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Abstract 

One well-known process detection tool that is sensitive to even little shift changes in the process is the Double 

Exponentially Weighted Moving Average (DEWMA) control chart. The present study aims to provide exact average run 

length (ARL) on the DEWMA chart under the data that is underlying the quadratic trend autoregressive (AR) model. At 

that point, the computed ARL via the numerical integral equation (NIE) technique was compared in terms of accuracy to 

the exact one that was developed by using the percentage accuracy (%Acc). And then, the computational times of both 

were also compared. The results revealed that the ARL results of exact ARL and ARL via the NIE method show hardly any 

difference in terms of accuracy, but exact ARL outperformed in terms of computational times that were computed instantly, 

whereas the other way spent approximately 2-3 seconds computing. Thereafter, the proposed ARL operating on the 

DEWMA chart was compared to the CUSUM and EEWMA charts. It was found to be more effective in terms of detection 

performance. Especially when there are little shift changes in the process. The run length formulas, which are the standard 

deviation run length (SDRL) and the median run length (MRL), were measures of sensitivity evaluation and were used to 

verify their capability. The sensitivity of detecting changes of exact ARL running on the DEWMA chart was illustrated by 

the real data utilized in fields of economics about natural gas importing in Thailand (Unit: 100 MMSCFD at heat value of 

natural gas 1,000 BTU/SCF). Apparently, the exact ARL of the DEWMA chart is an excellent choice to detect small shift 

changes under this scenario, which represents properties as a quadratic trend AR model. 

Keywords: Autoregressive Model; DEWMA Control Chart; Exact Run Length; Explicit Formula; Quadratic Trend. 

1. Introduction 

The control chart is a statistical tool that is frequently used to detect process changes and monitor the quality of 

manufacturing processes. The Shewhart control chart is the most used because of its simplicity and high sensitivity to 

major changes in the process. However, it is not great for detecting minor to moderate changes in the process; hence, 

researchers have developed other control charts for each scenario. Two widespread instances are the cumulative sum 

(CUSUM) [1] and exponentially weighted moving average (EWMA) [2] control charts. Many studies also noted control 

charts that were modified from the EWMA-type chart. They were more sensitive than the standard EWMA chart in 

detecting even minute changes in the process. Examples of control charts include the modified exponentially weighted 

moving average (MEWMA) [3] and the extended exponentially weighted moving average (EEWMA) [4]. Many 

researchers have studied those control charts and noticed that they are sensitive enough to detect tiny changes in the 

process for different scenarios. Moreover, Shamma and Shamma first introduced the double exponentially weighted 
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moving average (DEWMA) [5]. After that, Mahmoud and Woodall adjusted it [6] and demonstrated that the DEWMA 

chart is an alternative for more sensitivity for detecting tiny changes in the process parameters. It has widespread 

application in a variety of fields and procedures, including finance, economics, medicine, healthcare, and the 

environment. 

Autocorrelation describes the tendency of subsequent points of data in a time series to correspond. Control charts are 

statistical techniques used to find out when behavior becomes out of control. One technique for dealing with 

autocorrelation in a control chart is to employ specific algorithms that consider the correlation between subsequent data 

points. For example, a control chart for the autoregressive and moving averages (ARMA) model detects a process with 

autocorrelated data by combining time series models with control charts. On top of that, the trend and quadratic trend 

are two aspects of autocorrelation that might impact the dependent variable, such as indicators for forecast data in various 

fields. Most real-world data takes the form of time series with either linear trends or quadratic trends as components. 

Karaoglan & Bayhan [7] applied a trend-stationary AR(1) model to estimate the peroxide amounts in stored vegetable 

oil. Yue & Pilon [8] investigated an annual mean daily streamflow dataset from 15 watersheds, utilizing a linear trend 

with the AR(1) model. Karoon et al. [9] applied a quadratic trend AR(p) model and a control chart combination to 

monitor user web browser data in Thailand. 

The average run length (ARL) is the most frequently implemented metric to quantify control chart efficacy in the 

process. There exist two properties: in-control ARL (ARL0) and out-of-control ARL (ARL1). ARL0 represents the average 

number of observations a process in control renders before signalling that it is out of control, and it should be high. To 

identify an out-of-control adjustment in a process variable, an average number of observations, known as ARL1, is 

necessary, and it must be as few as possible. ARL computations have been made to use a variety of methods, as suggested 

by various literary works. comprised of Monte Carlo simulation, Markov chain, and the numerical integral equation 

(NIE). They were found in Champ & Rigdon [10], Riaz et al. [11], and Peerajit [12]. Furthermore, some scholars employ 

and advocate the computation of these indicators as well as the calculation of run length (RL) using the measures of 

central tendency (median) and spread (standard deviation), which can be called MRL and SDRL, respectively. They were 

extra measurements used to track shift changes in the process. 

In time series analysis, it is crucial to consider the error, which is the difference between the observed and predicted 

values. A smaller error generally indicates higher model accuracy. This error, commonly referred to as white noise, is 

typically assumed to follow a normal distribution. However, in cases where the data exhibit autocorrelation, the error 

structure may instead follow an exponential white noise pattern. To assess the effectiveness of control charts, specific 

formulas are used. One of these formulas is derived from the Fredholm integral equation of the second kind, which 

requires the proof of the existence and uniqueness of the ARL using Banach's fixed-point theorem in order to arrive at a 

complete formula. Many researchers have extended this approach, originally developed for ARL, to other control charts 

and diverse applications. Starting with Supharakonsakun [13], a two-sided exact ARL formula for the modified EWMA 

chart was created using the generic moving average (MA(p)) model, and it was then applied to the Dow Jones composite 

average based on a real-life dataset.  

 Bualuang & Peerajit [14] demonstrated explicit and NIE of ARL operating on the CUSUM chart, as well as the 

ARFIX process, and applied it to an economic dataset containing gold futures prices. Karoon & Areepong [15] recently 

published an explicit ARL based on the general AR with the trend model of the double EWMA chart and applied it to 

economic data containing cryptocurrency prices. Phanyaem [16] proposed explicit solutions for the ARL of the 

exponentially Weighted Moving Average (EWMA) control chart in the presence of a SARX(P,r)L process. In the same 

year, Phanyaem [17] provide formulas for computing the ARL of the EWMA chart for quadratic trend AR(1) model 

with exponential white noise. In the literature mentioned above, it was demonstrated that the capability of an exact ARL 

solution with any control chart under autocorrelated data can be applied to current real-life data. Moreover, Karoon & 

Areepong [18] presented the exact ARL solution for the new EEWMA control chart under the AR model and compared 

the performance of this new EEWMA chart with the traditional EWMA and extended EWMA charts. The comparison 

was also applied to an economic dataset from Thailand. Recently, Neammai et al. [19] used the MA(q) process to create 

an analytical formula for the ARL of DMEWMA charts. Their findings indicate that, for various process mean shifts, 

the DMEWMA chart outperforms others, with stock data demonstrating its superior efficacy in process monitoring. 

According to the literature review, the quadratic trend component in general AR models has been incorporated into 

various control charts, such as the extended EWMA [9] and the Adjusted modified EWMA [20] in 2023 and 2024, 

respectively. However, no application has been reported for the DEWMA chart based on quadratic trend AR(p) model. 

In 2025, this study, therefore, presents the ARL of the DEWMA chart for general AR models using the quadratic trend 

model, also known as the quadratic trend AR(p) model. The calculation was performed using two methods: the exact 

solution and the NIE technique. Additionally, the defined ARL had not been previously addressed. A comparison of both 

methods was made in terms of accuracy and computation speed under the two-sided DEWMA chart. Both simulated and 

real-world economic data were then compared with the EEWMA and CUSUM charts, as well as the accurate ARL 

DEWMA chart. Moreover, real-life data is used in this study to demonstrate the capability of DEWMA control charts. 

It was also verified by detecting changes in control charts by showing a graph-quality control chart. 
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2. Preliminaries 

This section presents a brief description of the two-sided control charts and the quadratic trend AR(p) model with 

exponential white noise. 

2.1. Structure of Control Chart 

First, Page [1] created the CUSUM chart for quality control, which can be used as a substitute for the Shewhart 

control chart to identify slight to moderate shift changes in the process. The CUSUM chart's statistics can be stated 

characteristically in Equation 1 as follows: 

𝐶𝑡 = 𝑚𝑎𝑥( 0, 𝐶𝑡−1 + 𝑋𝑡 − 𝜅);        𝑡 = 1 .  2, . …  (1) 

where 𝑋𝑡 is a sequence of quadratic trend AR(p) process with an exponential white noise.  

𝐶0 ≥ 0 and 𝜅 > 0 are the starting value and the non-zero constant, respectively, and then 𝐶0 = 𝜛 is the initial value of 

CUSUM; 𝜛 ∈ [𝑎, 𝑏]. Moreover, 𝜅 > 0 is signalled that the process may be out-of-control. The CUSUM showed the 

corresponding stopping time as 𝜏𝐶 = 𝑖𝑛𝑓{ 𝑡 ≥ 0; 𝐶𝑡 < 𝐿𝐶𝐿  𝑜𝑟  𝐶𝑡 > 𝑈𝐶𝐿} where 𝑎 and 𝑏 are expressed as the lower (𝐿𝐶𝐿) 

and upper (𝑈𝐶𝐿) control limit of two-sided CUSUM chart. 

Second, the Extended Exponentially Weighted Moving Average (EEWMA) control chart was introduced by Naveed 

et al. [4] after Roberts [2] developed the EWMA chart to monitor a process over time. It works well for tracking and 

identifying slight variations in the average procedure. It is possible to express the EEWMA control chart using the 

recursive equation in Equation 2. 

𝐸𝐸𝑡 = 𝜆1𝑋𝑡 − 𝜆2𝑋𝑡−1 + (1 − 𝜆1 + 𝜆2)𝐸𝑡−1, ;   𝑡 = 1, 2, ...  (2) 

where 𝜆1 and 𝜆2 are exponential smoothing parameters with interval as (0 < 𝜆1 ≤ 1) and (0 < 𝜆2 < 𝜆1), respectively. 

The initial value is a constant, 𝐸𝐸0 = 𝑢. On the EEWMA chart, the upper and lower control limits are provided by: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√
𝜆1

2+𝜆2
2−2𝜆1𝜆2(1−𝜆1+𝜆2)

2(𝜆1−𝜆2)−(𝜆1−𝜆2)2 ,  (3) 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆1

2+𝜆2
2−2𝜆1𝜆2(1−𝜆1+𝜆2)

2(𝜆1−𝜆2)−(𝜆1−𝜆2)2 ,  (4) 

where 𝜇0, 𝜎, and 𝐿 are the mean, the process standard deviation, and the suitable control limit width, respectively.  

he mean and variance of the process variable 𝑋𝑡, which is monitored by the EEWMA statistic, are denoted by 𝜇0and 

(𝜎2 [
𝜆1

2+𝜆2
2−2𝜆1𝜆2(1−𝜆1+𝜆2)

2(𝜆1−𝜆2)−(𝜆1−𝜆2)2 ]), respectively. The EEWMA control chart's stopping time can be found using 𝜏𝐸𝐸 = 𝑖𝑛𝑓{ 𝑡 ≥

0; 𝐸𝐸𝑡< 𝐿𝐶𝐿 𝑜𝑟 𝐸𝐸𝑡 > 𝑈𝐶𝐿} where 𝑐 and 𝑑are expressed as the lower (𝐿𝐶𝐿) and upper (𝑈𝐶𝐿) control limit of two-

sided EEWMA chart. 

Third, Shamma & Shamma [5] updated the classic EWMA chart to create the DEWMA chart, which was later created 

by Mahmoud & Woodall [6] in 2010 to efficiently monitor tiny changes in process parameters. The DEWMA chart’s 

statistics can be estimated using Equation 5: 

𝐸𝑡 = 𝜆2𝑋𝑡 + (1 − 𝜆2)𝐸𝑡−1 ;   𝑡 = 1, 2, ...   and 𝐷𝐸𝑡 = 𝜆1𝐸𝑡 + (1 − 𝜆1)𝐷𝐸𝑡−1 (5) 

where 𝜆1 and 𝜆2 are exponential smoothing parameters with intervals that are (0 < 𝜆1 ≤ 1) and (0 < 𝜆2 < 1), 

respectively, the apparent exponential smoothing parameters of the EEWMA chart. And then, 𝐷𝐸𝑡 with 𝑡 = 0 

represented the initial value of the DEWMA statistics, 𝐷𝐸0 = 𝑣. The upper (UCL) and lower (LCL) control limits of the 

DEWMA chart are as follows: 

𝑈𝐶𝐿 = 𝜇0 + 𝐿̈𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆1)2

1−(1−𝜆1)2 +
(1−𝜆2)2

1−(1−𝜆2)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
],, and (6) 

𝑈𝐶𝐿 = 𝜇0 − 𝐿̈𝜎√
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 [
(1−𝜆1)2

1−(1−𝜆1)2 +
(1−𝜆2)2

1−(1−𝜆2)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
],  (7) 

where 𝜇0, 𝜎 , and 𝐿̈ are the mean, the process standard deviation, and the suitable control limit width, respectively.  

The process variable 𝑋𝑡 used in constructing the DEWMA statistics has mean (𝜇0) and variance 

(
𝜆1

2𝜆2
2

(𝜆1−𝜆2)2 𝜎2 [
(1−𝜆1)2

1−(1−𝜆1)2 +
(1−𝜆2)2

1−(1−𝜆2)2 − 2
(1−𝜆1)(1−𝜆2)

1−(1−𝜆1)(1−𝜆2)
]), respectively. The EEWMA control chart's stopping time can be found 

using 𝜏𝐷𝐸 = 𝑖𝑛𝑓{ 𝑡 ≥ 0; 𝐷𝐸𝑡< 𝐿𝐶𝐿 𝑜𝑟 𝐷𝐸𝑡 > 𝑈𝐶𝐿} where 𝑒 and 𝑓are expressed as the lower (𝐿𝐶𝐿) and upper (𝑈𝐶𝐿) 

control limit of two-sided DEWMA chart. Moreover, both the DEWMA and EEWMA statistics are equivariant, as they 

can be transformed into the traditional EWMA statistic. Specifically, when 𝜆2in the DEWMA statistic is set to 1, the 

DEWMA statistic reduces to the standard EWMA statistic. Similarly, when 𝜆2in the EEWMA statistic is set to 0, the 

EEWMA statistic becomes equivalent to the EWMA statistic. 
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2.2. Methodology for Exact ARL on DEWMA Chart based on Quadratic Trend AR Model 

Primarily, this study derives the exact formulas of the Quadratic Trend AR(p) model. The quadratic trend AR(p) 

model is a statistical model used to analyse and forecast time-series data, which is data in which observations are 

collected over time and their order is important. Modelling time-series data is frequently employed in many disciplines, 

such as economics, finance, engineering, and environmental research. This study focused on the general quadratic trend 

autoregressive model, often known as the quadratic trend AR(p) model. Equation 8 represents the quadratic trend AR(p) 

model for lag p. 

𝑋𝑡 = 𝜓 + 𝜂𝑡 + 𝜗𝑡2 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +...+𝜙𝑝𝑋𝑡−𝑝 + 𝜉𝑡 (8) 

where 𝜓 is the constant of model, 𝜂 and 𝜗 are the constant of times, and both linear and quadratic trend time terms (t 

and t2) were included as exogenous variables to capture the data’s underlying trend. 𝜙1, 𝜙2, . . . , 𝜙𝑝 are the coefficients of 

time series model with |𝜙1, 𝜙2, . . . , 𝜙𝑝| < 1. Also, 𝜉𝑡is the error term for continuous i.i.d. random variables derived from 

exponential white noise; 𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛾). The probability density function of 𝜉𝑡  can be expressed as 𝑓(𝑥, 𝛾) =
1

𝛾𝑒
−

𝑥
𝛾

; 𝛾 > 0. 

Based on the ARL characteristics considered throughout the study, several simple change-point models are analyzed as 

follows below: 

𝜉𝑡 ∼ {
𝐸𝑥𝑝(𝛾0)
𝐸𝑥𝑝(𝛾1)

 
𝑡 = 1, 2, ..., 𝜃 − 1 

(9) 
𝑡 = 𝜃, ..., 𝜃 + 1, ... 

where 𝛾0 and 𝛾1 are known parameters with 𝛾1 > 𝛾0. By exploring the change point in Equation 5, the ARL defined with 

𝐸𝜃(. ) can be described as follows below. 

𝐴𝑅𝐿 = {
𝐴𝑅𝐿0 = 𝐸∞(𝜏), 𝜃 = ∞ (𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒)

𝐴𝑅𝐿1 = 𝐸1(𝜏), 𝜃 = 1 (𝑐ℎ𝑎𝑛𝑔𝑒)
  (10) 

where 𝐸𝜃(. )denotes the expectation under distribution 𝐹(𝑥, 𝛾) for a given change-point time. 𝜃 = ∞ shows in-control 

ARL (ARL0), whereas 𝜃 = 1 indicates the initial instance of a change from 𝛾0 to 𝛾 in the process, which is known as out-

of-control ARL (ARL1). Subsequently, the DEWMA statistic defined in Equation 5 can be reformulated using the 

quadratic trend AR(p) model, and is represented as follows: 

𝐷𝐸𝑡 = 𝜆1𝜆2(𝜓 + 𝜂𝑡 + 𝜗𝑡2 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +...+𝜙𝑝𝑋𝑡−𝑝 + 𝜉𝑡) + 𝜆2(1 − 𝜆1)𝐸𝑡−1 + (1 − 𝜆2)𝐷𝐸𝑡−1  (11) 

Under the in-control condition, the DEWMA scheme is defined as a two-sided control chart, with 𝑒 < 𝐷𝐸𝑡 < 𝑓; Then,  

𝑒 < 𝜆1𝜆2(𝜓 + 𝜂𝑡 + 𝜗𝑡2 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2+. . . +𝜙𝑝𝑋𝑡−𝑝 + 𝜉𝑡) + 𝜆2(1 − 𝜆1)𝐸𝑡−1 + (1 − 𝜆2)𝐷𝐸𝑡−1 < 𝑓  (12) 

Subsequently, the equation was rewritten in terms of 𝜉𝑡 with the change-point time at 𝑡 = 1, and initial values are 

defined as 𝐷𝐸0 = 𝑣 and 𝐸0 = 𝑧. The interval of 𝜉𝑡  can be rearranged as 

𝑒−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔 < 𝜉1 <

𝑓−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔  (13) 

where 𝜔 represents 𝜓 + 𝜂 + 𝜗 + ∑ 𝜙𝑖𝑋1−𝑖
𝑝
𝑖=1 . 

Let 𝜁(𝑣) be the exact ARL on DEWMA chart under quadratic trend AR(p). The exact ARL in this study was modified 

using the Fredholm integral equation of the second kind [21], as presented below: 

𝜁(𝑣) = 1 + ∫ 𝜁(𝜆1𝜆2(𝜔 + 𝜉1) + (1 − 𝜆1)𝑣 + 𝜆1(1 −

𝑓−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
−𝜔

𝑒−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
−𝜔

𝜆2)𝑧)𝑔(𝜉1)𝑑𝜉1  (14) 

Let 𝜌 denotes 𝜆1𝜆2(𝜔 + 𝜉1) + (1 − 𝜆1)𝑣 + 𝜆1(1 − 𝜆2)𝑧, then 
𝑑𝜌

𝑑𝜉1
= 𝜆1𝜆2 and 𝑑𝜉1 =

1

𝜆1𝜆2
= 𝑑𝜌. From Equation 15, 

the integral variable was changed; it can be rewritten as Equation 15: 

𝜁(𝑣) = 1 +
1

𝜆1𝜆2
∫ 𝜁(𝜌) ⋅

𝑓

𝑒
𝑔 (

𝜌−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔) 𝑑𝜌  (15) 

Here, 𝜉𝑡 was determined as 𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛾). Thus, the exact ARL generated by the second-kind Fredholm integral equation 

can be shown as follows: 

𝜁(𝑣) = 1 +
𝛬(𝑣)⋅𝑀

𝛾𝜆1𝜆2
  (16) 

where 𝛬(𝑣) = 𝑒
(1−𝜆1)𝑣

𝛾𝜆1𝜆2
−

(1−𝜆2)𝑧

𝛾𝜆2
−

𝜆1𝜆2𝜔

𝛾 , 𝑀 = ∫ 𝜁(𝜌)
𝑓

𝑒
𝑀0(𝜌)𝑑𝜌, 𝑀0(𝜌) = 𝑒

−
𝜌

𝛾𝜆1𝜆2. According to Equation 17, the following holds: 

𝑀 = ∫ 𝑀0(𝜌) (1 +
𝛬(𝑣)⋅𝑀

𝛾𝜆1𝜆2
)

𝑓

𝑒
𝑑𝜌 = −

𝛾𝜆1𝜆2[𝑀0(𝑓)−𝑀0(𝑒)]

1+
1

𝜆1
𝑒

(1−𝜆2)𝑧
𝛾𝜆2

+
𝜔
𝛾 ⋅[𝑀0(𝑓)−𝑀0(𝑒)]

  
(17) 
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Finally, from Equation 17, it can be rearranged as the exact ARL running on the two-sided DEWMA chart under the 

quadratic trend AR(p) model, and that is expressed in the form of Equation 18: 

𝜁(𝑣) = 1 −
𝜆1𝑒

(1−𝜆1)𝑣
𝛾𝜆1𝜆2 ⋅[𝑀0(𝑓)−𝑀0(𝑒)]

𝜆1𝑒
1
𝛾

(
(1−𝜆2)𝑧

𝜆2
+𝜔)

+[𝑀0(𝜆2𝑓)−𝑀0(𝜆2𝑒)]

  (18) 

Besides, replace 𝛾 = 𝛾0 in Equation 18 showing the in-control situation, 𝛾 = 𝛾1 = 𝛾0(1 + 𝛿) might depict the out-of-

control situation. 

In the next step, Numerical Integral Equation (NIE) Technique of the Quadratic Trend AR(p) model is derived. Let 

𝜁(𝑣) be ARL of the DEWMA chart that is derived by NIE technique, to estimate the interval [𝑒, 𝑓] in terms of n linear 

equation systems, the Gauss-Legendre rule was applied, and it has been divided into 𝑒 ≤ 𝑟1 ≤. . . ≤ 𝑟𝑛 ≤ 𝑓. The 

approximate formula for an integral is shown below. 

∫ 𝜁(𝜌)𝑔(𝜌)𝑑𝜌 ≈ ∑ 𝑤𝑗𝑔(𝑟𝑗)𝑛
𝑗=1

𝑓

𝑒
  (19) 

where 𝑤𝑗 = (𝑓 − 𝑒)/𝑛 , and 𝑟𝑗 = (𝑗 − 0.5)𝑤𝑗 + 𝑒 with 𝑗 = 1,2, . . . , 𝑛. 

Using the quadrature formula, the following result is obtained 𝜁(𝑟𝑖) = 1 +
1

𝜆1𝜆2
∑ 𝑤𝑗 ⋅ 𝜁(𝑟𝑗) ⋅ 𝑔 (

𝑟𝑗−(1−𝜆1)𝑟𝑖

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔)𝑛

𝑗=1 . 

Subsequently, the 𝑛 system was solved. To derive the ARL, the matrix relation can possibly be represented as follows: 

𝜁𝑛×1 = 1𝑛×1 + 𝑅𝑛×𝑛𝜁𝑛×1, 𝐼𝑛×𝑛 − 𝑅𝑛×𝑛 = 1𝑛×1 or 𝜁𝑛×1 = (𝐼𝑛 − 𝑅𝑛×𝑛)−1 ⋅ 1𝑛×1. Finally, 𝑟𝑖  is instead of 𝑣, the NIE 

approximation of ARL is rewritten following Equation 20 as: 

𝜁(𝑣) ≈ 1 +
1

𝜆1𝜆2
∑ 𝜁(𝑣𝑗) ⋅ 𝑔 (

𝑟𝑗−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔)𝑛

𝑗=1   (20) 

2.3. Sensitivity Measurements of Control chart 

First, let 𝜁(𝑣) and 𝜁(𝑣) stand for the ARL with NIE approach and the ARL with exact solution, which is calculated 

by Equation 17 and 20, respectively. Then, the percentage accuracy (%𝐴𝑐𝑐), which shows the relative effectiveness of 

the two suggested ARL approaches, was calculated using Equation 21. 

%𝐴𝑐𝑐 = 100 − (|
𝜁(𝑣)−𝜁̂(𝑣)

𝜁(𝑣)
| × 100%)  (21) 

The computation is then based on the efficiency of the ARL, with various parameter values chosen according to the 

DEWMA chart. After that, it is compared to the CUSUM and EEWMA charts. In addition to the average run length 

(ARL), the run length (RL) distribution is often described using additional measures such as the median run length (MRL) 

and the standard deviation of the run length (SDRL), which provide further insights into chart performance. Thus, 

𝐴𝑅𝐿0 =
1

𝛼
, 𝑀𝑅𝐿0 =

𝐿𝑜𝑔(0.5)

𝐿𝑜𝑔(1−𝛼)
, 𝑆𝐷𝑅𝐿0 = √

1−𝛼

𝛼2   (22) 

where type I error represents 𝛼 = 1 − 𝑃(𝑒 < 𝑋𝑡 < 𝑓|𝛾0). 

In this study, 𝐴𝑅𝐿0was fixed at 500. Form the 𝐴𝑅𝐿0value that can be calculated as 𝑀𝑅𝐿0and 𝑆𝐷𝑅𝐿0by Equation 22 

at approximately 346 and 500, respectively. Subsequently, 𝑀𝑅𝐿1 and 𝑆𝐷𝑅𝐿1 are calculated using the formulas presented 

in Equation 23 below. 

𝐴𝑅𝐿1 =
1

1−𝛽
 ,  𝑀𝑅𝐿1 =

𝐿𝑜𝑔(0.5)

𝐿𝑜𝑔(𝛽)
 ,  𝑆𝐷𝑅𝐿1 = √

𝛽

(1−𝛽)2  (23) 

where type II error represents 𝛽 = 1 − 𝑃(𝑒 < 𝑋𝑡 < 𝑓|𝛾1). 

The Least 𝐴𝑅𝐿1, 𝑀𝑅𝐿1 and 𝑆𝐷𝑅𝐿1 values were presented the best performance of control charts [20, 22]. 

2.4. Existence and Uniqueness of Exact ARL for Demonstration 

To demonstrate the existence and uniqueness of the ARL solution, this research employs Banach's fixed-point theorem 
[23, 24]. Since the explicit ARL formula must satisfy both existence and uniqueness conditions, Banach’s theorem 
provides theoretical support for the solution. For the class of all continuous functions, let 𝑇 represent the operation, 

which can be defined as follows: 

𝑇(𝜁(𝑣)) = 1 +
1

𝜆1𝜆2
∫ 𝜁(𝜌) ⋅

𝑓

𝑒
𝑔 (

𝜌−(1−𝜆1)𝑣

𝜆1𝜆2
−

(1−𝜆2)𝑧

𝜆2
− 𝜔) 𝑑𝜌  (24) 

Theorem 1: Banach’s Fixed-point Theorem: Let (𝑋, 𝑑) and 𝑇: 𝑋 → 𝑋 are the complete metric space and the contraction 

mapping, respectively. Moreover, 𝑇 is referred to unique on fixed point; thus, there exists a unique solution to the fixed 

point when 𝑇(𝜁(𝑣)) = 𝜁(𝑣) ∈ 𝑋. To demonstrate that, let 𝑇 be the contraction mapping for 𝜁(𝑣)1, 𝜁(𝑣)2 ∈ 𝑄[𝑒, 𝑓] Such 

that, ‖𝑇(𝜁(𝑣)1) − 𝑇(𝜁(𝑣)2)‖ ≤ 𝑄‖𝜁(𝑣)1 − 𝜁(𝑣)2‖, and 𝜁(𝑣)1, 𝜁(𝑣)2 ∈ 𝑋, where 𝑄 is a positive constant with 0 ≤ 𝑄 < 1 

under the norm ‖𝜁(𝑣)‖∞ = 𝑠𝑢𝑝𝑣∈[𝑒,𝑓]|𝜁(𝑣)|. By considering: 
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‖𝑇(𝜁(𝑣)1) − 𝑇(𝜁(𝑣)2)‖∞ = 𝑠𝑢𝑝𝑣∈[𝑒,𝑓]|𝜁(𝑣)1 − 𝜁(𝑣)2|  

= 𝑠𝑢𝑝𝑣∈[𝑒,𝑓] |
𝛬(𝑣)

𝛾𝜆1𝜆2
| ∫ ((𝜁(𝑣)1 − 𝜁(𝑣)2) ⋅ 𝑀0(𝜌))

𝑓

𝑒
𝑑𝑝 ≤ 𝑠𝑢𝑝𝑣∈[𝑒,𝑓]‖𝑇(𝜁(𝑣)1) − 𝑇(𝜁(𝑣)2)‖∞ 𝛬(𝑣)(𝑀0(𝑓) − 𝑀0(𝑒))  

= ‖𝑇(𝜁(𝑣)1) − 𝑇(𝜁(𝑣)2)‖∞ 𝑠𝑢𝑝𝑣∈[𝑒,𝑓]|𝛬(𝑣)| |𝑀0(𝑓) − 𝑀0(𝑒)| ≤ 𝑄‖𝑇(𝜁(𝑣)1) − 𝑇(𝜁(𝑣)2)‖∞  

wheren 𝑄 = 𝑠𝑢𝑝𝑣∈[𝑒,𝑓]|𝛬(𝑣)| |𝑀0(𝑓) − 𝑀0(𝑒)|; 𝑄 ∈ [0,1]. 

(25) 

Moreover, using the NIE technique, the number of division points needed to estimate the ARL at 𝑛 = 500 is found. 

𝐴𝑅𝐿0, the process in-control, was computed. 

3. The ARL Procedure for Analyzing Outcomes 

3.1. The Exact Solution of ARL for the Quadratic Trend AR(P) Model Running on the Control Charts 

Input: 

 Set parameters of quadratic trend AR(p): 𝜓, 𝜂, 𝜗, 𝜙𝑖 in 𝑋𝑡 = 𝜓 + 𝜂𝑡 + 𝜗𝑡2 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +...+𝜙𝑝𝑋𝑡−𝑝 + 𝜉𝑡 

 Set parameters for control charts: 𝜆1 =0.05, 0.10, 0.15, 𝜆2 =0.6𝜆1, 𝜆1, 1.6𝜆1for DEWMA chart, 𝜆2 =0.2𝜆1, 0.6𝜆1 for EEWMA chart, and 

𝜅 > 0 for CUSUM chart 

 Set 𝛾 = 𝛾0 for in-control process, then set 𝛾0 = 1 when using simulated data, and set 𝛾0equal to the exponential white noise (𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛾)) 

when using a real-world dataset, and define 𝐴𝑅𝐿0 = 500. 

 Set 𝛾 = 𝛾1 = 𝛾0(1 + 𝛿)for out-of-control process and set 𝛿 = 0.001,0.002,0.003,0.005,0.01,0.03,0.1,0.5 

Output: 

 Obtain the upper control limit (UCL) of the control chart under various scenarios of the specified parameters at 𝐴𝑅𝐿0 = 500 

 Obtain the 𝐴𝑅𝐿1which derived from the out-of-control process, by determining 𝛿 as specified above. 

Furthermore, the solution can be derived using the approach illustrated in Figure 1, as outlined next. 

 

Figure 1. The Process of Methodology of evaluating ARL  

4. The Outcomes of the Performance Evaluation 

To estimate the ARL at 𝑛 = 500 the number of division points required is determined using the NIE technique. 

The results demonstrated the ARL's ability to detect shifts in the process mean using the DEWMA chart, as presented 
in Table 1 for quadratic trend AR(2) model and Table 2. for quadratic trend AR(3) model. All scenarios exhibit 
extraordinarily high the percentage accuracy (%𝐴𝑐𝑐), nearly 100%, according to the 𝐴𝑅𝐿1 results. This indicates 
that there is no difference between the two approaches in terms of accuracy. However, the exact solution appears 
fairly quickly in every scenario, while the 𝐴𝑅𝐿1generated using the NIE approach takes roughly 2 to 3 seconds to 
compute for the two-sided DEWMA chart at 𝐿𝐶𝐿 = 𝑒 = 0.001. This indicates that there is only a slight difference 

between the two approaches in terms of computation time. Moreover, the results obtained from both methods were 
computed using a system running Windows 10 (64-bit) with an Intel Core i5-8250U processor (1.60 GHz, up to 
1.80 GHz) and 4 GB of RAM. Moreover, while the exact solution does not depend on the specifications of the CPU, 
the computation time of the NIE technique is influenced by the CPU's performance. Therefore, it is reasonable to 
proceed with these exact formulas. 
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Table 1. ARL1 values of the exact formula and NIE technique for Quadratic trend AR(2) model on DEWMA control chart 

with known parameters; 𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝍 = 𝜼 = 𝟎. 𝟏, 𝝑 = −𝟎. 𝟖 at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎, and [ e, f ] = [ 0.001, f ] 

𝝓𝟐 

Shift 

size 

𝜹 

𝝓𝟏 0.1 -0.1 

𝝀𝟐 𝟎. 𝟔𝝀𝟏 𝝀𝟏 𝟏. 𝟔𝝀𝟏 𝟎. 𝟔𝝀𝟏 𝝀𝟏 𝟏. 𝟔𝝀𝟏 

𝒇 0.001082563 0.001516962 0.002747883 0.001100874 0.001632161 0.003140205 

0.2 

0.001 

𝜁(𝑣) 105.723 (<0.01) 163.560 (<0.01) 207.867 (<0.01) 109.668 (<0.01) 170.223 (<0.01) 217.026 (<0.01) 

𝜁(𝑣) 105.723 (2.766) 163.560 (2.875) 207.867 (2.812) 109.668 (2.703) 170.223 (2.876) 217.026 (2.828) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.002 

𝜁(𝑣) 59.469 (<0.01) 98.066 (<0.01) 131.499 (<0.01) 61.949 (<0.01) 102.879 (<0.01) 138.876 (<0.01) 

𝜁(𝑣) 59.469 (2.813) 98.066 (2.813) 131.499 (2.828) 61.949 (2.811) 102.879 (2.828) 138.876 (2.781) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.003 

𝜁(𝑣) 41.546 (<0.01) 70.190 (<0.01) 96.326 (<0.01) 43.343 (<0.01) 73.881 (<0.01) 102.267 (<0.01) 

𝜁(𝑣) 41.546 (2.813) 70.190 (2.876) 96.326 (2.796) 43.343 (2.765) 73.881 (2.844) 102.267 (2.797) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.005 

𝜁(𝑣) 26.123 (<0.01) 44.947 (<0.01) 62.953 (<0.01) 27.281 (<0.01) 47.447 (<0.01) 67.166 (<0.01) 

𝜁(𝑣) 26.123 (2.750) 44.947 (2.828) 62.953 (2.844) 27.281 (2.843) 47.447 (2.843) 67.166 (2.750) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.01 

𝜁(𝑣) 13.859 (<0.01) 23.983 (<0.01) 34.063 (<0.01) 14.475 (<0.01) 25.367 (<0.01) 36.488 (<0.01) 

𝜁(𝑣) 13.859 (2.813) 23.983 (2.797) 34.063 (2.844) 14.475 (2.844) 25.367 (2.797) 36.488 (2.782) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.03 

𝜁(𝑣) 5.325 (<0.01) 8.901 (<0.01) 12.583 (<0.01) 5.545 (<0.01) 9.410 (<0.01) 13.499 (<0.01) 

𝜁(𝑣) 5.325 (2.875) 8.901 (2.796) 12.583 (2.890) 5.545 (2.828) 9.410 (2.922) 13.499 (2.797) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.1 

𝜁(𝑣) 2.268 (<0.01) 3.394 (<0.01) 4.584 (<0.01) 2.341 (<0.01) 3.567 (<0.01) 4.899 (<0.01) 

𝜁(𝑣) 2.268 (2.828) 3.394 (2.859) 4.584 (2.813) 2.341 (2.765) 3.567 (2.797) 4.899 (2.828) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 

𝜁(𝑣) 1.219 (<0.01) 1.473 (<0.01) 1.762 (<0.01) 1.239 (<0.01) 1.522 (<0.01) 1.853 (<0.01) 

𝜁(𝑣) 1.219 (2.858) 1.473 (2.811) 1.762 (2.844) 1.239 (2.781) 1.522 (2.874) 1.853 (2.812) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

  𝒇 0.0011232545 0.001773234 0.00362206 0.0011506133 0.001946093 0.00421463 

-0.2 

0.001 

𝜁(𝑣) 113.856 (<0.01) 177.359 (<0.01) 227.184 (<0.01) 118.337 (<0.01) 185.015 (<0.01) 238.871 (<0.01) 

𝜁(𝑣) 113.856 (2.796) 177.359 (2.829) 227.184 (2.828) 118.337 (2.797) 185.015 (2.796) 238.871 (2.812) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.002 

𝜁(𝑣) 64.609 (<0.01) 108.113 (<0.01) 147.266 (<0.01) 67.477 (<0.01) 113.834 (<0.01) 157.160 (<0.01) 

𝜁(𝑣) 64.609 (2.813) 108.113 (2.797) 147.266 (2.766) 67.477 (2.797) 113.834 (2.812) 157.160 (2.812) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.003 

𝜁(𝑣) 45.278 (<0.01) 77.922 (<0.01) 109.104 (<0.01) 47.372 (<0.01) 82.376 (<0.01) 117.265 (<0.01) 

𝜁(𝑣) 45.278 (2.922) 77.922 (2.812) 109.104 (2.781) 47.372 (2.796) 82.376 (2.828) 117.265 (2.859) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.005 

𝜁(𝑣) 28.533 (<0.01) 50.202 (<0.01) 72.069 (<0.01) 29.890 (<0.01) 53.261 (<0.01) 77.991 (<0.01) 

𝜁(𝑣) 28.533 (2.797) 50.202 (2.844) 72.069 (2.844) 29.890 (2.828) 53.261 (2.797) 77.991 (2.782) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.01 

𝜁(𝑣) 15.142 (<0.01) 26.901 (<0.01) 39.336 (<0.01) 15.867 (<0.01) 28.614 (<0.01) 42.813 (<0.01) 

𝜁(𝑣) 15.142 (2.813) 26.901 (2.765) 39.336 (2.719) 15.867 (2.828) 28.614 (2.797) 42.813 (2.812) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.03 

𝜁(𝑣) 5.783 (<0.01) 9.977 (<0.01) 14.582 (<0.01) 6.043 (<0.01) 10.613 (<0.01) 15.913 (<0.01) 

𝜁(𝑣) 5.783 (2.984) 9.977 (2.781) 14.582 (2.781) 6.043 (2.844) 10.613 (2.844) 15.913 (2.781) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.1 

𝜁(𝑣) 2.422 (<0.01) 3.760 (<0.01) 5.270 (<0.01) 2.509 (<0.01) 3.978 (<0.01) 5.726 (<0.01) 

𝜁(𝑣) 2.422 (2.813) 3.760 (2.797) 5.270 (2.858) 2.509 (2.812) 3.978 (2.797) 5.726 (2.781) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 

𝜁(𝑣) 1.260 (<0.01) 1.578 (<0.01) 1.960 (<0.01) 1.285 (<0.01) 1.642 (<0.01) 2.090 (<0.01) 

𝜁(𝑣) 1.260 (2.797) 1.578 (2.781) 1.960 (2.813) 1.285 (2.797) 1.642 (2.781) 2.090 (2.750) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 2. ARL1 values of the exact formula and NIE technique for Quadratic trend AR(3) model on DEWMA control chart 

with known parameters; 𝝀𝟏 = 𝟎. 𝟎𝟓, 𝝍 = 𝜼 = 𝟎. 𝟏, 𝝑 = −𝟎. 𝟖 at 𝑨𝑹𝑳𝟎 = 𝟓𝟎𝟎, and [ e, f ] = [ 0.001, f ] 

𝝓𝟑 

Shift 

size 

𝜹 

𝝓𝟐 0.2 -0.2 

𝝀𝟐 𝟎. 𝟔𝝀𝟏 𝝀𝟏 𝟏. 𝟔𝝀𝟏 𝟎. 𝟔𝝀𝟏 𝝀𝟏 𝟏. 𝟔𝝀𝟏 

𝒇 0.0010611419 0.001382449 0.0022911 0.0010912596 0.00157165 0.002934 

0.3 

0.001 

𝜁(𝑣) 100.225 (<0.01) 154.264 (<0.01) 195.631 (<0.01) 107.644 (<0.01) 166.827 (<0.01) 212.350 (<0.01) 

𝜁(𝑣) 100.225 (2.967) 154.264 (2.985) 195.631 (3.016) 107.644 (2.859) 166.827 (2.891) 212.350 (2.969) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.002 

𝜁(𝑣) 56.056 (<0.01) 91.497 (<0.01) 121.849 (<0.01) 60.680 (<0.01) 100.420 (<0.01) 135.085 (<0.01) 

𝜁(𝑣) 56.056 (2.937) 91.497 (2.938) 121.849 (2.875) 60.680 (2.953) 100.420 (2.937) 135.085 (2.844) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.003 

𝜁(𝑣) 39.084 (<0.01) 65.197 (<0.01) 88.634 (<0.01) 42.424 (<0.01) 71.993 (<0.01) 99.204 (<0.01) 

𝜁(𝑣) 39.084 (2.922) 65.197 (2.937) 88.634 (2.874) 42.424 (2.937) 71.993 (2.844) 99.204 (2.906) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.005 

𝜁(𝑣) 24.544 (<0.01) 41.592 (<0.01) 57.554 (<0.01) 26.690 (<0.01) 46.167 (<0.01) 64.988 (<0.01) 

𝜁(𝑣) 24.544 (2.938) 41.592 (2.906) 57.554 (2.984) 26.690 (2.921) 46.167 (2.890) 64.988 (2.890) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.01 

𝜁(𝑣) 13.023 (<0.01) 22.139 (<0.01) 30.984 (<0.01) 14.161 (<0.01) 24.658 (<0.01) 35.232 (<0.01) 

𝜁(𝑣) 13.023 (3.000) 22.139 (2.907) 30.984 (2.907) 14.161 (2.797) 24.658 (2.843) 35.232 (2.937) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.03 

𝜁(𝑣) 5.028 (<0.01) 8.228 (<0.01) 11.427 (<0.01) 5.433 (<0.01) 9.149 (<0.01) 13.023 (<0.01) 

𝜁(𝑣) 5.028 (2.938) 8.228 (2.922) 11.427 (2.922) 5.433 (2.890) 9.149 (2.750) 13.023 (2.860) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.1 

𝜁(𝑣) 2.169 (<0.01) 3.166 (<0.01) 4.189 (<0.01) 2.304 (<0.01) 3.478 (<0.01) 4.735 (<0.01) 

𝜁(𝑣) 2.169 (2.953) 3.166 (2.797) 4.189 (2.875) 2.304 (2.890) 3.478 (2.921) 4.735 (2.921) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 

𝜁(𝑣) 1.193 (<0.01) 1.409 (<0.01) 1.650 (<0.01) 1.228 (<0.01) 1.497 (<0.01) 1.806 (<0.01) 

𝜁(𝑣) 1.193 (2.968) 1.409 (2.907) 1.650 (2.937) 1.228 (2.890) 1.497 (3.469) 1.806 (2.891) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

  𝒇 0.001111503 0.001699123 0.00336873 0.0011664984 0.002046665 0.00456048 

-0.3 

0.001 

𝜁(𝑣) 111.711 (<0.01) 173.730 (<0.01) 222.020 (<0.01) 120.703 (<0.01) 189.133 (<0.01) 245.298 (<0.01) 

𝜁(𝑣) 111.711 (2.891) 173.730 (2.937) 222.020 (2.874) 120.703 (2.969) 189.133 (2.937) 245.298 (2.875) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.002 

𝜁(𝑣) 63.249 (<0.01) 105.440 (<0.01) 142.948 (<0.01) 68.998 (<0.01) 116.934 (<0.01) 162.813 (<0.01) 

𝜁(𝑣) 63.249 (2.844) 105.440 (2.937) 142.948 (2.844) 68.998 (2.813) 116.934 (2.828) 162.813 (2.890) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.003 

𝜁(𝑣) 44.289 (<0.01) 75.854 (<0.01) 105.567 (<0.01) 48.484 (<0.01) 84.798 (<0.01) 122.004 (<0.01) 

𝜁(𝑣) 44.289 (2.921) 75.854 (2.844) 105.567 (2.875) 48.484 (2.876) 84.798 (2.859) 122.004 (2.921) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.005 

𝜁(𝑣) 27.894 (<0.01) 48.790 (<0.01) 69.521 (<0.01) 30.613 (<0.01) 54.932 (<0.01) 81.481 (<0.01) 

𝜁(𝑣) 27.894 (2.938) 48.790 (2.999) 69.521 (2.953) 30.613 (2.922) 54.932 (2.922) 81.481 (2.859) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.01 

𝜁(𝑣) 14.801 (<0.01) 26.114 (<0.01) 37.851 (<0.01) 16.253 (<0.01) 29.553 (<0.01) 44.887 (<0.01) 

𝜁(𝑣) 14.801 (2.906) 26.114 (2.923) 37.851 (2.907) 16.253 (2.797) 29.553 (2.796) 44.887 (2.891) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.03 

𝜁(𝑣) 5.661 (<0.01) 9.686 (<0.01) 14.016 (<0.01) 6.182 (<0.01) 10.963 (<0.01) 16.712 (<0.01) 

𝜁(𝑣) 5.661 (2.814) 9.686 (2.907) 14.016 (2.922) 6.182 (2.859) 10.963 (2.906) 16.712 (2.907) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.1 

𝜁(𝑣) 2.381 (<0.01) 3.660 (<0.01) 5.076 (<0.01) 2.556 (<0.01) 4.098 (<0.01) 5.998 (<0.01) 

𝜁(𝑣) 2.381 (2.906) 3.660 (2.922) 5.076 (2.859) 2.556 (2.892) 4.098 (2.922) 5.998 (2.813) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 

𝜁(𝑣) 1.249 (<0.01) 1.549 (<0.01) 1.904 (<0.01) 1.298 (<0.01) 1.678 (<0.01) 2.166 (<0.01) 

𝜁(𝑣) 1.249 (2.984) 1.549 (2.907) 1.904 (2.890) 1.298 (2.922) 1.678 (2.937) 2.166 (2.890) 

%𝐴𝑐𝑐 100.00 100.00 100.00 100.00 100.00 100.00 
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4.1. Performance Evaluation of Simulated Data for the Control Chart 

This section examines the explicit ARL of the DEWMA chart and compares it to EEWMA and CUSUM charts under 

AR(2) and AR(3) processes with quadratic trends. For the DEWMA chart, the smoothing parameter 𝜆1was set at 0.05, 

0.10, and 0.15, while 𝜆2 took on values determined4𝜆1, 1.6𝜆1, 𝜆1,and 0.6𝜆1, which denoted as DEWMA-1, DEWMA-2, 

DEWMA-3, and DEWMA-4, respectively. The EEWMA chart, on the other hand, was evaluated using specified 

𝜆2values of 0.2𝜆1and0.6𝜆1, which are represented as EEWMA-1, and EEWMA-2, respectively. For the in-control 

scenario, the 𝐴𝑅𝐿0 value was fixed at 500. The effectiveness of the control charts was assessed using 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 

𝑀𝑅𝐿1 values. Tables 3 and 4 present the comparative results of the CUSUM, EEWMA, and DEWMA charts under 

various scenarios, specifically for the quadratic trend AR(2) and AR(3) models, respectively. The outcomes indicate that 

a lower value of 𝜆1 leads to a decrease in 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 values. The DEWMA chart consistently outperforms 

the EEWMA and CUSUM charts in detecting small shift changes with 0 < 𝛿 ≤ 0.5. Moreover, lower value of 𝜆2, which 

is close to 𝜆1, as evidenced by𝜆2 = 0.6𝜆1and for all 𝜆1 considered in this research, this leads to a decrease in𝐴𝑅𝐿1, 

𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 values for both the EEWMA and DEWMA charts, under both the quadratic trend AR(2) and AR(3) 

models. The results of this study suggest that selecting 𝜆2 values closer to 𝜆1 can significantly enhance the effectiveness 

in detecting small process shifts in both EEWMA and DEWMA charts. In addition, lower values of 𝜆1 also demonstrate 

efficiency in reducing the run length (RL) evaluations. Therefore, under the conditions and procedures adopted in this 

study, using a lower exponential smoothing value is recommended to enhance the detection capability and overall 

process monitoring performance. It is noted that the lowest 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 values for all 𝜆1 conditions in both 

scenarios of the quadratic trend AR(2) and AR(3) models are shown in bold and italic in Tables 3 to 5. 

Table 3. RL1 values of exact formula running on two-sided control charts for the quadratic trend AR(2) model with known 

parameters; 𝝍 = 𝜼 = 𝟎. 𝟐, 𝝑 = −𝟎. 𝟏, 𝝓𝟏 = 𝟎. 𝟏, 𝝓𝟐 = 𝟎. 𝟐, and [ LCL, UCL ] = [ 0.001, UCL ] 

𝝀𝟏 Control chart 𝑼𝑪𝑳 𝜹 0.001 0.002 0.003 0.005 0.01 0.03 0.1 0.5 

0.05 

CUSUM 𝜿 = 𝟑 4.154 

𝑨𝑹𝑳𝟏 496.69 493.23 489.81 483.05 466.67 407.89 264.70 49.77 

𝑺𝑫𝑹𝑳𝟏 496.19 492.73 489.31 482.55 466.17 407.39 264.20 49.27 

𝑴𝑹𝑳𝟏 343.93 341.54 339.16 334.48 323.13 282.38 183.13 34.15 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.03495131 

𝑨𝑹𝑳𝟏 255.75 172.06 129.78 87.20 48.22 17.88 6.27 2.13 

𝑺𝑫𝑹𝑳𝟏 255.25 171.56 129.28 86.69 47.72 17.37 5.75 1.55 

𝑴𝑹𝑳𝟏 176.93 118.92 89.61 60.09 33.08 12.04 3.99 1.09 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.05146347 

𝑨𝑹𝑳𝟏 279.49 194.18 148.91 101.75 57.14 21.39 7.47 2.46 

𝑺𝑫𝑹𝑳𝟏 278.99 193.68 148.41 101.25 56.64 20.89 6.95 1.89 

𝑴𝑹𝑳𝟏 193.38 134.25 102.87 70.18 39.26 14.48 4.82 1.33 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.00472606 

𝑨𝑹𝑳𝟏 218.45 140.01 103.16 67.77 36.78 13.53 4.83 1.77 

𝑺𝑫𝑹𝑳𝟏 217.95 139.51 102.66 67.27 36.28 13.02 4.30 1.17 

𝑴𝑹𝑳𝟏 151.07 96.70 71.16 46.63 25.15 9.03 2.99 0.83 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.001705922 

𝑨𝑹𝑳𝟏 174.22 105.77 76.09 48.92 26.14 9.63 3.58 1.48 

𝑺𝑫𝑹𝑳𝟏 173.72 105.27 75.59 48.42 25.63 9.12 3.04 0.84 

𝑴𝑹𝑳𝟏 120.41 72.97 52.39 33.56 17.77 6.32 2.12 0.62 

𝝀𝟐 = 𝝀𝟏 0.0012095211 

𝑨𝑹𝑳𝟏 137.94 80.32 56.82 36.03 19.11 7.13 2.80 1.31 

𝑺𝑫𝑹𝑳𝟏 137.44 79.82 56.31 35.52 18.60 6.61 2.24 0.64 

𝑴𝑹𝑳𝟏 95.26 55.33 39.03 24.62 12.90 4.59 1.57 0.48 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.00103353962 

𝑨𝑹𝑳𝟏 90.62 50.19 34.88 21.86 11.61 4.53 2.00 1.15 

𝑺𝑫𝑹𝑳𝟏 90.12 49.69 34.38 21.36 11.10 4.00 1.42 0.42 

𝑴𝑹𝑳𝟏 62.47 34.44 23.83 14.80 7.70 2.78 1.00 0.34 

0.10 

CUSUM 𝜿 = 𝟑 4.154 

𝑨𝑹𝑳𝟏 496.69 493.23 489.81 483.05 466.67 407.89 264.70 49.77 

𝑺𝑫𝑹𝑳𝟏 496.19 492.73 489.31 482.55 466.17 407.39 264.20 49.27 

𝑴𝑹𝑳𝟏 343.93 341.54 339.16 334.48 323.13 282.38 183.13 34.15 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.06984855 

𝑨𝑹𝑳𝟏 259.44 175.40 132.62 89.32 49.50 18.36 6.42 2.16 

𝑺𝑫𝑹𝑳𝟏 258.94 174.90 132.12 88.82 49.00 17.86 5.90 1.58 

𝑴𝑹𝑳𝟏 179.48 121.23 91.58 61.57 33.96 12.38 4.09 1.11 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.1029645 

𝑨𝑹𝑳𝟏 282.71 197.30 151.66 103.88 58.45 21.90 7.63 2.49 

𝑺𝑫𝑹𝑳𝟏 282.21 196.80 151.15 103.37 57.95 21.40 7.11 1.92 

𝑴𝑹𝑳𝟏 195.61 136.41 104.77 71.65 40.17 14.83 4.93 1.35 
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DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.02037356 

𝑨𝑹𝑳𝟏 240.39 158.46 118.32 78.70 43.14 15.91 5.59 1.94 

𝑺𝑫𝑹𝑳𝟏 239.88 157.96 117.81 78.20 42.64 15.40 5.06 1.35 

𝑴𝑹𝑳𝟏 166.28 109.49 81.66 54.21 29.56 10.67 3.51 0.96 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.00630545 

𝑨𝑹𝑳𝟏 219.43 140.81 103.80 68.21 37.01 13.59 4.82 1.75 

𝑺𝑫𝑹𝑳𝟏 218.93 140.31 103.30 67.70 36.51 13.08 4.29 1.14 

𝑴𝑹𝑳𝟏 151.75 97.25 71.60 46.93 25.31 9.07 2.98 0.82 

𝝀𝟐 = 𝝀𝟏 0.003275698 

𝑨𝑹𝑳𝟏 200.71 125.81 91.75 59.70 32.15 11.78 4.23 1.60 

𝑺𝑫𝑹𝑳𝟏 200.21 125.31 91.25 59.20 31.64 11.27 3.70 0.98 

𝑴𝑹𝑳𝟏 138.78 86.86 63.25 41.03 21.93 7.81 2.57 0.71 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.0012043922 

𝑨𝑹𝑳𝟏 141.73 82.86 58.68 37.23 19.72 7.29 2.80 1.28 

𝑺𝑫𝑹𝑳𝟏 141.23 82.36 58.18 36.73 19.21 6.78 2.24 0.60 

𝑴𝑹𝑳𝟏 97.89 57.08 40.33 25.46 13.32 4.70 1.57 0.45 

0.15 

CUSUM 𝜿 = 𝟑 4.154 

𝑨𝑹𝑳𝟏 496.69 493.23 489.81 483.05 466.67 407.89 264.70 49.77 

𝑺𝑫𝑹𝑳𝟏 496.19 492.73 489.31 482.55 466.17 407.39 264.20 49.27 

𝑴𝑹𝑳𝟏 343.93 341.54 339.16 334.48 323.13 282.38 183.13 34.15 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.105747 

𝑨𝑹𝑳𝟏 262.36 178.07 134.90 91.03 50.53 18.75 6.54 2.18 

𝑺𝑫𝑹𝑳𝟏 261.85 177.56 134.40 90.53 50.03 18.25 6.02 1.61 

𝑴𝑹𝑳𝟏 181.50 123.08 93.16 62.75 34.68 12.65 4.18 1.13 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.155548 

𝑨𝑹𝑳𝟏 285.15 285.15 285.15 285.15 285.15 285.15 285.15 285.15 

𝑺𝑫𝑹𝑳𝟏 284.65 199.17 153.25 105.00 58.96 21.79 7.23 1.95 

𝑴𝑹𝑳𝟏 197.30 138.05 106.23 72.78 40.87 15.11 5.02 1.37 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.0490872 

𝑨𝑹𝑳𝟏 248.43 165.49 124.20 83.03 45.71 16.88 5.90 2.01 

𝑺𝑫𝑹𝑳𝟏 247.93 164.99 123.70 82.53 45.20 16.37 5.38 1.42 

𝑴𝑹𝑳𝟏 171.85 114.36 85.74 57.21 31.33 11.35 3.73 1.01 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.0158829 

𝑨𝑹𝑳𝟏 234.19 153.14 113.90 75.48 41.24 15.17 5.33 1.86 

𝑺𝑫𝑹𝑳𝟏 233.69 152.64 113.40 74.98 40.73 14.66 4.80 1.27 

𝑴𝑹𝑳𝟏 161.98 105.80 78.60 51.97 28.24 10.16 3.34 0.90 

𝝀𝟐 = 𝝀𝟏 0.00821218 

𝑨𝑹𝑳𝟏 221.34 142.35 105.04 69.08 37.51 13.76 4.86 1.75 

𝑺𝑫𝑹𝑳𝟏 220.84 141.84 104.53 68.58 37.00 13.25 4.33 1.14 

𝑴𝑹𝑳𝟏 153.08 98.32 72.46 47.54 25.65 9.19 3.01 0.82 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.002055776 

𝑨𝑹𝑳𝟏 178.35 108.79 78.39 50.45 26.94 9.86 3.59 1.44 

𝑺𝑫𝑹𝑳𝟏 177.85 108.28 77.89 49.95 26.44 9.34 3.05 0.80 

𝑴𝑹𝑳𝟏 123.28 75.06 53.99 34.62 18.33 6.48 2.12 0.58 

Table 4. RL1 values of exact formula running on two-sided control charts for the quadratic trend AR(3) model with known 

parameters; 𝝍 = 𝜼 = 𝟎. 𝟐, 𝝑 = −𝟎. 𝟏, 𝝓𝟏 = 𝝓𝟐 = 𝟎. 𝟏,and 𝝓𝟑 = −𝟎. 𝟐, and [ LCL, UCL ] = [ 0.001, UCL ] 

𝝀𝟏 Control chart 𝑼𝑪𝑳 𝜹 0.001 0.002 0.003 0.005 0.01 0.03 0.1 0.5 

0.05 

CUSUM 𝜿 = 𝟑 3.719 

𝑨𝑹𝑳𝟏 496.95 493.63 490.33 483.83 468.05 411.22 271.23 53.54 

𝑺𝑫𝑹𝑳𝟏 496.45 493.13 489.83 483.33 467.55 410.72 270.73 53.04 

𝑴𝑹𝑳𝟏 344.11 341.81 339.53 335.02 324.08 284.69 187.65 36.76 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.03495131 

𝑨𝑹𝑳𝟏 274.24 189.16 144.51 98.35 55.03 20.55 7.18 2.38 

𝑺𝑫𝑹𝑳𝟏 273.74 188.66 144.00 97.85 54.53 20.04 6.66 1.81 

𝑴𝑹𝑳𝟏 189.74 130.77 99.82 67.83 37.80 13.90 4.62 1.27 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.06937324 

𝑨𝑹𝑳𝟏 306.83 221.53 173.47 121.17 69.44 26.33 9.11 2.85 

𝑺𝑫𝑹𝑳𝟏 306.33 221.03 172.97 120.66 68.94 25.82 8.59 2.30 

𝑴𝑹𝑳𝟏 212.33 153.21 119.89 83.64 47.79 17.90 5.96 1.61 

DEWMA 𝝀𝟐 = 𝟒𝝀𝟏 0.006046663 

𝑨𝑹𝑳𝟏 231.80 151.13 112.26 74.31 40.59 14.98 5.32 1.91 

𝑺𝑫𝑹𝑳𝟏 231.30 150.63 111.76 73.81 40.09 14.47 4.80 1.32 

𝑴𝑹𝑳𝟏 160.33 104.41 77.46 51.16 27.79 10.03 3.33 0.93 
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𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.001954412 

𝑨𝑹𝑳𝟏 184.36 113.31 81.94 52.93 28.38 10.46 3.86 1.56 

𝑺𝑫𝑹𝑳𝟏 183.86 112.81 81.44 52.42 27.87 9.95 3.32 0.93 

𝑴𝑹𝑳𝟏 127.44 78.19 56.45 36.34 19.32 6.90 2.31 0.67 

𝝀𝟐 = 𝝀𝟏 0.001283037 

𝑨𝑹𝑳𝟏 145.73 85.61 60.76 38.64 20.53 7.64 2.97 1.36 

𝑺𝑫𝑹𝑳𝟏 145.23 85.11 60.26 38.14 20.02 7.12 2.42 0.69 

𝑴𝑹𝑳𝟏 100.67 58.99 41.77 26.43 13.88 4.94 1.69 0.52 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.0010452828 

𝑨𝑹𝑳𝟏 95.20 52.98 36.87 23.13 12.28 4.76 2.08 1.17 

𝑺𝑫𝑹𝑳𝟏 94.70 52.47 36.37 22.63 11.77 4.23 1.50 0.45 

𝑴𝑹𝑳𝟏 65.64 36.37 25.21 15.68 8.16 2.94 1.06 0.36 

0.10 

CUSUM 𝜿 = 𝟑 3.719 

𝑨𝑹𝑳𝟏 496.95 493.63 490.33 483.83 468.05 411.22 271.23 53.54 

𝑺𝑫𝑹𝑳𝟏 496.45 493.13 489.83 483.33 467.55 410.72 270.73 53.04 

𝑴𝑹𝑳𝟏 344.11 341.81 339.53 335.02 324.08 284.69 187.65 36.76 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.09487355 

𝑨𝑹𝑳𝟏 279.02 193.73 148.51 101.43 56.92 21.28 7.41 2.42 

𝑺𝑫𝑹𝑳𝟏 278.52 193.23 148.01 100.93 56.42 20.78 6.89 1.85 

𝑴𝑹𝑳𝟏 193.05 133.94 102.59 69.96 39.11 14.40 4.78 1.30 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.13966656 

𝑨𝑹𝑳𝟏 311.16 226.07 177.64 124.55 71.63 27.21 9.39 2.91 

𝑺𝑫𝑹𝑳𝟏 310.66 225.56 177.14 124.05 71.13 26.70 8.87 2.36 

𝑴𝑹𝑳𝟏 215.33 156.35 122.79 85.98 49.31 18.51 6.15 1.64 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.02738234 

𝑨𝑹𝑳𝟏 256.21 172.47 130.12 87.45 48.37 17.93 6.27 2.12 

𝑺𝑫𝑹𝑳𝟏 255.71 171.97 129.62 86.95 47.87 17.42 5.75 1.54 

𝑴𝑹𝑳𝟏 177.25 119.20 89.85 60.27 33.18 12.08 3.99 1.09 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.00820453 

𝑨𝑹𝑳𝟏 232.78 151.94 112.92 74.78 40.84 15.04 5.31 1.88 

𝑺𝑫𝑹𝑳𝟏 232.28 151.44 112.42 74.27 40.34 14.54 4.79 1.29 

𝑴𝑹𝑳𝟏 161.00 104.97 77.92 51.48 27.96 10.08 3.33 0.91 

𝝀𝟐 = 𝝀𝟏 0.00408444 

𝑨𝑹𝑳𝟏 212.45 135.10 99.18 64.93 35.13 12.90 4.61 1.70 

𝑺𝑫𝑹𝑳𝟏 211.95 134.60 98.68 64.42 34.63 12.39 4.08 1.09 

𝑴𝑹𝑳𝟏 146.91 93.30 68.40 44.66 24.00 8.59 2.83 0.78 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.001276152 

𝑨𝑹𝑳𝟏 149.07 87.86 62.43 39.71 21.07 7.78 2.96 1.32 

𝑺𝑫𝑹𝑳𝟏 148.57 87.36 61.93 39.21 20.56 7.26 2.41 0.65 

𝑴𝑹𝑳𝟏 102.98 60.55 42.93 27.18 14.25 5.04 1.68 0.49 

0.15 

CUSUM 𝜿 = 𝟑 3.719 

𝑨𝑹𝑳𝟏 496.95 493.63 490.33 483.83 468.05 411.22 271.23 53.54 

𝑺𝑫𝑹𝑳𝟏 496.45 493.13 489.83 483.33 467.55 410.72 270.73 53.04 

𝑴𝑹𝑳𝟏 344.11 341.81 339.53 335.02 324.08 284.69 187.65 36.76 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.1445905 

𝑨𝑹𝑳𝟏 283.12 197.69 151.99 104.13 58.59 21.93 7.61 2.46 

𝑺𝑫𝑹𝑳𝟏 282.62 197.19 151.49 103.63 58.09 21.43 7.10 1.90 

𝑴𝑹𝑳𝟏 195.89 136.68 105.01 71.83 40.27 14.85 4.92 1.33 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.2119926 

𝑨𝑹𝑳𝟏 314.82 229.92 181.21 127.46 73.53 27.98 9.63 2.96 

𝑺𝑫𝑹𝑳𝟏 314.32 229.42 180.71 126.96 73.03 27.47 9.12 2.40 

𝑴𝑹𝑳𝟏 217.87 159.02 125.26 88.00 50.62 19.04 6.33 1.68 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.0668722 

𝑨𝑹𝑳𝟏 266.09 181.48 137.83 93.24 51.87 19.27 6.71 2.22 

𝑺𝑫𝑹𝑳𝟏 265.59 180.98 137.33 92.74 51.37 18.77 6.19 1.65 

𝑴𝑹𝑳𝟏 184.10 125.45 95.19 64.28 35.61 13.01 4.30 1.16 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.02131766 

𝑨𝑹𝑳𝟏 249.51 166.46 125.02 83.64 46.08 17.03 5.96 2.03 

𝑺𝑫𝑹𝑳𝟏 249.01 165.96 124.52 83.14 45.58 16.52 5.44 1.45 

𝑴𝑹𝑳𝟏 172.60 115.03 86.31 57.63 31.59 11.45 3.77 1.02 

𝝀𝟐 = 𝝀𝟏 0.01082036 

𝑨𝑹𝑳𝟏 235.00 153.81 114.46 75.88 41.48 15.27 5.37 1.88 

𝑺𝑫𝑹𝑳𝟏 234.50 153.31 113.95 75.38 40.98 14.76 4.85 1.29 

𝑴𝑹𝑳𝟏 162.54 106.27 78.99 52.25 28.40 10.23 3.37 0.92 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.002429622 

𝑨𝑹𝑳𝟏 188.12 116.11 84.10 54.38 29.14 10.66 3.86 1.51 

𝑺𝑫𝑹𝑳𝟏 187.62 115.61 83.60 53.87 28.63 10.15 3.32 0.87 

𝑴𝑹𝑳𝟏 130.05 80.13 57.95 37.34 19.85 7.04 2.31 0.64 
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Table 5.RL1 values of exact formula on two-sided control charts for quadratic trend AR(2) model using the natural gas 

imports dataset with parameters; 𝝍 = 𝟎, 𝜼 = 𝟎. 𝟑𝟑𝟐, 𝝑 = −𝟎. 𝟎𝟎𝟐, 𝝓𝟏 = 𝟎. 𝟒𝟓𝟒, 𝝓𝟐 = 𝟎. 𝟒𝟎𝟗, and [LCL, UCL] = [0.001, UCL] 

𝝀𝟏 Control chart 𝑼𝑪𝑳 𝜹 0.001 0.002 0.003 0.005 0.01 0.03 0.1 0.5 

 

0.05 

CUSUM 𝜿 = 𝟓 8.265 

𝑨𝑹𝑳𝟏 496.37 492.70 489.07 481.90 464.56 402.66 254.57 44.53 

𝑺𝑫𝑹𝑳𝟏 495.87 492.20 488.57 481.40 464.06 402.16 254.07 44.02 

𝑴𝑹𝑳𝟏 343.71 341.17 338.65 333.68 321.66 278.75 176.11 30.52 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.05253247 

𝑨𝑹𝑳𝟏 248.52 165.59 124.29 83.11 45.77 16.92 5.93 2.04 

𝑺𝑫𝑹𝑳𝟏 248.02 165.09 123.79 82.61 45.27 16.41 5.41 1.45 

𝑴𝑹𝑳𝟏 171.91 114.43 85.81 57.26 31.38 11.38 3.76 1.03 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.06522033 

𝑨𝑹𝑳𝟏 259.21 175.20 132.45 89.20 49.43 18.35 6.43 2.17 

𝑺𝑫𝑹𝑳𝟏 258.71 174.69 131.95 88.70 48.93 17.84 5.91 1.60 

𝑴𝑹𝑳𝟏 179.33 121.09 91.46 61.48 33.92 12.37 4.10 1.13 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.00836681 

𝑨𝑹𝑳𝟏 228.06 147.94 109.62 72.39 39.45 14.52 5.14 1.84 

𝑺𝑫𝑹𝑳𝟏 227.56 147.44 109.12 71.89 38.94 14.01 4.61 1.24 

𝑴𝑹𝑳𝟏 157.73 102.20 75.64 49.83 26.99 9.71 3.20 0.88 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.00293538 

𝑨𝑹𝑳𝟏 201.37 126.33 92.18 60.01 32.34 11.88 4.29 1.64 

𝑺𝑫𝑹𝑳𝟏 200.87 125.83 91.67 59.50 31.84 11.37 3.76 1.02 

𝑴𝑹𝑳𝟏 139.23 87.22 63.54 41.25 22.07 7.88 2.61 0.73 

𝝀𝟐 = 𝝀𝟏 0.001795455 

𝑨𝑹𝑳𝟏 177.36 108.08 77.86 50.12 26.80 9.86 3.65 1.49 

𝑺𝑫𝑹𝑳𝟏 176.86 107.58 77.36 49.62 26.30 9.35 3.11 0.86 

𝑴𝑹𝑳𝟏 122.59 74.57 53.62 34.40 18.23 6.49 2.16 0.63 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.00122696 

𝑨𝑹𝑳𝟏 140.72 82.19 58.21 36.94 19.60 7.30 2.85 1.32 

𝑺𝑫𝑹𝑳𝟏 140.22 81.69 57.70 36.44 19.09 6.78 2.29 0.65 

𝑴𝑹𝑳𝟏 97.19 56.62 40.00 25.26 13.23 4.70 1.60 0.49 

0.10 

CUSUM 𝜿 = 𝟓 8.265 

𝑨𝑹𝑳𝟏 496.95 493.63 490.33 483.83 468.05 411.22 271.23 53.54 

𝑺𝑫𝑹𝑳𝟏 496.45 493.13 489.83 483.33 467.55 410.72 270.73 53.04 

𝑴𝑹𝑳𝟏 344.11 341.81 339.53 335.02 324.08 284.69 187.65 36.76 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 

 

0.1052837 

 

𝑨𝑹𝑳𝟏 251.24 168.01 126.33 84.62 46.66 17.26 6.04 2.05 

𝑺𝑫𝑹𝑳𝟏 250.74 167.50 125.83 84.12 46.16 16.75 5.52 1.47 

𝑴𝑹𝑳𝟏 173.80 116.11 87.22 58.31 32.00 11.61 3.83 1.04 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.13037847 

𝑨𝑹𝑳𝟏 261.21 177.02 134.01 90.37 50.14 18.62 6.51 2.19 

𝑺𝑫𝑹𝑳𝟏 260.71 176.52 133.51 89.86 49.63 18.11 5.99 1.61 

𝑴𝑹𝑳𝟏 180.71 122.35 92.54 62.29 34.40 12.56 4.16 1.14 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 
0.03532493 

 

𝑨𝑹𝑳𝟏 241.36 159.30 119.02 79.22 43.44 16.01 5.62 1.94 

𝑺𝑫𝑹𝑳𝟏 240.86 158.80 118.52 78.71 42.94 15.51 5.09 1.35 

𝑴𝑹𝑳𝟏 166.95 110.07 82.15 54.56 29.76 10.75 3.54 0.96 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.01209531 

𝑨𝑹𝑳𝟏 229.32 149.01 110.49 73.01 39.80 14.63 5.16 1.83 

𝑺𝑫𝑹𝑳𝟏 228.82 148.51 109.99 72.51 39.29 14.12 4.63 1.23 

𝑴𝑹𝑳𝟏 158.61 102.94 76.24 50.26 27.24 9.79 3.22 0.87 

𝝀𝟐 = 𝝀𝟏 0.00660893 

𝑨𝑹𝑳𝟏 218.03 139.65 102.86 67.53 36.62 13.44 4.77 1.73 

𝑺𝑫𝑹𝑳𝟏 217.53 139.15 102.36 67.03 36.12 12.93 4.24 1.12 

𝑴𝑹𝑳𝟏 150.78 96.45 70.95 46.46 25.04 8.96 2.94 0.80 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.001965972 

𝑨𝑹𝑳𝟏 178.87 109.18 78.70 50.68 27.08 9.92 3.63 1.46 

𝑺𝑫𝑹𝑳𝟏 178.37 108.68 78.20 50.17 26.57 9.41 3.09 0.82 

𝑴𝑹𝑳𝟏 123.64 75.33 54.21 34.78 18.42 6.53 2.15 0.60 
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0.15 

CUSUM 𝜿 = 𝟓 8.265 

𝑨𝑹𝑳𝟏 496.95 493.63 490.33 483.83 468.05 411.22 271.23 53.54 

𝑺𝑫𝑹𝑳𝟏 496.45 493.13 489.83 483.33 467.55 410.72 270.73 53.04 

𝑴𝑹𝑳𝟏 344.11 341.81 339.53 335.02 324.08 284.69 187.65 36.76 

EEWMA 

𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 0.1593137 

𝑨𝑹𝑳𝟏 253.55 170.07 128.07 85.91 47.43 17.55 6.13 2.07 

𝑺𝑫𝑹𝑳𝟏 253.05 169.56 127.57 85.41 46.93 17.04 5.61 1.49 

𝑴𝑹𝑳𝟏 175.40 117.53 88.43 59.20 32.53 11.81 3.89 1.05 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.1965033 

𝑨𝑹𝑳𝟏 262.77 178.44 135.22 91.28 50.69 18.83 6.58 2.20 

𝑺𝑫𝑹𝑳𝟏 262.27 177.94 134.72 90.78 50.19 18.32 6.06 1.63 

𝑴𝑹𝑳𝟏 181.79 123.34 93.38 62.92 34.79 12.70 4.20 1.15 

DEWMA 

𝝀𝟐 = 𝟒𝝀𝟏 0.0830442 

𝑨𝑹𝑳𝟏 246.81 164.04 122.97 82.12 45.16 16.66 5.82 1.99 

𝑺𝑫𝑹𝑳𝟏 246.30 163.54 122.47 81.62 44.66 16.15 5.30 1.40 

𝑴𝑹𝑳𝟏 170.73 113.35 84.89 56.57 30.95 11.20 3.68 0.99 

𝝀𝟐 = 𝟏. 𝟔𝝀𝟏 0.02941417 

𝑨𝑹𝑳𝟏 238.73 157.02 117.12 77.82 42.61 15.69 5.50 1.90 

𝑺𝑫𝑹𝑳𝟏 238.23 156.52 116.61 77.32 42.11 15.18 4.97 1.31 

𝑴𝑹𝑳𝟏 165.13 108.49 80.83 53.59 29.19 10.52 3.45 0.93 

𝝀𝟐 = 𝝀𝟏 0.01638675 

𝑨𝑹𝑳𝟏 231.17 150.56 111.76 73.92 40.32 14.82 5.21 1.83 

𝑺𝑫𝑹𝑳𝟏 230.67 150.06 111.26 73.42 39.82 14.31 4.68 1.23 

𝑴𝑹𝑳𝟏 159.89 104.01 77.12 50.89 27.60 9.92 3.25 0.88 

𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 0.004486612 

𝑨𝑹𝑳𝟏 204.13 128.49 93.88 61.18 32.97 12.07 4.30 1.61 

𝑺𝑫𝑹𝑳𝟏 203.63 127.99 93.38 60.67 32.47 11.55 3.77 0.99 

𝑴𝑹𝑳𝟏 141.15 88.71 64.72 42.06 22.51 8.01 2.62 0.71 

4.2. Performance Evaluation of Real-World Data for the Control Chart 

Since Thailand’s economic landscape is heavily influenced by natural gas imports, which serve as a primary energy 

source across sectors such as power generation, manufacturing, and transportation. With the decline of domestic natural 

gas reserves, the nation increasingly depends on imported gas, underscoring its vital role in maintaining energy security 

and economic resilience. Variations in the volume and price of these imports can significantly impact energy expenses, 

industrial productivity, and the broader economy. Although there may have been interventions or known events in the 

natural gas import data—such as policy changes or market shocks—that could potentially affect the process mean and 

control limits, all control charts applied in this study used the same average value to compute control limits. Therefore, 

such factors are unlikely to bias the comparative evaluation of chart performance. Moreover, the dataset was analyzed 

using statistical software to identify a suitable time series model. It was found that the data follow a quadratic trend 

AR(p) structure, the details of which will be elaborated in the following step. This modeling process ensured that the 

analysis was appropriately aligned with the scope of the study. Therefore, to evaluate how the economy is doing, this 

study uses data on natural gas imports in Thailand, measured in units of 100 MMSCFD with a heat value of 1,000 

BTU/SCF. The dataset comprises 132 monthly observations from January 2012 to December 2022, obtained from the 

Energy Policy and Planning Office, Ministry of Energy, Thailand. The sources of the dataset for Figures 2 and 3 are 

derived from the website https://www.eppo.go.th/index.php/en/en-energystatistics/ngv-statistic.  

This dataset aligns with the model by applying time series forecasting techniques to identify the most suitable model 

for the data. The results indicate that the dataset follows a quadratic trend AR(p) model, which will be described in detail 

later. The model's suitability was assessed using SPSS software, which was employed to fit the models. Table 5 presents 

the coefficients for the quadratic trend AR(p) models of order 1 and 2, based on the Thailand natural gas imports dataset. 

Table 6 shows the accuracy values of the model fitting using MAPE and the Normalized BIC. For both criteria, lower 

values indicate a better model fit. The results reveal that the quadratic trend AR(2) model has lower MAPE (13.538) and 

Normalized BIC (1.726) compared to the AR(1) model, which yields MAPE of 14.544 and Normalized BIC of 1.845. 

This suggests that the AR(2) model provides a more accurate fit and is more suitable for application in this research. It 

is noted that the lowest MAPE and Normalized BIC values are highlighted in bold. After that, data on natural gas imports 

in Thailand was used to apply the AR(2) model with a quadratic trend to express the efficiency of the control chart. The 

next step involved using the one-sample Kolmogorov-Smirnov test to evaluate how well the white noise fits an 

exponential distribution with the estimated mean parameter, as shown in Table 7.  

For the quadratic trend AR(2) model, the estimated exponential parameter is 1.7811, with a Kolmogorov-Smirnov 

statistic of 0.705 and a p-value of 0.702. Since the p-value is greater than 0.05, it indicates that the white noise does not 

significantly differ from the exponential distribution, confirming the appropriateness of the model. Moreover, the 

structure of the exponential white noise was evaluated using SPSS to verify that it met the underlying assumptions, and 

the analysis confirmed that these assumptions were fulfilled. Therefore, the dataset is appropriate for the quadratic trend 

AR(2) model and exhibits the correct parameters, which are shown to be fitted to the model as: 𝑋𝑡 = 0.332𝑡 − 0.002𝑡2 +

0.454𝑋𝑡−1 + 0.409𝑋𝑡−2+. . . +𝜙𝑝𝑋𝑡−𝑝 + 𝜉𝑡; 𝜉𝑡 ∼ 𝐸𝑥𝑝(𝛾0 = 1.7811). 

https://www.eppo.go.th/index.php/en/en-energystatistics/ngv-statistic
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   (a)                                                                        (b)                                                                         (c) 

Figure 2. 𝑨𝑹𝑳𝟏values with the Thailand natural gas imports dataset given 𝝀𝟏 as; (a) 0.05, (b) 0.10 (c) 0.15 
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Figure 3.The capability of detecting processes of two-sided control charts of Thailand natural gas imports dataset with 

quadratic trend AR(2); on (a) EEWMA control chart with 𝝀𝟐 = 𝟎. 𝟐𝝀𝟏 and (b) DEWMA control chart with 𝝀𝟐 = 𝟎. 𝟔𝝀𝟏 

Table 6. The coefficients for the quadratic trend AR(p) models using the Thailand natural gas imports dataset 

 Quadratic trend AR(1) model Quadratic trend AR(2) model 

Variable Coefficient Std. Error t-Statistic p-value Coefficient Std. Error t-Statistic p-value 

𝜂 0.342 0.041 8.246 0.000 0.332 0.065 5.126 0.000 

𝜗 -0.002 0.000 -4.631 0.000 -0.002 0.001 -2.925 0.004 

AR(1) 0.752 0.058 13.048 0.000 0.454 0.081 5.636 0.000 

AR(2)  0.409 0.081 5.065 0.000 

Table 7. Model Fi 

Model MAPE Normalized BIC 

Quadratic trend AR(1) 14.544 1.845 

Quadratic trend AR(2) 13.538 1.726 

Table 8.One-sample Kolmogorov test for the real-world data using the Thailand natural gas imports 

Model Exponential parameter (𝜸𝟎) One-sample Kolmogorov-Smirnov p-value 

Quadratic trend AR(2) 1.7811 0.705 0.702 

Table 5 presents the 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1values of the CUSUM, EEWMA, and DEWMA control charts under 

various scenarios based on the quadratic trend AR(2) model, with corresponding visualizations provided in Figure. 2. 

The findings reveal that decreasing the value of 𝜆1 results in lower 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 values. The DEWMA chart 

consistently demonstrates superior performance compared to the EEWMA and CUSUM charts in identifying small shifts 

in the process mean. Furthermore, when 𝜆2 is set closer to 𝜆1, both the EEWMA and DEWMA charts exhibit improved 

sensitivity, as reflected in reduced 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 values. This implies that selecting smoothing parameters 

with minimal difference between 𝜆1 and𝜆2enhances the ability of these charts to promptly detect small process changes. 

The results closely align with those obtained from the simulated dataset under all conditions. Accordingly, Figure 3 

illustrates the performance of the control charts in detecting process shifts during monitoring, based on the dataset by 

plotting the control chart graphs. The results show that, the DEWMA control chart (with 𝝀𝟐 = 𝟎. 𝟔𝝀𝟏), developed using 

the quadratic trend AR(2) model, signalled the first out-of-control condition at the 4th observation, whereas the EEWMA 

control chart (with 𝜆2 = 0.2𝜆1) did so at the 12th observation.  

The results of this study highlight the superior responsiveness of the DEWMA control chart in detecting small shifts 

more promptly than the EEWMA control chart, especially when dealing with data exhibiting autocorrelation. In 

comparison with previous research, such as the EEWMA control chart under quadratic trend AR(p) [9], the adjusted 

MEWMA chart for linear and quadratic trend AR(p) models [20]. Notably, the findings of this study are consistent with 

prior research published in 2024, which enhanced the performance of the Adjusted Modified EWMA (AMEWMA) 

control chart for both trend and quadratic trend AR models, as well as the application of the DEWMA chart to the 

quadratic trend AR(1) process. Both studies also demonstrated the effectiveness of these control chart approaches when 

applied to economic data. It further incorporates a quadratic trend structure and exponential white noise, which had not 

been previously explored for the DEWMA chart. The findings from the exact ARL formula demonstrate that the 

enhanced DEWMA chart detects shifts more quickly, with greater accuracy and reduced computation time. This makes 

it a highly effective tool for practical applications in systems characterized by autocorrelated data and underlying trends 

such as quadratic trend. 
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5. Conclusion 

The DEWMA chart, based on a quadratic trend AR(p) model with exponential white noise, was evaluated using the 

exact ARL solution, which proved more computationally efficient than the NIE method. While both approaches yield 

similar ARL accuracy, the exact solution offers faster performance, making it ideal for real-time or large-scale 

applications where quick detection of shifts is essential. Subsequently, the exact ARL solution applied to the DEWMA 

chart was compared with the EEWMA and CUSUM charts under out-of-control conditions with varying shift 

magnitudes. The comparison was conducted using 𝐴𝑅𝐿1, 𝑆𝐷𝑅𝐿1, and 𝑀𝑅𝐿1 metrics to assess detection performance. 

The results indicate that the DEWMA chart performed the best, particularly when 𝜆1 was small and 𝜆2was near 𝜆1, 

showing enhanced sensitivity in detecting changes to the process mean. Furthermore, these formulas can be applied to 

analyse real-world data, such as the natural gas import data in Thailand, which follows the AR(p) model with quadratic 

trend and exponential white noise. The exact solution has proven to be an effective approach for determining the ARL 

for shift changes observed in the DEWMA chart. By utilizing this precise ARL solution and evaluating the performance 

of the control chart with metrics such as SDRL and MRL, the sensitivity of the DEWMA chart for detecting parameter 

shifts was significantly improved. This enhancement contributes to improved performance in monitoring and detecting 

process shifts. Nonetheless, the present research provides a strong foundation for future developments aimed at 

increasing the sensitivity of detecting small changes across diverse data structures. While the proposed exact solution 

has demonstrated effectiveness, its applicability may be limited to datasets that exhibit autocorrelation and follow an 

autoregressive (AR) model with a quadratic trend component. Future research could focus on extending this solution to 

accommodate a wider variety of data types with different characteristics. 
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