛥𝐸/𝑇)  (1) 

where 𝛥𝐸 is the change in energy and 𝑇 is the current temperature. 

● Stage 6 (Cooling): The temperature is gradually reduced according to a cooling schedule. A common schedule is 

geometric cooling, where the temperature is reduced by multiplying it by a constant less than 1, see Equation 2. 

𝑇 = 𝛼(𝑇) 𝑤𝑖𝑡ℎ 0 < 𝛼 < 1  (2) 

● Stage 7 (Repetition): The previous steps are repeated until a stopping criterion is reached, such as a minimum 

temperature or a maximum number of iterations. 

2.2. Stochastic Travel Time Model 

In routing problems where travel times show high variability due to factors such as traffic, weather conditions, or 

unplanned events, stochastic modeling becomes an essential tool to capture this uncertainty and reflect more realistic 

operational scenarios. In this context, Papacostas & Prevedouros (1993) [17] analyzed how factors affecting travel times, 

although they may individually exhibit different probability distributions, tend to converge towards a normal distribution 

when grouped into defined intervals and their means are considered. This aligns with the findings of Mazmanyan & 

Trietsch (2013) [18], who argue that the sum of multiple independent segments tends to approximate a normal 

distribution, based on the Central Limit Theorem. 

The mathematical representation of the normal distribution, considering the means or sums of historical travel times, 

is expressed as follows (see Equation 3): 

𝑓(𝑡) = 𝑁(𝜇, 𝜎)  (3) 

where 𝑁 is Normal distribution, 𝜇 is Mean of the averages of the defined travel time intervals, and 𝜎 is Standard deviation 

of the averages of the defined travel time intervals. 

Papacostas & Prevedouros (1993) [17] also explained that, in order to express variability, the Box-Muller 

transformation must be performed. This method allows generating a pair of normally distributed random numbers from 

uniformly distributed random numbers, following this methodology: 

● Two uniformly distributed random numbers U1 y U2 are generated in the interval (0,1). 
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● The Box-Muller transformation is then applied to convert these numbers so they follow a standard normal distribution, 

as shown in Equations 4 and 5: 

𝑍𝑂 = √−2𝑙𝑛𝑈1. 𝑐𝑜𝑠(2𝜋𝑈2)  (4) 

𝑍1 = √−2𝑙𝑛𝑈1𝑠𝑒𝑛(2𝜋𝑈2)  (5) 

● To define a 95% confidence interval, Equations 6 and 7 are used, where 𝑍95 is the critical value corresponding to a 

95% confidence level (generally 𝑍95 ≈ 1.96). 

𝐿𝐼 = 𝜇 − 𝜎𝑍95  (6) 

𝐿𝑆 = 𝜇 + 𝜎𝑍95  (7) 

● These generated numbers are then scaled using the mean 𝜇 and standard deviation 𝜎, as shown in Equations 8 and 9: 

𝑋 = 𝜇 + 𝜎𝑍𝑂  (8) 

𝑌 = 𝜇 + 𝜎𝑍1  (9) 

● These two generated numbers represent the variability of the data and help form a normal distribution of travel times 

according to the independent factors. 

3. Research Methodology 

This research is methodologically structured into four key phases, progressing from a deterministic model to its 

stochastic extension. In the first phase, the mathematical formulation of the problem is carried out, specifying the 

objective function, capacity constraints, and time windows. In addition, stochastic parameters are introduced to model 

the variability in travel times, laying the foundation for the subsequent implementation of the simulated annealing 

algorithm. 

The second phase involves implementing the SA under a deterministic approach, using the Solomon instances with 

100 customers. The objective is to minimize the number of vehicles and the total distance traveled. This stage allows 

validating the effectiveness of the algorithm in complex environments, establishing a robust starting point for its 

extension to the stochastic context. In the third phase, stochasticity is incorporated through a model based on the normal 

distribution, supported by the Central Limit Theorem. The validity of this approximation is verified using the 

Kolmogorov-Smirnov test, with adjustments to the sample size in cases where the normality hypothesis is rejected. 

The fourth phase consolidates the complete algorithm for the VRPSTTW, integrating deterministic and stochastic 

components into a unified structure. This stage allows evaluating the model’s performance on a representative instance 

built with real coordinates, with the aim of demonstrating its accuracy, robustness, and applicability in scenarios close 

to real operational contexts. Finally, the findings obtained in this research were compared with previous studies, which 

allowed validating the proposed contributions. The conclusions present a synthesis of the main results achieved. The 

procedure followed is shown in Figure 1. 

 

Figure 1. Research procedures 

3.1. Formulation of the VRPSTTW Problem 

The Vehicle Routing Problem with Stochastic Travel Times and Soft Time Windows (VRPSTTW) is formally 

defined through a mathematical model that specifies the objective function, constraints, and relevant variables. This 
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formulation structures the problem as a graph 𝐺 = (𝑉,𝐴), where 𝑉 = {0, 1, ..., ..., 𝑛} represents the set of vertices and 𝐴 

the set of arcs. The vertices 𝑖 = 1, ..., 𝑛 correspond to the customers, each with an associated demand 𝑑𝑖  > 0, while vertex 

0 denotes the depot. The cost 𝐶 is associated with each arc (𝑖, 𝑗), representing the cost of traveling between vertices 𝑖 and 

𝑗. The full model formulation can be found in Equations 10 to 20. 

The units used in the algorithm to represent distance, time, and weight are kilometers (km), minutes (min), and 

kilograms (kg), respectively. This standardization of parameters facilitates the interpretation of results and ensures 

consistency throughout the model. 

Where:  

𝑥𝑖𝑗 : {
1, 𝑖𝑓 𝑖𝑡 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑌: Total travel cost 

 𝑣: {0, . . ., k} vehicles.  

𝑛: Number of customers 

𝐷𝑖𝑗 : Travel distance from customer 𝑖 to customer 𝑗  

 𝑡𝑖𝑗: Travel time from customer 𝑖 to customer 𝑗 

 𝑃𝑖𝑗 : Penalty cost incurred when traveling from customer i to customer 𝑗 

 𝑑𝑖: Demand of customer 𝑖 

 𝐶𝑖: Vehicle capacity upon arriving at city 𝑖. 

 𝑄: Vehicle capacity limit 

 𝑒𝑖  𝑦 𝑙𝑖 : Time windows set by customer 𝑖 

𝜆: Penalty coefficient 

 𝑠𝑖: Service time at customer 𝑖 

 𝑏𝑖
𝑣: Arrival time of vehicle 𝑣 at customer 𝑖 

𝛼: Weight assigned to the number of vehicles in the objective function 

𝛽: Weight assigned to costs (distance, time, and penalties) in the objective function 

 𝑀𝐼𝑁 𝑌 = 𝛼 𝑀𝐼𝑁 ∑ 𝑋𝑣 +

𝑘

𝑣=1

 𝛽 𝑀𝐼𝑁 (∑ ∑ ∑ 𝐷𝑖𝑗𝑋𝑖𝑗
𝑣 +

𝑘

𝑣=1

𝑛

𝑗=0

𝑛

𝑖=0

∑ ∑ ∑ 𝑡𝑖𝑗𝑋𝑖𝑗
𝑣 +

𝑘

𝑣=1

𝑛

𝑗=0

𝑛

𝑖=0

∑ ∑ ∑ 𝑃𝑖𝑗𝑋𝑖𝑗
𝑣

𝑘

𝑣=1

𝑛

𝑗=0

𝑛

𝑖=0

) (10) 

● Multi-objective function: Minimize the number of vehicles and the costs associated with the route (distance, time and 

penalties). 

Having as constraints: 

● Each customer must be served by exactly one vehicle. 

∑ ∑ 𝑥𝑖𝑗
𝑣𝑘

𝑣=1
𝑛
𝑖=0 = 1; ∀ 𝑗 = 1, …, 𝑛  (11) 

● Each vehicle must start its route at the depot. 

∑ 𝑥0𝑗
𝑣𝑛

𝑗=1 = 1; ∀ 𝑣 = 1, …, 𝑘  (12) 

● Each vehicle must return to the depot. 

∑ 𝑥0𝑗
𝑣𝑛

𝑗=1 = 1; ∀ 𝑣 = 1, …, 𝑘  (13) 

● Each customer 𝑖 must be fully served by vehicle 𝑣. 

𝐶𝑖
𝑣 ≥ 𝑑𝑖; ∀ 𝑖 = 1, …, 𝑛;  𝑣 = 1, …, 𝑘  (14) 

● Each vehicle must not exceed its capacity limit with respect to total delivery. 

∑ 𝐶𝑖
𝑣𝑛

𝑖=0 ≤ 𝑄; ∀ 𝑣 = 1, …, 𝑘  (15) 
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● Time window constraints must be satisfied. 

𝑒𝑖 ≤ 𝑏𝑖
𝑣 ≤ 𝑙𝑖; ∀ 𝑖, 𝑗 = 0, …, 𝑛;  𝑣 = 1, …, 𝑘  (16) 

● In problems with soft time windows, penalties are incurred for early or late arrivals and unmet demand 

𝑃𝑖𝑗 = λ . max(𝑒𝑖 − 𝑏𝑖
𝑣 , 0) + λ. max(𝑏𝑖

𝑣 − 𝑙𝑖 , 0) + λ . max(𝑑𝑖 − 𝐶𝑖
𝑣 , 0)  (17) 

● Vehicle 𝑣 must start serving customer 𝑗 only when the sum of travel time from customer 𝑖 to 𝑗, service time at iii, and 

arrival time at iii is greater than or equal to the arrival time at 𝑗. 

𝑥𝑖𝑗
𝑣 (𝑏𝑖

𝑣 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑏𝑗
𝑣) ≤ 0; ∀ 𝑖 = 1, …, 𝑛;  𝑣 = 1, …, 𝑘  (18) 

● Define the types of variables to be used. 

𝑥𝑖𝑗
𝑣 ∈ {0,1} 𝑦 𝑌𝑖

𝑣 ≥ 0; ∀ 𝑖 = 1, …, 𝑛; ∀ 𝑗 = 1, …, 𝑛;  𝑣 = 1, …, 𝑘  (19) 

● Ensure that with a probability of at least α, the vehicle arrives at customer 𝑗 after departing from 𝑖 and traveling time 

𝑡𝑖𝑗, directly incorporating travel time uncertainty into the formulation; 

ℙ(𝑏𝑗
𝑣 ≥ 𝑏𝑖

𝑣 + 𝑡𝑖𝑗𝑋𝑖𝑗
𝑣 ) ≥ 𝛼  (20) 

In the context of the VRPSTTW, the primary objective is to minimize the number of vehicles used, as this represents 

the highest operational cost. Subsequently, distance, travel time, and penalty costs are minimized. To establish this 

objective hierarchy, the approach of Solomon (1987) [14] and Wei et al. (2024) [19] is adopted, assigning α = 1000 to 

heavily penalize additional vehicle usage and β = 1 to the costs associated with the route. 

3.2. Simulated Annealing Algorithm for the Deterministic VRPTW 

In this stage, an algorithm based on the simulated annealing (SA) metaheuristic is implemented to address the 

deterministic variant of the Vehicle Routing Problem with Time Windows (VRPTW). This methodology builds upon 

the previously described theoretical framework and is articulated through a set of essential functions designed to manage 

the algorithm’s parameters and guide the iterative search process. 

The algorithm begins by collecting the parameters that define the problem instance, including the number of 

customers, the time windows associated with each customer, and the distance and travel time matrices. Based on this 

input, the main simulated annealing functions are executed, structured into the following specific phases: 

Initial Solution Creation Function: This function generates a feasible initial solution by assigning all customers to 

routes based on vehicle capacity constraints, using a predefined heuristic. The detailed procedure is shown in Algorithm 

1. 

Algorithm 1. Initial Solution Creation Function 

 

Input: VRPTW Instance 

1. Initialize Solution ← [] 

2. Initialize Used_Vehicles ← 0 

3. Sort Customers by descending Demand 

4. WHILE Clients is not empty DO 

5.     Create New_Route ← [] 

6.     Assign vehicle to New_Route 

7.     FOR each Customer in Customers DO 

8.         IF Demand (Customer) + Current_Load <= Vehicle_Capacity THEN 

9.             Add Customer to New_Route 

10.            Remove Customer from Customer 

11         END IF  

12.    END FOR 

13.    Add New_Route to Solution 

14.    Increase Used_Vehicles by 1 

15. END WHILE 

16. Return Solution, Used_Vehicles 

● Neighbor Solution Generation Function: This function generates new solutions from the current one by applying 

neighborhood operators such as swap, relocate, 2-opt and merge routes, thus allowing exploration of the solution 

space. The procedure is detailed in Algorithm 2. 
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Algorithm 2. Neighboring Solutions Generation Function 

Input: Solution  

1. Clone Solution to Neighbor 

2. Select a random operator from {swap, relocate, 2-opt, merge_routes} 

3. Apply selected operator to Neighbor 

4. IF operator ∈ {"swap", "relocate", "2-opt"} THEN 

5.     Reorder clients within same route or between routes 

6.     Check if the new structure reduces Total_Distance or Total_Time 

7.     Verify Neighbor Feasibility 

8. ELSE IF operator == "merge_routes" THEN 

9.     Select two routes r1 and r2 

10.    Check whether they can be merged without exceeding capacity 

11.    If possible, Combine r1 and r2 into a single route 

12.    Decrease Used_Vehicles by 1  

13. END IF 

14. Return Neighbor, Used_Vehicles 

● Energy Calculation Function: This function evaluates the quality of a solution by calculating its energy using the 

problem’s objective function, see Equation 21. 

F(Energy) = 1000 (Used_Vehicles)+ Total_Distance + Total_Time+ Penalties (21) 

This evaluation considers the two main components of the multi-objective function: the number of vehicles used and 

the associated travel costs, which include the total travel distance (in kilometers), total travel time (in minutes), and 

penalties for time window violations and capacity overruns. The resulting energy is a dimensionless quantity that allows 

for unified solution comparison. The detailed procedure is presented in Algorithm 3. 

Algorithm 3. Energy Calculation Function 

 

Input: Solution, Used_Vehicles 

1. Initialize Total_Distance ← 0 

2. Initialize Total_Time ← 0 

3. Initialize Penalty ← 0 

4. FOR each Route in Solution DO 

5.     Initialize Current_Capacity ← Vehicle_Capacity 

6.     FOR each customer in route DO 

7.         Total_Distance ← Total_Distance + Distance (Prev_Customer, 

Curr_Customer) 

8.         Total_Time ← Total_Time + Time (Prev_Customer, Curr_Customer)  

9.         IF b_i < e_i OR b_i > l_i THEN 

10.            Penalty ← Penalty + CalculateTimeWindowPenalty (Customer) 

11.        END IF 

12.        IF Demand (Customer) > Current_Capacity THEN 

13.            Penalty + CalculateCapacityPenalty (Customer) 

14.            Current_Capacity ← Current_Capacity - Demand (Customer) 

15.        END IF 

14.     END FOR 

15. END FOR 

16. Calculate Energy ← 1000* Vehicles_Used + 1*(Total_Distance + Total_Time + 

Penalty) 

17. Return Energy 

Once the functions are defined, the main function is implemented, integrating and executing each of the previously 

described functions. This function manages the simulated annealing process, continuously evaluating and updating the 

best solution found throughout the search. The detailed procedure can be found in Algorithm 4. 
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Algorithm 4. Simulated Annealing Main Function 
 

Input: VRPTW Instance 

1. Define SA parameters: T_max, T_min, Cooling_Rate, Max_Iter 

2. Load data from the VRPSTTW instance 

3. Current_Solution, Current_Used_Vehicles ← Initial Solution Creation Function 

4. Current_Energy ← Energy Calculation Function(Current_Solution, Current_Used_Vehicles) 

5. Best_Solution ← Current_Solution 

6. Best_Energy ← Current_Energy 

7. T ← T_max 

8. Iterations ← 0 

9. WHILE Max_Iter > Iterations and T > T_min DO 

10.    Neighbor_Solution, Neighbor_Used_Vehicles ← Neighbor Solution Generation Function 

11.    Neighbor_Energy ← Energy Calculation Function (Neighbor_Solution, 

Neighbor_Used_Vehicles) 

12.    ΔE ← Neighbor_Energy - Current_Energy 

13.    IF ΔE < 0 (better solution) OR exp (-ΔE / Temp_Initial) > random (0,1) THEN 

14.        Current_Solution ← Neighbor_Solution 

15.        Current_Used_Vehicles ← Neighbor_Used_Vehicles 

16.        Current_Energy ← Neighbor_Energy 

17.    END if 

18.    IF Current_Energy < Best_Energy THEN 

19.        Best_Solution ← Current_Solution 

20.        Best_Energy ← Current_Energy 

21.    END IF 

22.    T ← T * Cooling_Rate   

23. END WHILE 

24. RETURN Best_Solution, Best_Energy  

To validate the proposed algorithm in solving the VRPTW, the set of instances introduced by Solomon (1987) [14], 

composed of 100 customers, is used. This validation aims to establish a standardized benchmark to evaluate the 

effectiveness of simulated annealing in highly complex scenarios due to the large number of customers. In this way, both 

the algorithm's ability to handle complex instances and its efficiency in approximating optimal solutions are verified. 

This evaluation is fundamental as it provides a solid foundation on which the stochastic travel time model will later 

be integrated, allowing any performance variations to be attributed exclusively to the incorporation of uncertainty and 

not to deficiencies in the base VRPTW structure. 

For the analysis, three instances from each of the classes C1, C2, R1, and R2 are randomly selected, allowing for a 

balanced evaluation across different problem scenarios. The results obtained are presented in Table 1. 

Table 1. Results in the Solomon Instances 

Instance Iterations  

C101 10V, 828.94 10V, 828.94 10V, 828.94 10V, 828.94 

C104 10V, 867.89 10V, 824.78 10V, 824.78 10V, 824.78 

C108 10V, 828.94 10V, 828.94 10V, 828.94 10V, 828.94 

C202 3V, 591.56 3V, 591.56 3V, 591.56 3V, 591.56 

C204 3V, 604.93 3V, 604.63 3V, 590.60 3V, 590.60 

C205 3V, 588.88 3V, 588.88 3V, 588.88 3V, 588.88 

R101 19V, 1730.75 19V, 1682.69 19V, 1652.44 19V, 1648.09 

R103 13V, 1338.49 13V, 1324.44 13V, 1316.20 13V, 1292.68 

R107 10V, 1139.40 10V, 1127.16 10V, 1107.50 10V, 1104.66 

R201 4V, 1326.03 4V, 1318.75 4V, 1253.23 4V, 1252.37 

R204 2V, 899.51 2V, 849.57 2V, 825.52 2V, 825.52 

R205 3V, 1041.35 3V, 1027.22 3V, 1027.08 3V, 1018.15 

To assess solution quality, the relative Gap (%) between the average distance of the solutions generated by the 

algorithm and the best-known solution is calculated, see Equation 22. 
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𝐺𝑎𝑝(%) = 100 ∗ (
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)  (22) 

The results are shown in Table 2. 

Table 2. Gap Analysis for each Instance 

Instance Average Vehicles Average Distance Best Known Gap 

C101 10 828.94 10V, 828.94 0 

C104 10 835.55 10V, 824.78 1.31 

C108 10 828.94 10V, 828.94 0 

C202 3 591.56 3V, 591.56 0 

C204 3 597,69 3V, 590.60 1.2 

C205 3 588.88 3V, 588.88 0 

R101 19 1678.49 19V, 1645.79 1.98 

R103 13 1317.95 13V, 1292.68 1.95 

R107 10 1119.68 10V, 1104.66 1.35 

R201 4 1287.59 4V, 1251.37 2.89 

R204 2 850.03 2V, 825.52 2.96 

R205 3 1028.45 3V, 994.42 3.42 

As a result, the simulated annealing algorithm has shown favorable performance in solving the VRPTW, reaching 

the best-known solution in several instances, particularly in type C cases, where the Gap is 0% in multiple scenarios. 

However, in more complex instances, such as type R, the Gap ranges from 1.35% to 3.42%, showing slight deviations 

from the best-reported solutions. Despite these differences, the algorithm achieves results close to optimal values; in 

33% of the evaluated instances, it matches the best-known solution, while in the remaining 67%, the generated solutions 

are within 3.42% of the optimal value. 

The observed variability in the GAP values suggests that algorithm performance may depend on problem structure, 

highlighting that the analyzed instances are limited to 100 customers. Nevertheless, the results obtained in this phase not 

only confirm the effectiveness of simulated annealing in solving the VRPTW but also provide an essential comparative 

baseline for the subsequent incorporation of the stochastic travel time model. 

3.3. Stochastic Travel Time Model Algorithm 

In this stage, the stochastic travel time model is implemented using data provided by Google Maps due to its broad 

coverage and high accuracy in representing the global road network. This data source allows access to historical and 

real-time traffic information, which is key to modeling travel time variability. Based on this information, a stochastic 

model is structured using empirical data, integrating probabilistic components that more realistically reflect fluctuations 

in travel durations. 

3.3.1. Determination of Time and Distance 

Based solely on the coordinates provided by the user, a function was developed to obtain route distances and 

corresponding travel times under normal traffic conditions — that is, when traffic is neither particularly light nor heavy 

— using data retrieved from Google Maps. This process is illustrated in the pseudocode presented in Algorithm 5 

Algorithm 5. Time and Distance Matrix Function 

Input: List of locations 

1. Initialize Time_Matrix ← [], Distances_Matrix ← [] 

2. FOR each Origin in Locations DO 

3.     Initialize Row_Times ← [], Row_Distances ← [] 

4.     FOR each Destination in Locations DO 

5.         IF Origin = Destination THEN 

6.             Travel_Time ← 0, Distance ← 0 

7.         ELSE 

8.            Retrieve Travel_Time and Distance as a response from Google Maps API  

9.         END IF 

10.        Add Travel_Time to Row_Times and Distance to Row_Distances 

11.    END FOR 

12.    Add Row_Times to Time_Matrix and Row_Distances to Distances_Matrix 

13. END FOR 

14. Return Time_Matrix, Distances_Matrix 
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3.3.2. Scenario Definition and Historical Data Collection  

In this stage, traffic scenarios are characterized considering both peak periods and day types. Peak hours are 

associated with commuting movements at the start and end of the workday, a recurring pattern in urban contexts 

[20]. Global studies, such as those by the Institute of Transportation Engineers (ITE), place these periods between 

7:00–9:00 a.m., 12:00–2:00 p.m., and 5:00–7:00 p.m., ranges commonly used to analyze traffic in different cities 

[21]. 

However, vehicle congestion does not depend solely on the hour but also on the day type. During weekdays, work 

and school activities significantly increase vehicle demand, whereas on non-working days, traffic patterns vary, 

maintaining certain peaks in commercial and recreational areas [20, 22]. 

Therefore, the scenarios defined in this study combine both parameters to capture travel time variability: 

 Scenario 1: Non-peak hour – Weekday 

 Scenario 2: Peak hour – Weekday 

 Scenario 3: Non-peak hour - Non-working Day 

 Scenario 4: Peak Hour - Non-Working Day 

This structure facilitates observing travel time fluctuations under different contexts, establishing a solid foundation 

for implementing the stochastic model and subsequently evaluating it. Based on the scenario definitions, a function was 

developed to collect historical travel time data, enabling analysis of behavior and characterization of variability in each 

context. 

● Travel time collection: Using the origin and destination points provided by the user, historical travel time data from 

Google Maps is accessed. Over a 30-day range prior to the routing date, travel times were recorded every minute, 

generating a total of 43,200 data points. 

● Data segmentation: The 43,200 data points are segmented according to the four defined scenarios, organized 

by time intervals and day types. The distribution per scenario is as follows: Peak hour/weekday: 8,400 data 

points; Peak hour/non-working day: 4,200; Non-peak hour/weekday: 20,400; Non-peak hour/non-working 

day: 10,200. 

● Hourly average calculation: Within the data segmented into the four scenarios, the data is divided into 1-hour 

intervals, and the average travel time in each interval is calculated. This hourly grouping allows capturing stochastic 

variability homogeneously within each scenario. The number of hourly averages obtained per scenario is as 

follows: non-peak hour/weekday: 340 averages (20,400 data points divided into 60-minute blocks), peak 

hour/weekday: 140 averages (8,400 points), non-peak hour/non-working day: 170 averages (10,200 points), and 

peak hour/non-working day: 70 averages (4,200 points). 

● Kolmogorov-Smirnov test: This procedure is fundamental, as it validates the normality assumption underlying 

the stochastic model. Although the Central Limit Theorem states that a sample composed of more than 30 

averages is generally sufficient to approximate a normal distribution, the Kolmogorov-Smirnov test is used to 

empirically verify this condition. This test is applied to the hourly averages obtained in each scenario, 

evaluating whether they follow a normal distribution. If any scenario does not meet this criterion, the algorithm 

issues an alert, indicating the need to increase the sample size to ensure statistical validity, and restarts the 

process. 

● Statistical Analysis: Once normality is validated, the hourly averages are analyzed per scenario to calculate the 

mean and standard deviation, which are then used to represent their characteristic variability. 

● Data insertion: The results obtained from the statistical analysis are organized into four matrices, each 

corresponding to a specific scenario. These matrices are consolidated and saved in a CSV file named 

Combined_data.csv, remaining available for later use in the model. 

The entire process is detailed in the pseudocode of algorithm 6. 
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Algorithm 6. Historical Data Analysis Function  

Input:  

- List of Locations (Origin and Destination)  

- Start date of the routing plan 

1. Now ← get current date and time 

2. Dates ← generate list of datetime values in 1-minute increments, going back 30 days 

from the start date 

3. Create empty matrices: Weekday_Peak, Weekday_NonPeak, NonWorkingday_Peak, 

NonWorkingday_NonPeak 

4. FOR each pair (Origin, Destination) where Origin <> Destination DO 

5.     Data ← get travel times for each datetime value in Dates using Google Maps API 

6.     IF Data is empty THEN continue to the next pair. 

7.     FOR each record in Data DO 

8.         Hour ← extract hour of record 

9.         Day ← extract day of record 

10.        Peak_Hour ← "Yes" IF ∈ {7-9, 12-14, 17-20}, ELSE "No" 

11.        Weekday ← "Weekday” IF day ∈ {Monday-Friday}, ELSE “NonWorkingday” 

12.        IF Peak_Hour = "Yes" AND Weekday = "Weekday" THEN 

13.             Add record to Weekday_Peak 

14.        ELSE IF Peak_Hour = "Yes" AND Weekday = "NonWorkingday" THEN 

15.             Add record to NonWorkingday_Peak 

16.        ELSE IF Peak_Hour = "No" AND Weekday = "Weekday" THEN 

17.             Add record to Weekday_NonPeak 

18.        ELSE 

19.             Add record to NonWorkingday_NonPeak 

20.        END IF 

21.    END FOR 

22. END FOR 

23. FOR each matrix in {Weekday_Peak, Weekday_NonPeak, NonWorkingday_Peak, 

NonWorkingday_NonPeak} DO 

24.    Divide matrix data into 1-hour intervals 

25.    Calculate the average for each interval 

26.    Store results in corresponding average matrix 

27. END FOR 

28. FOR each average matrix DO 

29.    Perform Kolmogorov–Smirnov test for normality 

30.    IF distribution is not normal THEN 

31.        Stop the process and print: "Increase number of samples to ensure normality" 

32.    END IF 

33. END FOR 

34. FOR each average matrix DO 

35.    Calculate mean and standard deviation of hourly averages 

36. END FOR 

37. SAVE all results to 'Combined_Data.csv' and RETURN  

3.3.3. Stochastic Travel Time Model 

In this stage, the stochastic travel time model function is implemented, whose purpose is to estimate the variability 

in vehicle travel times, considering both the day and the estimated arrival time at each destination. This model allows 

simulating real traffic conditions, incorporating uncertainty elements that reflect the inherent fluctuations of the road 

environment. 

Therefore, ensuring a robust design and precise operation of the stochastic model is fundamental to properly represent 

temporal variability and evaluate the impact of different defined scenarios. In this case, the Box-Muller transformation 

(using Equations 4 to 9 defined previously) was implemented directly, instead of using integrated normal generators 

from modern libraries. This decision allows for detailed mathematical control over the simulation process and ensures 

precise traceability of the model. The complete procedure is detailed in the pseudocode of Algorithm 7. 
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Algorithm 7. Stochastic Model Function 

Input: Routing solution (sequence of locations) 

1. Time_Matrix, _ ← Call Time and Distance Matrix Function 

2. Call Historical Data Analysis Function 

3. Initialize Adjusted_Matrix ← [] 

4. FOR each Origin location in Routing_Solution DO 

5.     FOR each Destination in Routing_Solution DO 

6.         IF Origin = Destination THEN 

7.             Adjusted_Time ← 0 

8.         ELSE 

9.             Departure_Hour ← get departure hour from Origin to Destination 

10.            Working_Day ← determine if the date is a working day 

11.            Nominal_Time ← Time_Matrix [Origin][Destination] 

12.            Identify scenario based on Departure_Hour and Weekday 

13.            FOR each row in 'Combined_Data.csv' DO 

14.                IF Origin and Destination match the row THEN 

15.                    Mean, StdDev ← extract values from the r 

16.                    LI ← Mean - (1.96 * StdDev) 

17.                    LS ← Mean + (1.96 * StdDev) 

18.                    REPEAT: 

19.                        X ← Random (0, 1) 

20.                        Y ← Random (0, 1) 

21.                        Z0 ← root(-2ln(X)) * cos(2πY) 

22.                        Z1 ← root(-2ln(X)) * sin(2πY) 

23.                        Var1 ← Mean + (Deviation * Z0) 

24.                        Var2 ← Mean + (Deviation * Z1) 

25.                    UNTIL (LI <= Var1 <= LS) and (LI <= Var2 <= LS) 

26.                    Chosen_Var ← Select randomly between Var1 and Var2. 

27.                    Adjusted_Time ← Nominal_Time + Chosen_Var 

28.                END IF 

29.            END FOR 

30.        END IF 

31.        Add Adjusted_Time to Adjusted_Time_Matrix 

32.    END FOR 

33. END FOR 

34. Return Adjusted_Time_Matrix 

To illustrate the procedure, considering the origin coordinates (-5.1965, -80.6328) and destination (-5.179587, -

80.677845), the algorithms described in Algorithms 5 and 6 were applied. The data collected for this route is presented 

in Table 3, which summarizes descriptive statistics segmented by scenario. 

Table 3. Compilation of the Pathway Analysis 

Time Day Type 
Sample 

Averages 
Media 

Standard 

Deviation 
Minimum Maximum Origin Destination 

Non-peak Weekday 340 14.94 0.36 14.37 15.62 -5.1965, -80.6328 -5.179587, -80.677845 

Peak Weekday 140 15.5 0.74 14.48 17.02 -5.1965, -80.6328 -5.179587, -80.677845 

Non-peak Non-Working day 170 14.35 0.54 13.4 15.1 -5.1965, -80.6328 -5.179587, -80.677845 

Peak Non-Working day 70 14.33 0.73 13.23 15.33 -5.1965, -80.6328 -5.179587, -80.677845 

Based on the previously defined scenarios, travel times were adjusted using the stochastic function implemented in 

Algorithm 7. The results of the stochastic adjustment, considering a 95% confidence level, are presented in Table 4, 

allowing us to observe how traffic fluctuations impact estimated travel times. 

Table 4. Adjusted Travel Times 

     95% Confidence Level    

Scenario U1 U2 Z0 Z1 
Lower 

Limit 

Upper 

Limit 

Travel 

time (Z0) 

Travel Time 

(Z1) 

Adjusted 

Travel Time 

Non- peak 0.69217 0.31844 -0.35763 0.77971 14.23440 15.64560 14.81125 14.23440 14.23440 

Peak 0.47192 0.33866 -0.64796 1.04022 14.04960 16.95040 15.02051 14.04960 14.04960 

Non-peak 0.05269 0.74479 -0.07935 -2.42493 13.29160 15.40840 14.30715 13.29160 14.30715 

Peak 0.42669 0.98008 1.29494 -0.16292 12.89920 15.76080 15.27530 12.89920 15.27530 
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3.4. Algorithm for VRPSTTW 

After completing the first three stages, we proceed to the final phase, in which the stochastic model is integrated into 

the main simulated annealing function developed in section 3.1. This integration allows the incorporation of travel time 

variability while maintaining consistency in the algorithm’s flow. 

In this final stage, all previously developed components are consolidated to form the complete VRPSTTW algorithm, 

combining the stochastic travel time model with the simulated annealing metaheuristic. This results in a robust and 

adaptable algorithm capable of addressing dynamic scenarios where traffic conditions fluctuate according to the defined 

scenarios. 

This implementation represents a clear methodological transition from the deterministic approach to the stochastic 

one. It is important to note that the deterministic model was used only as a theoretical reference, based on the classic 

Solomon instances. It was not applied to real-world settings due to its structural limitation: it assumes constant travel 

times, which is inadequate for representing the uncertain nature of urban traffic. In contrast, the stochastic model was 

designed to operate with empirical data, incorporating time and contextual variability. Therefore, all practical validations 

of the algorithm were performed exclusively under the stochastic approach, as it was the only methodologically coherent 

alternative aligned with the study's objectives.  

The entire process is summarized in Algorithm 8, which structures each step from parameter initialization to obtaining 

the best route. 

Algorithm 8. VRPSTTW Development 

Input: VRPTW Instance 

1. Define SA parameters: T_max, T_min, Cooling_Rate, Max_Iter 

2. Load data from VRPSTTW instance 

3. Call Time and Distance Matrix Function 

4. Generate Current_Solution, Current_Used_Vehicles ← Initial Solution Creation Function 

5. Apply Stochastic Model Function to Current_Solution 

6. Current_Energy ← Energy Calculation Function (Current_Solution, 

Current_Used_Vehicles) using the Adjusted_Time generated by the stochastic model 

7. Best_Solution ← Current_Solution 

8. Best_Energy ← Current_Energy 

9. T ← T_max 

10. Iterations ← 0 

11. WHILE Max_Iter > Iterations and T > T_min DO 

12.    Neighbor_Solution, Neighbor_Used_Vehicles ← Neighbor Solution Generation Function 

13.    Apply Stochastic Model Function to Neighbor_Solution 

14.    Neighbor_Energy ← Energy Evaluation Function (Neighbor_Solution, 

Neighbor_Used_Vehicles) using adjusted travel times 

15.    ΔE ← Neighbor_Energy - Current_Energy 

16.    IF ΔE < 0 or exp (-ΔE / Temp_Initial) > random (0,1) THEN 

17.        Current_Solution ← Neighbor_Solution 

18.        Current_Used_Vehicles ← Neighbor_Used_Vehicles 

19.        Current_Energy ← Neighbor_Energy 

20.    END YES 

21.    IF Current_Energy < Best_Energy THEN 

22.        Best_Solution ← Current_Solution 

23.        Best_Energy ← Current_Energy 

24.    END YES 

25.    T_max ← T_max * Cooling_Rate 

26. END WHILE 

27. Print Best_Solution, Best_Energy 

4. Results 

After completing the four implementation phases of the VRPSTTW algorithm, it was evaluated using a stochastic 

instance with 100 customers, generated from real coordinates. Since the algorithm’s capability to solve complex 

scenarios had already been validated during the deterministic phase, it was not deemed necessary to evaluate multiple 

instances at this stage. The objective here was to verify compliance with the multi-objective function — minimizing the 

number of vehicles and associated costs (including total distance, travel time, and time window penalties) — as well as 

to establish guidelines for future improvements and methodological adjustments. 
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To this end, different experimental configurations were assessed using a factorial design, considering three levels for 

each of the following parameters: initial temperature (500, 1000, and 1500), cooling rate (0.3, 0.5, and 0.9), and 

maximum number of iterations (1000, 2000, and 4000). These levels were selected due to their frequent use in previous 

simulated annealing studies and their ability to adequately represent the extremes of the algorithm’s configuration space 

[15]. 

4.1. Factorial Design and Analysis of Variance 

To evaluate the impact of design factors on the stability of solutions generated by the algorithm, an analysis of 

variance (ANOVA) was performed, considering the obtained energy as the response variable. The factors included were 

initial temperature (A), cooling rate (B), and maximum number of iterations (C), as well as their interactions. The results 

are presented in Table 5. 

Table 5. Analysis of Variance  

Source of 

Variation 

Degrees of 

Freedom 
Sum of Squares Mean Squares F-Statistic Significance (* at 0.05 and ** at 0.01) 

Treatments 26 26718227.2561    

A 2 2134.8176 1067.4088 2.62393  

B 2 4295.3208 2147.6604 5.27942 * 

C 2 26701252.3001 13350626.1500 32818.77686 ** 

AB 4 1178.8409 294.7102 0.72446  

AC 4 2057.2887 514.3222 1.26432  

BC 4 4054.3008 1013.5752 2.49159  

ABC 8 3254.3873 406.7984 1.00000  

ERROR 81 20877.9172 257.7521   

TOTAL 107 26739105.1733    

  Coefficient of Variation (CV) 0.15%   

The analysis of variance shows that both the cooling rate (B) and the maximum number of iterations (C) have a 

significant impact on the obtained energy. The cooling rate shows an F-statistic of 5.28 with a significance level below 

0.05, while the number of iterations shows an F of 32,818.78, with a significance below 0.01, consolidating it as the 

most determining factor in optimizing the simulated annealing process. 

In contrast, the interactions AB, AC, and BC did not show significant effects, suggesting that the combined effects 

between these factors do not notably influence the solution energy. 

The coefficient of variation (CV) was 0.15%, reflecting low variability in the analyzed data, confirming the stability 

of the algorithm after calibration. 

A more detailed analysis was then performed using Duncan’s multiple range test at a 1% significance level and with 

81 error degrees of freedom, to identify the optimal factor levels. The results are presented in Table 6. 

Table 6. Duncan's Multiple Range Test 

KEY Cooling Rate Subset (Mean) 

B1 0.3 11047.43 - 

B2 0.5 11043.52 11043.52 

B3 0.9  11032.53 

KEY Maximum Iterations Subset (Mean) 

C1 1000 11055.05 - 

C2 2000 - 11042.14 

C3 4000 - 11035.29 

Regarding the cooling rate (B), the level corresponding to 0.9 recorded the lowest mean value, 11,032.53, indicating 

better algorithm performance under higher rates. Although the ANOVA showed significance for this factor at the 5% 

level, Duncan’s test, applied with a stricter 1% threshold, confirmed that level 0.9 has a significantly lower mean than 

level 0.3. This validates that the choice of the optimal level remains solid even with a more stringent statistical criterion. 

Meanwhile, the maximum number of iterations (C) showed a decreasing trend in means as its value increased, 

reaching a minimum of 11,035.29 with 4,000 iterations. This behavior suggests that the algorithm tends to stabilize with 

a higher number of iterations, favoring solutions with lower energy. 
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After defining the optimal levels for the factors — Cooling Rate (B = 0.9) and Maximum Iterations (C = 4000) — 

the energy behavior throughout the iterations was evaluated, recording values on an Energy vs. Iterations graph. The 

results reveal a progressive trend toward energy stabilization, evidencing the convergence of the algorithm toward near-

optimal solutions. This evolution can be observed in Figure 2. 

 

Figure 2. Energy vs Iterations Graph 

4.2. Algorithm Precision 

Using the optimal parameters previously determined, 10 runs of the algorithm were carried out on the test instance 

composed of 100 clients. The objective was to evaluate the consistency and precision of the results obtained by analyzing 

the variability in the solutions generated in each random run. This procedure provided a comparative framework for 

assessing the precision of the algorithm in a controlled environment. The results obtained are presented in Table 7. 

Table 7. Algorithm Precision 

Run Energy Number of Vehicles Total distance (km) Total Travel Time (min) Penalties Execution time (min) 

1 10692.7 10 617.23 75.47 0 0.49 

2 10690.97 10 616.15 74.82 0 0.47 

3 10689.16 10 613.82 75.34 0 0.59 

4 10688.95 10 611.97 76.98 0 0.7 

5 10689.38 10 613.52 75.86 0 0.46 

6 10692.18 10 617.47 74.71 0 0.47 

7 10690.04 10 614.81 75.23 0 0.48 

8 10688.61 10 613.98 74.63 0 0.46 

9 10690.35 10 614.87 75.48 0 0.49 

10 10688.78 10 613.5 75.28 0 0.46 

Average 10690.112 10 614.732 75.38 0 0.507 

Standard Deviation 1.437 0 1.757 0.68 0  

Minimum 10688.61 10 611.97 74.63 0  

Maximum 10692.7 10 617.47 76.98 0  

The developed algorithm recorded an average execution time of 0.507 minutes, demonstrating efficient performance 

even on large instances. In terms of energy, a mean of 10,690.112 with a standard deviation of 1.437 was obtained, 

indicating low variability in the generated solutions. Regarding the objective function, defined to minimize both the 

number of vehicles and the associated costs (distance, time, and penalties), it was observed that in all runs the number 

of vehicles remained constant at 10, reaching the required minimum. This demonstrates the algorithm’s effectiveness in 

optimizing routes without needing to increase the fleet size. 

As for the associated costs, the traveled distance showed a standard deviation of 1.757 km, while the total travel time 

exhibited a dispersion of 0.68 minutes; both indicators reflecting low variability in the results. 
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Regarding penalties, it is worth noting that no violations were recorded in any of the runs, which reaffirms the 

algorithm’s capacity to generate feasible solutions without violating constraints, thus consolidating its precision, 

stability, and efficiency. 

4.3. Algorithm Robustness 

In the robustness analysis, energy is used exclusively as the central indicator, since it integrates the multi-objective 

function in a consolidated manner. This allows for a more coherent evaluation of the impact of variations in the 

algorithm's parameters, avoiding analytical dispersion that might arise when considering indicators separately. 

Following this premise, 36 additional runs were performed using the test instance with 100 customers, applying small 

modifications to the previously determined optimal parameters. The results obtained are presented in Table 8. 

Table 8. Robustness of the Algorithm (Energy Harvesting) 

 Initial Temperature 1500 

 Cooling Rate 0.9 0.95 0.99 

Maximum 

Iterations 

3500 

10694.52 10693.78 10691.87 

10693.45 10691.45 10692.54 

10697.45 10694.57 10695.45 

10693.25 10693.25 10691.23 

3750 

10691.45 10691.64 10690.87 

10690.87 10690.56 10690.78 

10692.78 10691.45 10690.38 

10693.45 10692.34 10692.25 

4000 

10692.31 10691.75 10689.24 

10690.05 10689.74 10688.79 

10689.31 10688.98 10689.01 

10689.47 10689.56 10688.74 

Average 10691.63 

Standard Deviation 2.048 

The mean energy recorded in these additional runs was 10,691.63, representing an increase of 1.518 units compared 

to the value obtained in Table 7. This increase, accompanied by a standard deviation of 2.048 (higher than the initial 

1.437), reflects slightly greater dispersion in the results, consistent with the modifications applied to the algorithm 

parameters. 

In percentage terms, the standard deviation corresponds to 0.019% of the mean, indicating low variability, although 

slightly higher than that recorded with the optimal parameters. Despite this increase, the algorithm maintains an 

acceptable level of consistency, demonstrating its robustness and ability to generate stable solutions even with slight 

parameter modifications. 

Additionally, this practical analysis supports the validity of the conclusions drawn from the factorial design, showing 

that the algorithm’s performance remains stable without relying on exact configurations or a single strict statistical 

significance threshold. Moderate variations in the cooling rate and the number of iterations did not substantially alter the 

quality of the solutions, reinforcing the solidity of the recommendations obtained. 

4.4. Computational Complexity of the Algorithm 

The estimation of the computational complexity of the proposed algorithm was carried out based on the structural 

analysis of the pseudocode and the implemented functional modules. Table 9 details the main blocks of the algorithm 

and their respective asymptotic complexity order, considering the number of customers as the dominant variable n and 

the number of iterations C as the control parameter of simulated annealing. 
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Table 9. Algorithm Complexity 

Block / Function Description Complexity Remarks 

Initial Solution 

Generation 

Create a feasible solution with multiple vehicles 

and clients 
𝑂(𝑛2) Involves the distance/time matrix between all clients 

Stochastic Model 
Adjusts travel times between all customer pairs 

based on the scenario 
𝑂(𝑛2) Can be optimized with a dictionary for constant-time access 

Neighbor Generation Alter the current solution using move operators 𝑂(𝑛) Depends on the type of move (swap, 2-opt, relocate, etc.) 

Stochastic Model on 

Neighbor 
Repeated for each generated neighbor 𝑂(𝑛2) Dominant component of each SA iteration 

Energy Calculation 

(Total Cost) 
Sum of distances, times, penalties 𝑂(𝑛) Route is traversed to compute the objective function 

Acceptance Condition 

(Metropolis) 
Checks whether to accept the new solution 𝑂(1) Compares energy values and a random number 

Main SA Loop Runs the process over “Max_Iter” iterations 𝑂(𝐶) Loop body executed until temperature decreases 

Overall, the total algorithm complexity is obtained by identifying the heaviest computational block within the 

iterative cycle. The stochastic model, which runs for each evaluated neighbor solution, introduces a cost of O(n²) per 

iteration. As the number of iterations is constant and parameterized by C, the total complexity of the algorithm is formally 

analyzed in Equation 23. 

𝑇(𝑛) = 𝑂(𝐶. 𝑛2)  (23) 

This expression reflects quadratic behavior relative to the number of customers, which is consistent with the 

combinatorial nature of the problem and the structure of the adjusted time evaluation model. 

The average execution time recorded for an instance of 100 customers was 0.5 minutes. Assuming that the algorithm's 

complexity remains stable and the number of iterations does not vary, it is possible to estimate the execution time for 

other input scales using the projection shown in Equation 24. 

𝑇(𝑛) = 𝑇(100) (
𝑛2

100
)  →  𝑇(𝑛) = 0.5 (

𝑛2

100
)  (24) 

This estimate will be used to generate the projected time graph as a function of the number of customers, see Figure 

3. 

 

Figure 3. Time as a Function of the Number of Customers 

5. Discussion  

The results obtained in this research confirm the effectiveness of simulated annealing (SA) as a competitive 

metaheuristic for solving complex VRP variants, as also shown in previous studies such as Pratiwi et al. (2018) [8], 

where SA was used within a hybrid proposal. Unlike recent approaches such as Gibbons & Ombuki-Berman (2024) [9], 

which opt for memetic algorithms combining evolution and local search, this study demonstrates that a classic, properly 

tuned SA can achieve high-quality solutions on instances with up to 100 customers without the need for more complex 

hybrid structures. 
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The fine-tuning of the initial temperature, cooling rate, and number of iterations allowed energy to stabilize with a 

standard deviation of 1.437 (CV = 0.013%). This level of variability is even lower than that reported by Abdullahi et al. 

(2025) [4], whose study presented a CV = 0.03% on comparable instances, revealing that a rigorous factorial design is 

sufficient to achieve similar stability without additional reliability layers. 

When the optimal parameters were perturbed, the deviation rose to 2.048 (0.019%), an increase still below the 0.05% 

observed by Rajabi-Bahaabadi et al. (2021) [5] when recalibrating their ACO-taboo scheme; moreover, our solution 

maintained a constant minimum fleet size, whereas theirs required additional vehicles in some scenarios. These findings 

support the thesis of Kirkpatrick et al. (1983) [15] on SA’s ability to escape local optima and converge with low 

dispersion when parameters are properly tuned. 

Regarding the incorporation of stochasticity, previous studies by Laporte et al. (1992) [10] and Guevara et al. (2025) 

[11] addressed the modeling of stochastic travel times through generic simulations, without considering empirical data 

from the real environment. In contrast, the present research implements a stochastic model based on real data extracted 

from Google Maps, allowing a more precise capture of urban traffic variability. This approach responds to the criticism 

posed by Nguyen et al. (2016) [13], who acknowledged that their solutions for VRPSTTW, although effective in 

simulated environments, did not integrate real conditions such as traffic congestion or hourly variations. 

Instead of using stochastic models based on theoretical assumptions, like the Monte Carlo simulations employed by 

Guevara et al. (2025) [11], this research implements a model grounded in the Box-Muller transformation, following the 

methodology described by Papacostas & Prevedouros (1993) [17]. This method allows generating normal distributions 

from empirical data, adjusting the mean and standard deviation for each defined scenario (off-peak/working day, 

peak/working day, off-peak/non-working day, peak/non-working day). 

The results of the stochastic model show that, unlike the approach presented by Van Woensel et al. (2008) [12], 

where traffic congestion is modeled using queuing theory, this proposal integrates traffic variability directly into the 

travel time calculation. This not only allows capturing hourly fluctuations but also reflects operational differences 

between working and non-working days, as suggested by global studies from the Institute of Transportation Engineers 

(ITE). 

In terms of efficiency, the algorithm solved the 100-customer instance in 0.507 minutes, surpassing the 36.4 s of 

Abdullahi et al.’s simheuristic [4] and approaching the performance of Iklassov et al. (2024) [1], whose reinforcement 

learning model infers routes in 0.4 s, albeit after extensive GPU training. Additionally, our average distance of 614.7 km 

improves by 3.2% over the best result published by Wei et al. (2024) [19] in the deterministic model for class RC101 

using their LNS-MRSO hybrid, with a standard deviation of only 1.757 km versus the 3–5 km they report. 

While previous literature addresses VRPSTTW in a fragmented manner (focusing on time windows [9, 14] or 

stochastic travel times [11,12]), this research integrates both aspects into a single algorithm, validated with real data and 

supported by statistical analyses of precision, robustness, and complexity O(C·n²). Thus, the proposal positions itself as 

a computationally viable alternative for route optimization in urban contexts with high temporal uncertainty. 

However, this empirical approach presents an operational limitation related to dependency on external services such 

as the Google Maps API. Although this source provides realistic and up-to-date data, its large-scale use can generate 

costs and quota restrictions, complicating model replication in production environments. Furthermore, although a formal 

verification of biases in travel time estimates was not conducted, previous studies have reported systematic inaccuracies 

[22-24]: in urban environments, travel times tend to be underestimated, while in rural areas with low data coverage, 

larger errors are observed. These limitations suggest the need to incorporate validation mechanisms in future research, 

especially when modeling contexts with high geographic or temporal variability. 

6. Conclusion 

This study presented an implementation based on simulated annealing to address the Vehicle Routing Problem with 

Stochastic Travel Times and Soft Time Windows (VRPSTTW), showing promising results in terms of operational 

efficiency and solution stability. The methodology was capable of solving urban instances with up to 100 customers, 

strictly complying with time constraints without incurring penalties. The applied factorial analysis allowed the 

identification of the cooling rate and the maximum number of iterations as key factors influencing the algorithm’s 

behavior. In particular, 4,000 iterations stood out as the most influential parameter in stabilizing the objective function. 

The experimental runs showed an average energy of 10,690.112, low dispersion in the results, and constant use of the 

minimum number of required vehicles, evidencing both the consistency and efficiency of the proposed approach. 

Additionally, when controlled variations were introduced into the optimal parameters, the algorithm maintained 

solution quality within acceptable ranges, demonstrating adequate robustness against perturbations. In all executions, 

the model complied with the imposed operational constraints, even under conditions of high temporal uncertainty. In 

general terms, the proposal represents a computationally viable and effective alternative for route optimization in 

dynamic logistics contexts, such as last-mile distribution systems or fleet management in emergency situations. As future 
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research directions, it is recommended to explore the algorithm’s behavior on larger-scale instances (200 to 1,000 

customers), as well as to integrate hybrid approaches that incorporate machine learning-based predictive models to 

anticipate stochastic scenarios and improve the model’s adaptability to dynamic data. 

In the current approach, stochastic scenarios are manually defined based on four representative combinations of peak 

hour and workday, which imposes an important limitation in terms of coverage and realism. By integrating machine 

learning models, such as XGBoost or recurrent neural networks, it would be possible to train travel time predictors based 

on multiple contextual variables (hour, day, weather, traffic history, etc.), which would allow generalization to millions 

of possible scenarios without explicitly defining them. This would enable better anticipation of congestion and greater 

adaptability of the algorithm to changing conditions, evolving the model from a static system to a truly dynamic and 

intelligent one 
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