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Abstract

In the context of urban logistics, uncertainty in travel times poses a critical challenge for planning efficient routes. A multi-
objective simulated annealing (SA) algorithm is proposed to solve the Vehicle Routing Problem with Stochastic Travel
Times and Soft Time Windows (VRPSTTW), prioritizing the minimization of the number of vehicles and travel costs. The
methodology follows three phases: (1) calibration of the SA on 12 Solomon instances with 100 customers, achieving an
average GAP of 1.9% and a maximum of 3.4%; (2) modeling of travel times using the Box-Muller transformation on
43,200 Google Maps records, segmented into four scenarios according to peak hours and type of day; and (3) parameter
tuning through a 33 factorial design. With the optimal configuration (T, = 1500, o = 0.9, 4000 iterations), the algorithm
solved a real instance with 100 customers in 0.5 minutes, achieving 10 vehicles, 614.7 km, 75 minutes of travel time, and
a CV of 0.013%; perturbations of £10% only increased the energy by 0.019%. Compared to recent literature, the distance
was reduced by 3.2% without resorting to hybrid algorithms. The main novelty lies in integrating real traffic data and soft
windows into a pure SA approach with complexity O(C-n?), offering a robust, realistic, and scalable tool for dynamic urban
environments.

Keywords: Simulated Annealing; VRPSTTW; Stochastic Travel Times; Multi-Objective Optimization; Google Maps.

1. Introduction

The Vehicle Routing Problem (VRP) has been widely studied in the scientific literature due to its relevance in
optimizing distribution systems. Over time, various VRP variants have been developed to more accurately represent
complex operational scenarios. Among these variants, the VRP with Time Windows and the VRP with Stochastic Travel
Times stand out [1]. The combination of both approaches gives rise to the Vehicle Routing Problem with Stochastic
Travel Times and Time Windows (VRPSTTW), a formulation that considers not only the time constraints imposed by
customers but also the uncertainty in travel times caused by factors such as traffic or road conditions. This variant allows
for a more realistic modeling of distribution systems by integrating stochastic elements and flexible time constraints that
closely reflect real-world operating conditions.

The choice between hard or soft time windows directly depends on the type of constraints one aims to model, always
considering realistic conditions. Unlike hard windows, which impose severe penalties for any deviation from the allowed
interval, soft windows introduce a degree of flexibility by applying penalties proportional to the level of non-compliance.
This approach is particularly useful in urban contexts with heavy traffic congestion, where strictly meeting each delivery
time is often unfeasible. For example, a delivery company in Lima might face unexpected delays due to accidents or
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traffic detours; in such cases, imposing hard windows could lead to infeasible or excessively costly solutions, whereas
using soft windows enables operational efficiency under such conditions.

Given that these factors play a crucial role in distribution logistics, developing a robust methodology becomes
essential to transform and optimize these systems, enabling better connectivity and greater efficiency in meeting demand.
To achieve this, it is necessary to assess the costs associated with distribution and apply strategies that improve route
planning. In this context, the VRP is consolidated as a key mathematical model to address the challenges in assigning
and optimizing routes for a fleet of vehicles, ensuring that services are more efficient, cost-effective, and adaptable to
real-world conditions [2, 3].

Recent studies such as those by Abdullahi et al. [4] and Rajabi-Bahaabadi et al. [5] have addressed the VRP under
scenarios with uncertainty but limit their focus to theoretical traffic distributions or simulations not connected to real
data. In contrast, Mufioz-Villamizar et al. [6] have begun incorporating empirical information through the Google Maps
API, applying it to the traditional VRP using a Mixed-Integer Linear Programming (MILP) model. While this approach
is often less efficient than metaheuristic methods, it represents a significant advance by opening the possibility of
realistically modeling the stochastic variable in more complex problem variants.

However, to date, no study has jointly addressed the use of stochastic travel times derived from real data and soft
time windows within a metaheuristic optimization framework. This gap represents a critical omission in the current
literature, especially in urban contexts where traffic variability and the need for time flexibility are constant.

This paper proposes a multi-objective algorithm to address the Vehicle Routing Problem with Stochastic Travel
Times and Soft Time Windows (VRPSTTW). The approach focuses on minimizing the number of vehicles used and
reducing the associated costs, considering travel distance, travel time, and penalties. The implemented methodology
integrates stochastic elements and flexible time constraints, providing companies and service providers with an effective
tool to optimize logistics planning and minimize operational costs in dynamic and realistic environments.

2. Literature Review

Combinatorial optimization has paid special attention to the Vehicle Routing Problem (VRP) due to its relevance in
improving logistics efficiency and goods distribution. With the aim of providing a detailed classification of the various
approaches developed, Braekers et al. (2009) [7] carried out an exhaustive taxonomic analysis of the VRP, offering a
fundamental reference framework for subsequent research.

Among the different VRP variants, the Vehicle Routing Problem with Time Windows (VRPTW) stands out for its
inherent complexity, being classified as an NP-hard problem. This difficulty has encouraged the use of approximate
techniques based on search agents, such as metaheuristics. In this regard, Pratiwi et al. (2018) [8] proposed a solution
based on nature-inspired algorithms, hybridizing the bat algorithm with simulated annealing to improve performance by
replacing the worst generated solutions. Complementarily, Gibbons & Ombuki-Berman (2024) [9] developed a memetic
algorithm (MA-BCRCD) for the VRPSPDTW, using real data and combining evolutionary techniques with local search,
achieving better results than previous methods across all evaluated instances.

In parallel, uncertainty in travel times has become a critical dimension in the study of stochastic routing problems.
The first model to formally address the VRP with Stochastic Travel Times (VRPST) was presented by Laporte et al.
(1992) [10]. In their proposal, they considered vehicles without capacity limitations, using a formulation based on chance
constraints and simple recourse stochastic programming, which was solved via a branch-and-cut strategy on small
networks (10 to 20 nodes and up to five scenarios). Later, Guevara et al. (2025) [11] tackled travel and service time
stochasticity through a simheuristic approach combining Tabu Search and Monte Carlo simulation, evaluating solutions
under probabilistic scenarios and improving performance compared to deterministic approaches. Meanwhile, Van
Woensel et al. (2008) [12] incorporated traffic congestion as a source of randomness in travel times, modeling it using
queuing theory and applying optimization techniques based on Tabu Search.

The integration of time windows and stochastic travel times gave rise to the Vehicle Routing Problem with Stochastic
Travel Times and Soft Time Windows (VRPSTTW), a variant that allows for more accurate modeling of logistics
scenarios where soft time constraints and travel time uncertainty interact significantly. Nguyen et al. (2016) [13]
developed a Tabu Search-based algorithm to address this variant, focusing on operational scenarios closer to real
conditions. However, their proposal was tested and validated only on the classic Solomon benchmark instances [14],
without considering critical factors such as real traffic, weather conditions, or specific operational constraints. This
omission limits the applicability of the model in highly dynamic and unpredictable contexts, reducing its effectiveness
in complex logistics environments.

In contrast, the present proposal aims to take this approach one step further, using the real-world environment as a
testing ground to evaluate the algorithm’s effectiveness in authentic and global scenarios. In this way, not only is the
performance validated on the Solomon instances, but it also pushes towards the development of a VRPSTTW that can
be universally applied, leveraging available technology to integrate real-world data and bring the solution closer to more
complex operational contexts.
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2.1. The Simulated Annealing Algorithm

Simulated annealing has been widely used in combinatorial optimization problems due to its ability to escape local
optima by probabilistically accepting worse solutions during the early stages of the process. This probabilistic strategy
allows for a more effective exploration of the solution space than deterministic approaches, which is particularly useful
in routing problems with complex constraints, such as the VRPSTTW.

Kirkpatrick et al. (1983) [15] proposed a metaheuristic inspired by the physical annealing process in metals, where
the metal is heated to a high temperature and then gradually cooled at a controlled rate. During this process, multiple
solutions are generated and evaluated using an energy function. As the temperature decreases, the probability of
accepting lower-quality solutions also decreases, following a probabilistic function that depends on the current
temperature and the change in the objective function. This strategy enables the algorithm to escape local optima and
explore potentially better solutions.

Cerny (1985) [16] described the simulated annealing algorithm in the following stages:

e Stage 1 (Parameters): In a simulated annealing algorithm, three fundamental parameters are defined: Initial
temperature, Cooling schedule, and maximum number of iterations. These parameters determine the behavior of
the algorithm during the search and solution adjustment process.

e Stage 2 (Initial Solution): A list is created containing the indices of the data points that should be included in the
solution, which are randomly distributed to build the initial solution.

e Stage 3 (Generation of Neighboring Solutions): The current solution is altered through a combinatorial process,
generating a neighboring solution that can meet the problem's requirements.

e Stage 4 (Energy Evaluation): The energy is calculated as the value of the problem’s objective function, which
allows quantifying the current state of the system. This energy value facilitates the evaluation of the new solution,
providing a clear metric to compare its quality with the previous solution.

e Stage 5 (Acceptance of New Solutions): If the new solution is better, it is accepted. If it is worse, it is accepted
with a probability that depends on the temperature and the change in energy, see Equation 1.
P =exp (—AE/T) (1)

where AE is the change in energy and T is the current temperature.

e Stage 6 (Cooling): The temperature is gradually reduced according to a cooling schedule. A common schedule is
geometric cooling, where the temperature is reduced by multiplying it by a constant less than 1, see Equation 2.

T=a(T)with0<a<1 (2

e Stage 7 (Repetition): The previous steps are repeated until a stopping criterion is reached, such as a minimum
temperature or a maximum number of iterations.

2.2. Stochastic Travel Time Model

In routing problems where travel times show high variability due to factors such as traffic, weather conditions, or
unplanned events, stochastic modeling becomes an essential tool to capture this uncertainty and reflect more realistic
operational scenarios. In this context, Papacostas & Prevedouros (1993) [17] analyzed how factors affecting travel times,
although they may individually exhibit different probability distributions, tend to converge towards a normal distribution
when grouped into defined intervals and their means are considered. This aligns with the findings of Mazmanyan &
Trietsch (2013) [18], who argue that the sum of multiple independent segments tends to approximate a normal
distribution, based on the Central Limit Theorem.

The mathematical representation of the normal distribution, considering the means or sums of historical travel times,
is expressed as follows (see Equation 3):

f@) =N, o) @)

where N is Normal distribution, u is Mean of the averages of the defined travel time intervals, and ¢ is Standard deviation
of the averages of the defined travel time intervals.

Papacostas & Prevedouros (1993) [17] also explained that, in order to express variability, the Box-Muller
transformation must be performed. This method allows generating a pair of normally distributed random numbers from
uniformly distributed random numbers, following this methodology:

e Two uniformly distributed random numbers U1 y U2 are generated in the interval (0,1).
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e The Box-Muller transformation is then applied to convert these numbers so they follow a standard normal distribution,
as shown in Equations 4 and 5:

Zo = +/—2InU;.cos(2mU,) 4
Z, = J=2InU;sen(2nU,) ©)

e To define a 95% confidence interval, Equations 6 and 7 are used, where Zq; is the critical value corresponding to a
95% confidence level (generally Zy5 =~ 1.96).

LI =p—0Zys (6)
LS=u+o0Zys (7)
e These generated numbers are then scaled using the mean u and standard deviation &, as shown in Equations 8 and 9:
X=u+oz, ®)
Y=u+o07z; 9)

e These two generated numbers represent the variability of the data and help form a normal distribution of travel times
according to the independent factors.

3. Research Methodology

This research is methodologically structured into four key phases, progressing from a deterministic model to its
stochastic extension. In the first phase, the mathematical formulation of the problem is carried out, specifying the
objective function, capacity constraints, and time windows. In addition, stochastic parameters are introduced to model
the variability in travel times, laying the foundation for the subsequent implementation of the simulated annealing
algorithm.

The second phase involves implementing the SA under a deterministic approach, using the Solomon instances with
100 customers. The objective is to minimize the number of vehicles and the total distance traveled. This stage allows
validating the effectiveness of the algorithm in complex environments, establishing a robust starting point for its
extension to the stochastic context. In the third phase, stochasticity is incorporated through a model based on the normal
distribution, supported by the Central Limit Theorem. The validity of this approximation is verified using the
Kolmogorov-Smirnov test, with adjustments to the sample size in cases where the normality hypothesis is rejected.

The fourth phase consolidates the complete algorithm for the VRPSTTW, integrating deterministic and stochastic
components into a unified structure. This stage allows evaluating the model’s performance on a representative instance
built with real coordinates, with the aim of demonstrating its accuracy, robustness, and applicability in scenarios close
to real operational contexts. Finally, the findings obtained in this research were compared with previous studies, which
allowed validating the proposed contributions. The conclusions present a synthesis of the main results achieved. The
procedure followed is shown in Figure 1.

Algorithm for the Stochastic

> Conclusions

Travel Time Model
Y
VRPSTTW Problem -
Formulation Algorithm for the
VRPSTTW
Y v
Simulated Annealing
Algorithm for the Discussion of results
Deterministic VRPTW

Figure 1. Research procedures

3.1. Formulation of the VRPSTTW Problem

The Vehicle Routing Problem with Stochastic Travel Times and Soft Time Windows (VRPSTTW) is formally
defined through a mathematical model that specifies the objective function, constraints, and relevant variables. This

738



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

formulation structures the problem as a graph G = (V,A), where V = {0, 1, ..., ..., n} represents the set of vertices and A
the set of arcs. The vertices i = 1, ..., n correspond to the customers, each with an associated demand d; > 0, while vertex
0 denotes the depot. The cost C is associated with each arc (i, j), representing the cost of traveling between vertices i and
j. The full model formulation can be found in Equations 10 to 20.

The units used in the algorithm to represent distance, time, and weight are kilometers (km), minutes (min), and
kilograms (kg), respectively. This standardization of parameters facilitates the interpretation of results and ensures
consistency throughout the model.

Where:

o {1, if it goes fromcity i to city j
U 0, otherwise
Y: Total travel cost

v: {0, ..., k} vehicles.

n: Number of customers

D;;: Travel distance from customer i to customer j

t;j: Travel time from customer i to customer j

P;;: Penalty cost incurred when traveling from customer i to customer j
d;: Demand of customer i

C;: Vehicle capacity upon arriving at city i.

Q: Vehicle capacity limit

e; v l;: Time windows set by customer i

A: Penalty coefficient

s;: Service time at customer i

b?: Arrival time of vehicle v at customer i

a: Weight assigned to the number of vehicles in the objective function
B: Weight assigned to costs (distance, time, and penalties) in the objective function

MINY—aMINZX"+ﬁM1N zn:Zn:ZDU iiit X”+i22pﬁxi‘; (10)

i=0 j=0v= i=0 j=0v=1 i=0 j=0v=1

e Multi-objective function: Minimize the number of vehicles and the costs associated with the route (distance, time and
penalties).

Having as constraints:

e Each customer must be served by exactly one vehicle.
oXemx=1LVj=1..,n (11)
e Each vehicle must start its route at the depot.
}lzlxgj=1;Vv=1,...,k (12)
e Each vehicle must return to the depot.
7=1xgj=1;‘v’v=1,...,k (13)
e Each customer i must be fully served by vehicle v.
Cl=zdpvi=1,...n;v=1,...k (14)
e Each vehicle must not exceed its capacity limit with respect to total delivery.

noCr<QVv=1, ..k (15)
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e Time window constraints must be satisfied.

e <b/<Il;vi,j=0,...mv=1,..k (16)
e In problems with soft time windows, penalties are incurred for early or late arrivals and unmet demand

P;; = X.max(e; — b/,0) + A.max(b{ — [;,0) + A.max(d; — C/,0) a7

e Vehicle v must start serving customer j only when the sum of travel time from customer i to j, service time at iii, and
arrival time at iii is greater than or equal to the arrival time at j.

x}j(bl" + 5+t —b}’) <ovi=1,..mv=1,..k (18)
e Define the types of variables to be used.
x; €01y =20, vi=1,...n;Vj=1 .. .mv=1 ..k (19)

e Ensure that with a probability of at least a, the vehicle arrives at customer j after departing from i and traveling time
t;j, directly incorporating travel time uncertainty into the formulation;

In the context of the VRPSTTW, the primary objective is to minimize the number of vehicles used, as this represents
the highest operational cost. Subsequently, distance, travel time, and penalty costs are minimized. To establish this
objective hierarchy, the approach of Solomon (1987) [14] and Wei et al. (2024) [19] is adopted, assigning o. = 1000 to
heavily penalize additional vehicle usage and B =1 to the costs associated with the route.

3.2. Simulated Annealing Algorithm for the Deterministic VRPTW

In this stage, an algorithm based on the simulated annealing (SA) metaheuristic is implemented to address the
deterministic variant of the Vehicle Routing Problem with Time Windows (VRPTW). This methodology builds upon
the previously described theoretical framework and is articulated through a set of essential functions designed to manage
the algorithm’s parameters and guide the iterative search process.

The algorithm begins by collecting the parameters that define the problem instance, including the number of
customers, the time windows associated with each customer, and the distance and travel time matrices. Based on this
input, the main simulated annealing functions are executed, structured into the following specific phases:

Initial Solution Creation Function: This function generates a feasible initial solution by assigning all customers to
routes based on vehicle capacity constraints, using a predefined heuristic. The detailed procedure is shown in Algorithm
1.

Algorithm 1. Initial Solution Creation Function

Input: VRPTW Instance

1. Initialize Solution « []

2. Initialize Used Vehicles « 0

3. Sort Customers by descending Demand

4. WHILE Clients is not empty DO

5. Create New Route « []

6. Assign vehicle to New Route

7. FOR each Customer in Customers DO

8. IF Demand (Customer) + Current Load <= Vehicle Capacity THEN
9. Add Customer to New Route

10. Remove Customer from Customer
11 END IF

12. END FOR

13. Add New Route to Solution

14. Increase Used Vehicles by 1

15. END WHILE
16. Return Solution, Used Vehicles

e Neighbor Solution Generation Function: This function generates new solutions from the current one by applying
neighborhood operators such as swap, relocate, 2-opt and merge routes, thus allowing exploration of the solution
space. The procedure is detailed in Algorithm 2.
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Algorithm 2. Neighboring Solutions Generation Function

Input: Solution

1. Clone Solution to Neighbor

2. Select a random operator from {swap, relocate, 2-opt, merge routes}
3. Apply selected operator to Neighbor

4. IF operator € {"swap", "relocate", "2-opt"} THEN

5. Reorder clients within same route or between routes

6. Check if the new structure reduces Total Distance or Total Time
7. Verify Neighbor Feasibility

8. ELSE IF operator == "merge routes" THEN

9. Select two routes rl and r2

10. Check whether they can be merged without exceeding capacity

11. If possible, Combine rl and r2 into a single route

12. Decrease Used Vehicles by 1

13. END IF

14. Return Neighbor, Used Vehicles

e Energy Calculation Function: This function evaluates the quality of a solution by calculating its energy using the
problem’s objective function, see Equation 21.

F(Energy) = 1000 (Used_Vehicles)+ Total_Distance + Total_Time+ Penalties (21)

This evaluation considers the two main components of the multi-objective function: the number of vehicles used and
the associated travel costs, which include the total travel distance (in kilometers), total travel time (in minutes), and
penalties for time window violations and capacity overruns. The resulting energy is a dimensionless quantity that allows
for unified solution comparison. The detailed procedure is presented in Algorithm 3.

Algorithm 3. Energy Calculation Function

Input: Solution, Used Vehicles

1. Initialize Total Distance « 0

2. Initialize Total Time «~ 0

3. Initialize Penalty « O

4. FOR each Route in Solution DO

5. Initialize Current Capacity « Vehicle Capacity

6. FOR each customer in route DO

7. Total Distance « Total Distance + Distance (Prev_Customer,
Curr Customer)

8. Total_Time - Total_Time + Time (Prev_Customer, Curr Customer)

9. IF b i <e i ORDb i >11i THEN

10. Penalty « Penalty + CalculateTimeWindowPenalty (Customer)

11. END IF

12. IF Demand (Customer) > Current Capacity THEN

13. Penalty + CalculateCapacityPenalty (Customer)

14. Current Capacity « Current Capacity - Demand (Customer)

15. END IF

14. END FOR

15. END FOR

16. Calculate Energy « 1000* Vehicles Used + 1*(Total Distance + Total Time +
Penalty)

17. Return Energy

Once the functions are defined, the main function is implemented, integrating and executing each of the previously
described functions. This function manages the simulated annealing process, continuously evaluating and updating the
best solution found throughout the search. The detailed procedure can be found in Algorithm 4.
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Algorithm 4. Simulated Annealing Main Function

Input: VRPTW Instance

1. Define SA parameters: T max, T min, Cooling Rate, Max Iter

2. Load data from the VRPSTTW instance

3. Current Solution, Current Used Vehicles ~ Initial Solution Creation Function

4. Current Energy « Energy Calculation Function (Current Solution, Current Used Vehicles)

5. Best Solution « Current Solution

6. Best Energy « Current Energy

7. T « T max

8. Iterations « O

9. WHILE Max Iter > Iterations and T > T min DO

10. Neighbor Solution, Neighbor Used Vehicles « Neighbor Solution Generation Function

11 Neighbor Energy < Energy Calculation Function (Neighbor Solution,
Neighbor Used Vehicles)

12. AE « Neighbor Energy - Current Energy

13. IF AE < 0 (better solution) OR exp (-AE / Temp Initial) > random (0,1) THEN

14. Current Solution « Neighbor Solution

15. Current Used Vehicles « Neighbor Used Vehicles

16. Current Energy « Neighbor Energy

17. END if

18. IF Current Energy < Best Energy THEN

19. Best Solution « Current Solution

20. Best Energy « Current Energy

21. END IF

22. T « T * Cooling Rate

23. END WHILE
24. RETURN Best Solution, Best Energy

To validate the proposed algorithm in solving the VRPTW, the set of instances introduced by Solomon (1987) [14],
composed of 100 customers, is used. This validation aims to establish a standardized benchmark to evaluate the
effectiveness of simulated annealing in highly complex scenarios due to the large number of customers. In this way, both
the algorithm'’s ability to handle complex instances and its efficiency in approximating optimal solutions are verified.

This evaluation is fundamental as it provides a solid foundation on which the stochastic travel time model will later
be integrated, allowing any performance variations to be attributed exclusively to the incorporation of uncertainty and
not to deficiencies in the base VRPTW structure.

For the analysis, three instances from each of the classes C1, C2, R1, and R2 are randomly selected, allowing for a
balanced evaluation across different problem scenarios. The results obtained are presented in Table 1.

Table 1. Results in the Solomon Instances

Instance Iterations
C101 10V, 828.94 10V, 828.94 10V, 828.94 10V, 828.94
C104 10V, 867.89 10V, 824.78 10V, 824.78 10V, 824.78
C108 10V, 828.94 10V, 828.94 10V, 828.94 10V, 828.94
C202 3V, 591.56 3V, 591.56 3V, 591.56 3V, 591.56
C204 3V, 604.93 3V, 604.63 3V, 590.60 3V, 590.60
C205 3V, 588.88 3V, 588.88 3V, 588.88 3V, 588.88
R101 19V, 1730.75 19V, 1682.69 19V, 1652.44 19V, 1648.09
R103 13V, 1338.49 13V, 1324.44 13V, 1316.20 13V, 1292.68
R107 10V, 1139.40 10V, 1127.16 10V, 1107.50 10V, 1104.66
R201 4V, 1326.03 4V, 1318.75 4V, 1253.23 4V, 1252.37
R204 2V, 899.51 2V, 849.57 2V, 825.52 2V, 825.52
R205 3V, 1041.35 3V, 1027.22 3V, 1027.08 3V, 1018.15

To assess solution quality, the relative Gap (%) between the average distance of the solutions generated by the
algorithm and the best-known solution is calculated, see Equation 22.
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(22)

0, —
Gap(A)) = 100 « ( Best Known Distance

Average Distance — Best Known Distance)

The results are shown in Table 2.

Table 2. Gap Analysis for each Instance

Instance Average Vehicles Average Distance Best Known Gap
C101 10 828.94 10V, 828.94 0
C104 10 835.55 10V, 824.78 131
C108 10 828.94 10V, 828.94 0
C202 3 591.56 3V, 591.56 0
C204 3 597,69 3V, 590.60 12
C205 3 588.88 3V, 588.88 0
R101 19 1678.49 19V, 1645.79 1.98
R103 13 1317.95 13V, 1292.68 1.95
R107 10 1119.68 10V, 1104.66 1.35
R201 4 1287.59 4V, 1251.37 2.89
R204 2 850.03 2V, 825.52 2.96
R205 3 1028.45 3V, 994.42 3.42

As a result, the simulated annealing algorithm has shown favorable performance in solving the VRPTW, reaching
the best-known solution in several instances, particularly in type C cases, where the Gap is 0% in multiple scenarios.
However, in more complex instances, such as type R, the Gap ranges from 1.35% to 3.42%, showing slight deviations
from the best-reported solutions. Despite these differences, the algorithm achieves results close to optimal values; in
33% of the evaluated instances, it matches the best-known solution, while in the remaining 67%, the generated solutions
are within 3.42% of the optimal value.

The observed variability in the GAP values suggests that algorithm performance may depend on problem structure,
highlighting that the analyzed instances are limited to 100 customers. Nevertheless, the results obtained in this phase not
only confirm the effectiveness of simulated annealing in solving the VRPTW but also provide an essential comparative
baseline for the subsequent incorporation of the stochastic travel time model.

3.3. Stochastic Travel Time Model Algorithm

In this stage, the stochastic travel time model is implemented using data provided by Google Maps due to its broad
coverage and high accuracy in representing the global road network. This data source allows access to historical and
real-time traffic information, which is key to modeling travel time variability. Based on this information, a stochastic
model is structured using empirical data, integrating probabilistic components that more realistically reflect fluctuations
in travel durations.

3.3.1. Determination of Time and Distance

Based solely on the coordinates provided by the user, a function was developed to obtain route distances and
corresponding travel times under normal traffic conditions — that is, when traffic is neither particularly light nor heavy
— using data retrieved from Google Maps. This process is illustrated in the pseudocode presented in Algorithm 5

Algorithm 5. Time and Distance Matrix Function

Input: List of locations

1. Initialize Time Matrix « [], Distances Matrix  []

2. FOR each Origin in Locations DO

3. Initialize Row _Times « [], Row Distances  []

4. FOR each Destination in Locations DO

5. IF Origin = Destination THEN

6. Travel Time « 0, Distance « 0

7. ELSE

8. Retrieve Travel Time and Distance as a response from Google Maps API
9. END IF

10. Add Travel Time to Row Times and Distance to Row Distances

11. END FOR

12. Add Row Times to Time Matrix and Row Distances to Distances Matrix
13. END FOR

14. Return Time Matrix, Distances Matrix
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3.3.2. Scenario Definition and Historical Data Collection

In this stage, traffic scenarios are characterized considering both peak periods and day types. Peak hours are
associated with commuting movements at the start and end of the workday, a recurring pattern in urban contexts
[20]. Global studies, such as those by the Institute of Transportation Engineers (ITE), place these periods between
7:00-9:00 a.m., 12:00-2:00 p.m., and 5:00-7:00 p.m., ranges commonly used to analyze traffic in different cities
[21].

However, vehicle congestion does not depend solely on the hour but also on the day type. During weekdays, work
and school activities significantly increase vehicle demand, whereas on non-working days, traffic patterns vary,
maintaining certain peaks in commercial and recreational areas [20, 22].

Therefore, the scenarios defined in this study combine both parameters to capture travel time variability:
e Scenario 1: Non-peak hour — Weekday
e Scenario 2: Peak hour — Weekday
o Scenario 3: Non-peak hour - Non-working Day
e Scenario 4: Peak Hour - Non-Working Day

This structure facilitates observing travel time fluctuations under different contexts, establishing a solid foundation
for implementing the stochastic model and subsequently evaluating it. Based on the scenario definitions, a function was
developed to collect historical travel time data, enabling analysis of behavior and characterization of variability in each
context.

e Travel time collection: Using the origin and destination points provided by the user, historical travel time data from
Google Maps is accessed. Over a 30-day range prior to the routing date, travel times were recorded every minute,
generating a total of 43,200 data points.

e Data segmentation: The 43,200 data points are segmented according to the four defined scenarios, organized
by time intervals and day types. The distribution per scenario is as follows: Peak hour/weekday: 8,400 data
points; Peak hour/non-working day: 4,200; Non-peak hour/weekday: 20,400; Non-peak hour/non-working
day: 10,200.

e Hourly average calculation: Within the data segmented into the four scenarios, the data is divided into 1-hour
intervals, and the average travel time in each interval is calculated. This hourly grouping allows capturing stochastic
variability homogeneously within each scenario. The number of hourly averages obtained per scenario is as
follows: non-peak hour/weekday: 340 averages (20,400 data points divided into 60-minute blocks), peak
hour/weekday: 140 averages (8,400 points), non-peak hour/non-working day: 170 averages (10,200 points), and
peak hour/non-working day: 70 averages (4,200 points).

e Kolmogorov-Smirnov test: This procedure is fundamental, as it validates the normality assumption underlying
the stochastic model. Although the Central Limit Theorem states that a sample composed of more than 30
averages is generally sufficient to approximate a normal distribution, the Kolmogorov-Smirnov test is used to
empirically verify this condition. This test is applied to the hourly averages obtained in each scenario,
evaluating whether they follow a normal distribution. If any scenario does not meet this criterion, the algorithm
issues an alert, indicating the need to increase the sample size to ensure statistical validity, and restarts the
process.

e Statistical Analysis: Once normality is validated, the hourly averages are analyzed per scenario to calculate the
mean and standard deviation, which are then used to represent their characteristic variability.

e Data insertion: The results obtained from the statistical analysis are organized into four matrices, each
corresponding to a specific scenario. These matrices are consolidated and saved in a CSV file named
Combined_data.csv, remaining available for later use in the model.

The entire process is detailed in the pseudocode of algorithm 6.
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Algorithm 6. Historical Data Analysis Function

Input:

- List of Locations (Origin and Destination)
- Start date of the routing plan

1. Now « get current date and time

2. Dates « generate list of datetime values in l-minute increments, going back 30 days
from the start date

3. Create empty matrices: Weekday Peak, Weekday NonPeak, NonWorkingday Peak,
NonWorkingday NonPeak

4. FOR each pair (Origin, Destination) where Origin <> Destination DO

5. Data « get travel times for each datetime value in Dates using Google Maps API

6. IF Data is empty THEN continue to the next pair.

7. FOR each record in Data DO

8. Hour « extract hour of record

9. Day « extract day of record

10. Peak Hour ~ "Yes" IF € {7-9, 12-14, 17-20}, ELSE "No"

11. Weekday « "Weekday” IF day € {Monday-Friday}, ELSE “NonWorkingday”

12. IF Peak Hour = "Yes" AND Weekday = "Weekday" THEN

13. Add record to Weekday Peak

14. ELSE IF Peak Hour = "Yes" AND Weekday = "NonWorkingday" THEN

15. Add record to NonWorkingday Peak

16. ELSE IF Peak Hour = "No" AND Weekday = "Weekday" THEN

17. Add record to Weekday NonPeak

18. ELSE

19. Add record to NonWorkingday NonPeak

20. END IF

21. END FOR

22. END FOR

23. FOR each matrix in {Weekday Peak, Weekday NonPeak, NonWorkingday Peak,
NonWorkingday NonPeak} DO

24. Divide matrix data into l-hour intervals
25. Calculate the average for each interval
26. Store results in corresponding average matrix

27. END FOR

28. FOR each average matrix DO

29. Perform Kolmogorov-Smirnov test for normality

30. IF distribution is not normal THEN

31. Stop the process and print: "Increase number of samples to ensure normality"
32. END IF

33. END FOR

34. FOR each average matrix DO

35. Calculate mean and standard deviation of hourly averages
36. END FOR

37. SAVE all results to 'Combined Data.csv' and RETURN

3.3.3. Stochastic Travel Time Model

In this stage, the stochastic travel time model function is implemented, whose purpose is to estimate the variability
in vehicle travel times, considering both the day and the estimated arrival time at each destination. This model allows
simulating real traffic conditions, incorporating uncertainty elements that reflect the inherent fluctuations of the road
environment.

Therefore, ensuring a robust design and precise operation of the stochastic model is fundamental to properly represent
temporal variability and evaluate the impact of different defined scenarios. In this case, the Box-Muller transformation
(using Equations 4 to 9 defined previously) was implemented directly, instead of using integrated normal generators
from modern libraries. This decision allows for detailed mathematical control over the simulation process and ensures
precise traceability of the model. The complete procedure is detailed in the pseudocode of Algorithm 7.
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Algorithm 7. Stochastic Model Function

Input: Routing solution (sequence of locations)

1. Time Matrix,  « Call Time and Distance Matrix Function

2. Call Historical Data Analysis Function

3. Initialize Adjusted Matrix « []

4. FOR each Origin location in Routing Solution DO

5. FOR each Destination in Routing Solution DO

6. IF Origin = Destination THEN

7. Adjusted Time «~ 0

8. ELSE

9. Departure Hour « get departure hour from Origin to Destination
10. Working Day « determine if the date is a working day
11. Nominal Time « Time Matrix [Origin] [Destination]

12. Identify scenario based on Departure Hour and Weekday
13. FOR each row in 'Combined Data.csv' DO

14. IF Origin and Destination match the row THEN

15. Mean, StdDev ~ extract values from the r

16. LT « Mean - (1.96 * StdDev)

17. LS « Mean + (1.96 * StdDev)

18. REPEAT:

19. X « Random (0, 1)

20. Y « Random (0, 1)

21. 720 « root(-21n(X)) * cos(2mY)

22. 721 « root(-21n (X)) * sin(2mY)

23. Varl « Mean + (Deviation * Z0)

24 . Var2 « Mean + (Deviation * Z1)

25 UNTIL (LI <= Varl <= LS) and (LI <= Var2 <= LS)
26 Chosen Var ~ Select randomly between Varl and Var2.
27 Adjusted Time « Nominal Time + Chosen Var

28 END IF

29. END FOR

30. END IF

31 Add Adjusted Time to Adjusted Time Matrix

32. END FOR

33. END FOR
34. Return Adjusted Time Matrix

To illustrate the procedure, considering the origin coordinates (-5.1965, -80.6328) and destination (-5.179587, -
80.677845), the algorithms described in Algorithms 5 and 6 were applied. The data collected for this route is presented
in Table 3, which summarizes descriptive statistics segmented by scenario.

Table 3. Compilation of the Pathway Analysis

Time Day Type :&Tﬁ;gs Media St;/?gggi Minimum  Maximum Origin Destination
Non-peak Weekday 340 14.94 0.36 14.37 15.62 -5.1965, -80.6328 -5.179587, -80.677845

Peak Weekday 140 155 0.74 14.48 17.02 -5.1965, -80.6328 -5.179587, -80.677845
Non-peak  Non-Working day 170 14.35 0.54 13.4 15.1 -5.1965, -80.6328 -5.179587, -80.677845

Peak Non-Working day 70 14.33 0.73 13.23 15.33 -5.1965, -80.6328 -5.179587, -80.677845

Based on the previously defined scenarios, travel times were adjusted using the stochastic function implemented in
Algorithm 7. The results of the stochastic adjustment, considering a 95% confidence level, are presented in Table 4,
allowing us to observe how traffic fluctuations impact estimated travel times.

Table 4. Adjusted Travel Times

95% Confidence Level

Seenario UL U2 20 2 Ut ameen oy T Time

Non- peak 0.69217 0.31844 -0.35763 0.77971 14.23440 15.64560 14.81125 14.23440 14.23440
Peak 0.47192 0.33866 -0.64796 1.04022 14.04960 16.95040 15.02051 14.04960 14.04960

Non-peak 0.05269 0.74479 -0.07935 -2.42493 13.29160 15.40840 14.30715 13.29160 14.30715
Peak 0.42669 0.98008 1.29494 -0.16292 12.89920 15.76080 15.27530 12.89920 15.27530
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3.4. Algorithm for VRPSTTW

After completing the first three stages, we proceed to the final phase, in which the stochastic model is integrated into
the main simulated annealing function developed in section 3.1. This integration allows the incorporation of travel time
variability while maintaining consistency in the algorithm’s flow.

In this final stage, all previously developed components are consolidated to form the complete VRPSTTW algorithm,
combining the stochastic travel time model with the simulated annealing metaheuristic. This results in a robust and
adaptable algorithm capable of addressing dynamic scenarios where traffic conditions fluctuate according to the defined
scenarios.

This implementation represents a clear methodological transition from the deterministic approach to the stochastic
one. It is important to note that the deterministic model was used only as a theoretical reference, based on the classic
Solomon instances. It was not applied to real-world settings due to its structural limitation: it assumes constant travel
times, which is inadequate for representing the uncertain nature of urban traffic. In contrast, the stochastic model was
designed to operate with empirical data, incorporating time and contextual variability. Therefore, all practical validations
of the algorithm were performed exclusively under the stochastic approach, as it was the only methodologically coherent
alternative aligned with the study's objectives.

The entire process is summarized in Algorithm 8, which structures each step from parameter initialization to obtaining
the best route.

Algorithm 8. VRPSTTW Development

Input: VRPTW Instance

Define SA parameters: T max, T min, Cooling Rate, Max Iter

Load data from VRPSTTW instance

Call Time and Distance Matrix Function

Generate Current Solution, Current Used Vehicles « Initial Solution Creation Function
Apply Stochastic Model Function to Current Solution

o U W N

Current Energy « Energy Calculation Function (Current Solution,
Current Used Vehicles) using the Adjusted Time generated by the stochastic model
7. Best Solution « Current Solution

8. Best Energy « Current Energy

9. T « T max

10. Iterations « 0

11. WHILE Max Iter > Iterations and T > T min DO

12. Neighbor Solution, Neighbor Used Vehicles « Neighbor Solution Generation Function

13. Apply Stochastic Model Function to Neighbor Solution

14. Neighbor Energy « Energy Evaluation Function (Neighbor Solution,
Neighbor Used Vehicles) using adjusted travel times

15. AE « Neighbor Energy - Current Energy

16. IF AE < 0 or exp (-AE / Temp Initial) > random (0,1) THEN

17. Current Solution « Neighbor Solution

18. Current Used Vehicles « Neighbor Used Vehicles

19. Current Energy « Neighbor Energy

20. END YES

21. IF Current Energy < Best Energy THEN

22. Best Solution « Current Solution

23. Best Energy « Current Energy

24. END YES

25. T max « T max * Cooling Rate

26. END WHILE
27. Print Best Solution, Best Energy

4. Results

After completing the four implementation phases of the VRPSTTW algorithm, it was evaluated using a stochastic
instance with 100 customers, generated from real coordinates. Since the algorithm’s capability to solve complex
scenarios had already been validated during the deterministic phase, it was not deemed necessary to evaluate multiple
instances at this stage. The objective here was to verify compliance with the multi-objective function — minimizing the
number of vehicles and associated costs (including total distance, travel time, and time window penalties) — as well as
to establish guidelines for future improvements and methodological adjustments.
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To this end, different experimental configurations were assessed using a factorial design, considering three levels for
each of the following parameters: initial temperature (500, 1000, and 1500), cooling rate (0.3, 0.5, and 0.9), and
maximum number of iterations (1000, 2000, and 4000). These levels were selected due to their frequent use in previous
simulated annealing studies and their ability to adequately represent the extremes of the algorithm’s configuration space
[15].

4.1. Factorial Design and Analysis of VVariance

To evaluate the impact of design factors on the stability of solutions generated by the algorithm, an analysis of
variance (ANOVA) was performed, considering the obtained energy as the response variable. The factors included were
initial temperature (A), cooling rate (B), and maximum number of iterations (C), as well as their interactions. The results
are presented in Table 5.

Table 5. Analysis of Variance

Source of Degrees of

Variation Ereedom Sum of Squares Mean Squares F-Statistic Significance (* at 0.05 and ** at 0.01)
Treatments 26 26718227.2561
A 2 2134.8176 1067.4088 2.62393
B 2 4295.3208 2147.6604 5.27942 *
C 2 26701252.3001 13350626.1500 32818.77686 o
AB 4 1178.8409 294.7102 0.72446
AC 4 2057.2887 514.3222 1.26432
BC 4 4054.3008 1013.5752 2.49159
ABC 8 3254.3873 406.7984 1.00000
ERROR 81 20877.9172 257.7521
TOTAL 107 26739105.1733
Coefficient of Variation (CV) 0.15%

The analysis of variance shows that both the cooling rate (B) and the maximum number of iterations (C) have a
significant impact on the obtained energy. The cooling rate shows an F-statistic of 5.28 with a significance level below
0.05, while the number of iterations shows an F of 32,818.78, with a significance below 0.01, consolidating it as the
most determining factor in optimizing the simulated annealing process.

In contrast, the interactions AB, AC, and BC did not show significant effects, suggesting that the combined effects
between these factors do not notably influence the solution energy.

The coefficient of variation (CV) was 0.15%, reflecting low variability in the analyzed data, confirming the stability
of the algorithm after calibration.

A more detailed analysis was then performed using Duncan’s multiple range test at a 1% significance level and with
81 error degrees of freedom, to identify the optimal factor levels. The results are presented in Table 6.

Table 6. Duncan's Multiple Range Test

KEY Cooling Rate Subset (Mean)
Bl 0.3 11047.43
B2 0.5 11043.52 11043.52
B3 0.9 11032.53
KEY Maximum Iterations Subset (Mean)
C1 1000 11055.05
Cc2 2000 - 11042.14
C3 4000 - 11035.29

Regarding the cooling rate (B), the level corresponding to 0.9 recorded the lowest mean value, 11,032.53, indicating
better algorithm performance under higher rates. Although the ANOVA showed significance for this factor at the 5%
level, Duncan’s test, applied with a stricter 1% threshold, confirmed that level 0.9 has a significantly lower mean than
level 0.3. This validates that the choice of the optimal level remains solid even with a more stringent statistical criterion.

Meanwhile, the maximum number of iterations (C) showed a decreasing trend in means as its value increased,
reaching a minimum of 11,035.29 with 4,000 iterations. This behavior suggests that the algorithm tends to stabilize with
a higher number of iterations, favoring solutions with lower energy.
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After defining the optimal levels for the factors — Cooling Rate (B = 0.9) and Maximum Iterations (C = 4000) —
the energy behavior throughout the iterations was evaluated, recording values on an Energy vs. lterations graph. The
results reveal a progressive trend toward energy stabilization, evidencing the convergence of the algorithm toward near-
optimal solutions. This evolution can be observed in Figure 2.
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Figure 2. Energy vs Iterations Graph
4.2. Algorithm Precision

Using the optimal parameters previously determined, 10 runs of the algorithm were carried out on the test instance
composed of 100 clients. The objective was to evaluate the consistency and precision of the results obtained by analyzing
the variability in the solutions generated in each random run. This procedure provided a comparative framework for
assessing the precision of the algorithm in a controlled environment. The results obtained are presented in Table 7.

Table 7. Algorithm Precision

Run Energy Number of Vehicles Total distance (km)  Total Travel Time (min)  Penalties  Execution time (min)

1 10692.7 10 617.23 75.47 0 0.49

2 10690.97 10 616.15 74.82 0 0.47

3 10689.16 10 613.82 75.34 0 0.59

4 10688.95 10 611.97 76.98 0 0.7

5 10689.38 10 613.52 75.86 0 0.46

6 10692.18 10 617.47 74.71 0 0.47

7 10690.04 10 614.81 75.23 0 0.48

8 10688.61 10 613.98 74.63 0 0.46

9 10690.35 10 614.87 75.48 0 0.49

10 10688.78 10 613.5 75.28 0 0.46

Average 10690.112 10 614.732 75.38 0 0.507
Standard Deviation 1.437 0 1.757 0.68 0
Minimum 10688.61 10 611.97 74.63 0
Maximum 10692.7 10 617.47 76.98 0

The developed algorithm recorded an average execution time of 0.507 minutes, demonstrating efficient performance
even on large instances. In terms of energy, a mean of 10,690.112 with a standard deviation of 1.437 was obtained,
indicating low variability in the generated solutions. Regarding the objective function, defined to minimize both the
number of vehicles and the associated costs (distance, time, and penalties), it was observed that in all runs the number
of vehicles remained constant at 10, reaching the required minimum. This demonstrates the algorithm’s effectiveness in
optimizing routes without needing to increase the fleet size.

As for the associated costs, the traveled distance showed a standard deviation of 1.757 km, while the total travel time
exhibited a dispersion of 0.68 minutes; both indicators reflecting low variability in the results.

749



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Regarding penalties, it is worth noting that no violations were recorded in any of the runs, which reaffirms the
algorithm’s capacity to generate feasible solutions without violating constraints, thus consolidating its precision,
stability, and efficiency.

4.3. Algorithm Robustness

In the robustness analysis, energy is used exclusively as the central indicator, since it integrates the multi-objective
function in a consolidated manner. This allows for a more coherent evaluation of the impact of variations in the
algorithm's parameters, avoiding analytical dispersion that might arise when considering indicators separately.

Following this premise, 36 additional runs were performed using the test instance with 100 customers, applying small
modifications to the previously determined optimal parameters. The results obtained are presented in Table 8.

Table 8. Robustness of the Algorithm (Energy Harvesting)

Initial Temperature 1500
Cooling Rate 09 0.95 0.99
10694.52 10693.78 10691.87
10693.45 10691.45 10692.54
3500
10697.45 10694.57 10695.45
10693.25 10693.25 10691.23
10691.45 10691.64 10690.87
Maximum 4750 10690.87 10690.56 10690.78
Iterations 10692.78 10691.45 10690.38
10693.45 10692.34 10692.25
10692.31 10691.75 10689.24
10690.05 10689.74 10688.79
4000
10689.31 10688.98 10689.01
10689.47 10689.56 10688.74
Average 10691.63
Standard Deviation 2.048

The mean energy recorded in these additional runs was 10,691.63, representing an increase of 1.518 units compared
to the value obtained in Table 7. This increase, accompanied by a standard deviation of 2.048 (higher than the initial
1.437), reflects slightly greater dispersion in the results, consistent with the modifications applied to the algorithm
parameters.

In percentage terms, the standard deviation corresponds to 0.019% of the mean, indicating low variability, although
slightly higher than that recorded with the optimal parameters. Despite this increase, the algorithm maintains an
acceptable level of consistency, demonstrating its robustness and ability to generate stable solutions even with slight
parameter modifications.

Additionally, this practical analysis supports the validity of the conclusions drawn from the factorial design, showing
that the algorithm’s performance remains stable without relying on exact configurations or a single strict statistical
significance threshold. Moderate variations in the cooling rate and the number of iterations did not substantially alter the
quality of the solutions, reinforcing the solidity of the recommendations obtained.

4.4. Computational Complexity of the Algorithm

The estimation of the computational complexity of the proposed algorithm was carried out based on the structural
analysis of the pseudocode and the implemented functional modules. Table 9 details the main blocks of the algorithm
and their respective asymptotic complexity order, considering the number of customers as the dominant variable n and
the number of iterations C as the control parameter of simulated annealing.
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Table 9. Algorithm Complexity

Block / Function Description Complexity Remarks
Initial Solytlon Create a feasible solutlon_ with multiple vehicles 0(n?) Involves the distance/time matrix between all clients
Generation and clients

Adjusts travel times between all customer pairs

Stochastic Model based on the scenario 0(n?) Can be optimized with a dictionary for constant-time access
Neighbor Generation Alter the current solution using move operators o(n) Depends on the type of move (swap, 2-opt, relocate, etc.)
Stochils;:;hl\élg;jel on Repeated for each generated neighbor 0(n?) Dominant component of each SA iteration
Energy Calculation Sum of distances, times, penalties o(n) Route is traversed to compute the objective function

(Total Cost)
Acceptance Co_n dition Checks whether to accept the new solution 0(1) Compares energy values and a random number

(Metropolis)
Main SA Loop Runs the process over “Max_Iter” iterations 0(0) Loop body executed until temperature decreases

Overall, the total algorithm complexity is obtained by identifying the heaviest computational block within the
iterative cycle. The stochastic model, which runs for each evaluated neighbor solution, introduces a cost of O(n?) per
iteration. As the number of iterations is constant and parameterized by C, the total complexity of the algorithm is formally
analyzed in Equation 23.

T(n) = 0(C.n?) (23)

This expression reflects quadratic behavior relative to the number of customers, which is consistent with the
combinatorial nature of the problem and the structure of the adjusted time evaluation model.

The average execution time recorded for an instance of 100 customers was 0.5 minutes. Assuming that the algorithm's
complexity remains stable and the number of iterations does not vary, it is possible to estimate the execution time for
other input scales using the projection shown in Equation 24.

T(n) = T(100) () » T(n) = 0.5 () (24)

This estimate will be used to generate the projected time graph as a function of the number of customers, see Figure
3.
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Figure 3. Time as a Function of the Number of Customers

5. Discussion

The results obtained in this research confirm the effectiveness of simulated annealing (SA) as a competitive
metaheuristic for solving complex VRP variants, as also shown in previous studies such as Pratiwi et al. (2018) [8],
where SA was used within a hybrid proposal. Unlike recent approaches such as Gibbons & Ombuki-Berman (2024) [9],
which opt for memetic algorithms combining evolution and local search, this study demonstrates that a classic, properly
tuned SA can achieve high-quality solutions on instances with up to 100 customers without the need for more complex
hybrid structures.
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The fine-tuning of the initial temperature, cooling rate, and number of iterations allowed energy to stabilize with a
standard deviation of 1.437 (CV = 0.013%). This level of variability is even lower than that reported by Abdullahi et al.
(2025) [4], whose study presented a CV = 0.03% on comparable instances, revealing that a rigorous factorial design is
sufficient to achieve similar stability without additional reliability layers.

When the optimal parameters were perturbed, the deviation rose to 2.048 (0.019%), an increase still below the 0.05%
observed by Rajabi-Bahaabadi et al. (2021) [5] when recalibrating their ACO-taboo scheme; moreover, our solution
maintained a constant minimum fleet size, whereas theirs required additional vehicles in some scenarios. These findings
support the thesis of Kirkpatrick et al. (1983) [15] on SA’s ability to escape local optima and converge with low
dispersion when parameters are properly tuned.

Regarding the incorporation of stochasticity, previous studies by Laporte et al. (1992) [10] and Guevara et al. (2025)
[11] addressed the modeling of stochastic travel times through generic simulations, without considering empirical data
from the real environment. In contrast, the present research implements a stochastic model based on real data extracted
from Google Maps, allowing a more precise capture of urban traffic variability. This approach responds to the criticism
posed by Nguyen et al. (2016) [13], who acknowledged that their solutions for VRPSTTW, although effective in
simulated environments, did not integrate real conditions such as traffic congestion or hourly variations.

Instead of using stochastic models based on theoretical assumptions, like the Monte Carlo simulations employed by
Guevara et al. (2025) [11], this research implements a model grounded in the Box-Muller transformation, following the
methodology described by Papacostas & Prevedouros (1993) [17]. This method allows generating normal distributions
from empirical data, adjusting the mean and standard deviation for each defined scenario (off-peak/working day,
peak/working day, off-peak/non-working day, peak/non-working day).

The results of the stochastic model show that, unlike the approach presented by Van Woensel et al. (2008) [12],
where traffic congestion is modeled using queuing theory, this proposal integrates traffic variability directly into the
travel time calculation. This not only allows capturing hourly fluctuations but also reflects operational differences
between working and non-working days, as suggested by global studies from the Institute of Transportation Engineers
(ITE).

In terms of efficiency, the algorithm solved the 100-customer instance in 0.507 minutes, surpassing the 36.4 s of
Abdullahi et al.’s simheuristic [4] and approaching the performance of Iklassov et al. (2024) [1], whose reinforcement
learning model infers routes in 0.4 s, albeit after extensive GPU training. Additionally, our average distance of 614.7 km
improves by 3.2% over the best result published by Wei et al. (2024) [19] in the deterministic model for class RC101
using their LNS-MRSO hybrid, with a standard deviation of only 1.757 km versus the 3-5 km they report.

While previous literature addresses VRPSTTW in a fragmented manner (focusing on time windows [9, 14] or
stochastic travel times [11,12]), this research integrates both aspects into a single algorithm, validated with real data and
supported by statistical analyses of precision, robustness, and complexity O(C-n2). Thus, the proposal positions itself as
a computationally viable alternative for route optimization in urban contexts with high temporal uncertainty.

However, this empirical approach presents an operational limitation related to dependency on external services such
as the Google Maps API. Although this source provides realistic and up-to-date data, its large-scale use can generate
costs and quota restrictions, complicating model replication in production environments. Furthermore, although a formal
verification of biases in travel time estimates was not conducted, previous studies have reported systematic inaccuracies
[22-24]: in urban environments, travel times tend to be underestimated, while in rural areas with low data coverage,
larger errors are observed. These limitations suggest the need to incorporate validation mechanisms in future research,
especially when modeling contexts with high geographic or temporal variability.

6. Conclusion

This study presented an implementation based on simulated annealing to address the Vehicle Routing Problem with
Stochastic Travel Times and Soft Time Windows (VRPSTTW), showing promising results in terms of operational
efficiency and solution stability. The methodology was capable of solving urban instances with up to 100 customers,
strictly complying with time constraints without incurring penalties. The applied factorial analysis allowed the
identification of the cooling rate and the maximum number of iterations as key factors influencing the algorithm’s
behavior. In particular, 4,000 iterations stood out as the most influential parameter in stabilizing the objective function.
The experimental runs showed an average energy of 10,690.112, low dispersion in the results, and constant use of the
minimum number of required vehicles, evidencing both the consistency and efficiency of the proposed approach.

Additionally, when controlled variations were introduced into the optimal parameters, the algorithm maintained
solution quality within acceptable ranges, demonstrating adequate robustness against perturbations. In all executions,
the model complied with the imposed operational constraints, even under conditions of high temporal uncertainty. In
general terms, the proposal represents a computationally viable and effective alternative for route optimization in
dynamic logistics contexts, such as last-mile distribution systems or fleet management in emergency situations. As future
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research directions, it is recommended to explore the algorithm’s behavior on larger-scale instances (200 to 1,000
customers), as well as to integrate hybrid approaches that incorporate machine learning-based predictive models to
anticipate stochastic scenarios and improve the model’s adaptability to dynamic data.

In the current approach, stochastic scenarios are manually defined based on four representative combinations of peak
hour and workday, which imposes an important limitation in terms of coverage and realism. By integrating machine
learning models, such as XGBoost or recurrent neural networks, it would be possible to train travel time predictors based
on multiple contextual variables (hour, day, weather, traffic history, etc.), which would allow generalization to millions
of possible scenarios without explicitly defining them. This would enable better anticipation of congestion and greater
adaptability of the algorithm to changing conditions, evolving the model from a static system to a truly dynamic and
intelligent one
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