Available online at www.HighTechJournal.org

{ HighTech and Innovation

smme JoUrnal s zmsess

W

o o0 @
0e0e0e0e

HighTech and Innovation
HighTech and Innevation lournal

TJournal

ISSN: 2723-9535 Vol. 6, No. 4, December, 2025

Advancing Network Security: Integrating Salp Swarm
Optimization with LSTM for Intrusion Detection

Ahmed Abdelaziz * 2@, Mohamed Elhoseny * 4, Vitor Santos !

! Nova Information Management School, Universidade Nova de Lisboa, 1070-312, Lisboa, Portugal.
2 Information System Department, Higher Technological Institute, HTI, Cairo, 44629, Egypt.
3 College of Computing and Informatics, University of Sharjah, United Arab Emirates.

4 Faculty of Computers and Information, Mansoura University, Egypt.

Received 22 March 2025; Revised 15 October 2025; Accepted 18 November 2025; Published 01 December 2025

Abstract

Over time, intrusion detection systems have grown essential in ensuring network security by identifying malicious activities
within network traffic and alerting security teams. Machine learning techniques have been employed to develop these
systems. However, these approaches often face challenges related to low accuracy and high false alarm rates. Deep learning
models like Long Short-Term Memory (LSTM) are utilized to address these limitations. Despite their potential, LSTM
models require numerous iterations to achieve optimal performance. This study introduces an enhanced version of the
LSTM algorithm, termed ILSTM, which integrates the Salp Swarm Optimizer (SSO) to boost accuracy. The ILSTM
framework was applied to construct an advanced intrusion detection system capable of binary and multi-class
classifications. The approach comprises two phases: The first involves training a standard LSTM model to initialize its
weights. In contrast, the second employs the SSO hybrid optimization algorithm to fine-tune these weights, enhancing
overall performance. The effectiveness of the ILSTM algorithm and the intrusion detection system was assessed using two
publicly available datasets, NSL-KDD and LITNET-2020, across nine performance metrics. Results demonstrated that the
ILSTM significantly outperformed the conventional LSTM and other comparable deep learning models in accuracy and
precision. Specifically, the ILSTM achieved an accuracy of 93.09% and a precision of 96.86%, compared to 82.74%
accuracy and 76.49% precision for the standard LSTM. Moreover, the ILSTM exhibited superior performance on both
datasets and was statistically validated to be more robust than LSTM. Furthermore, the ILSTM excelled in multiclass
intrusion classification tasks, effectively identifying intrusion types.

Keywords: Security; Intrusion Detection; Long Short-Term Memory; Salp Swarm Optimizer.

1. Introduction

In the era of pervasive digital connectivity, cybersecurity threats have grown in frequency and sophistication.
Cyberattacks include denial-of-service (DoS), phishing, malware, and advanced persistent threats, which pose significant
risks to individuals, enterprises, and critical infrastructure. Intrusion Detection Systems (IDS) have emerged as vital
components in defending against these threats by monitoring network traffic and identifying anomalous behaviors or
known attack patterns [1, 2]. In addition, the proliferation of Internet of Things (10T) devices has amplified security

* Corresponding author: d20190535@novaims.unl.pt
d:) http://dx.doi.org/10.28991/HIJ-2025-06-04-05
» This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).

© Authors retain all copyrights.

1185

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6347-8368
https://orcid.org/0000-0003-2364-4186

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

concerns, as these interconnected systems present new vulnerabilities. Enhancing the security of 10T ecosystems requires
targeted measures to safeguard devices and their transmitted data [3, 4].

Over the past two decades, machine learning (ML) and deep learning (DL) techniques have been employed to improve
IDS effectiveness. Traditional ML methods such as decision trees, support vector machines, and artificial neural
networks offer reliable performance but often rely on manual feature engineering and struggle with complex or evolving
attack vectors [3-5]. DL models, particularly Long Short-Term Memory (LSTM) networks, have demonstrated superior
capabilities in learning temporal dependencies from sequential network data [6, 7]. LSTM's architecture allows for
capturing long-range dependencies, which is essential in distinguishing between benign and malicious traffic patterns.
However, despite their effectiveness, standard LSTM models face challenges related to random weight initialization,
slow convergence, and overfitting—factors that hinder their performance and generalizability [8, 9].

For more than twenty years, Various ML techniques have been extensively utilized to improve the efficiency and
effectiveness of IDS [7]. These algorithms are broadly categorized into shallow learning and deep learning approaches
for anomaly detection. Shallow learning techniques, including Bayesian networks and artificial neural networks (ANNS),
depend on manual feature extraction to create predictive models [2]. In contrast, deep learning (DL) algorithms have the
advantage of automatically deriving intricate representations directly from raw data, leading to more robust models [8].
As a subset of ML, DL utilizes multi-layer artificial neural networks to learn hierarchical features, enabling the
processing of large, complex, and high-dimensional datasets. Prominent DL algorithms include deep neural networks
(DNNSs) [9], convolutional neural networks (CNNs) [10], and recurrent neural networks (RNNs). One of DL's key
strengths lies in its capacity to autonomously identify relevant features, eliminating the need for labor-intensive feature
engineering. In recent years, deep learning has emerged as a focal point in intrusion detection research [8, 11-13]. Among
the various DL models, RNNs are particularly popular for sequential data classification due to their cyclic connections,
which enable the retention and use of prior input information during training [14]. A prominent variant of RNN, LSTM,
has garnered significant attention for overcoming the vanishing gradient problem commonly faced by standard RNNS.
By incorporating gating mechanisms, LSTM models are adept at capturing long-term dependencies in data, making them
well-suited for detecting complex attack patterns. Furthermore, LSTM has been shown to effectively identify distinctive
and previously unseen attack behaviors [15, 16].

SSO is highly effective in exploring the solution space, which helps mitigate the risk of local minimum often
encountered in deep learning models. Its underlying mechanism allows it to traverse complex optimization landscapes,
improving the likelihood of identifying globally optimal weight configurations. By balancing exploration and
exploitation through the leader-follower dynamics of salps, SSO achieves efficient search capabilities. Additionally,
SSO operates independently of gradient information, making it well-suited for optimizing non-differentiable or highly
complex functions. Its versatility allows it to be applied across various DL architectures and challenges [17].

SSO adapts its search strategy dynamically based on the fitness of potential solutions, offering a more responsive and
effective method for optimization, particularly in dynamic environments [18]. It also supports multi-objective
optimization, enabling simultaneous improvement of multiple criteria, such as maximizing accuracy while minimizing
computational costs. This capability allows for more holistic optimization strategies in DL applications. By efficiently
optimizing weights, SSO enhances a model's ability to generalize to unseen data, thereby reducing overfitting and
improving test performance. One of the key advantages of SSO is its simplicity, which makes it easier to understand and
implement compared to some more complex optimization algorithms. This accessibility appeals to researchers and
practitioners who aim to integrate it into their DL workflows. Moreover, SSO can be combined with other optimization
techniques, such as gradient-based methods, to create hybrid approaches that leverage the strengths of both strategies.
These hybrid methods often yield improved optimization results and more robust models [19].

Overall, SSO provides a robust and effective framework for optimizing weights in DL models. Its global search
capabilities, adaptability, and ease of implementation make it a valuable tool for improving model performance across
various applications. As the field of DL continues to advance, SSO is poised to play a crucial role in addressing the
optimization challenges inherent in this evolving domain [20].

The LSTM algorithm has emerged as a popular choice for designing IDS [21, 22]. However, certain drawbacks often
compromise its effectiveness, including the challenges associated with random weight initialization [23] and the risk of
overfitting [24]. Despite its potential, LSTM-based models encounter two significant issues: (1) the computational
burden caused by the high number of iterations required to identify optimal network weights, and (2) relatively low
classification accuracy in certain scenarios. The primary focus of this study is to overcome these challenges by
optimizing the weight initialization process and minimizing the loops, lowering computational efforts and improving
classification performance in IDSs.

Recent research has explored hybrid models combining DL with nature-inspired optimization algorithms to overcome
these challenges. For instance, the integration of Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and
Whale Optimization Algorithm (WOA) has been shown to improve classification performance and convergence in IDS

1186

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

tasks [10-12]. Among these, the SSO, inspired by the behavior of marine salps, offers promising results in global
optimization due to its simplicity, low computational overhead, and capacity for effective exploration and exploitation
[13].

Despite these advances, there remains a gap in fully leveraging SSO for fine-tuning LSTM networks in IDS
applications. While prior studies have used SSO for feature selection or standalone optimization, limited work has
explored its integration directly with LSTM weight optimization for both binary and multi-class classification in IDS
[14, 15]. This gap motivates the present study.

To tackle these limitations, a refined version of the LSTM algorithm, known as ILSTM, was introduced. The ILSTM
integrates the SSO to optimize LSTM weights, thereby minimizing the iteration count required for convergence. This
advancement was employed to construct a robust and precise intrusion detection system designed to operate effectively
in two key scenarios: binary classification, which identifies normal versus abnormal activities, and multi-class
classification, which differentiates and categorizes multiple attack types. The contribution of this work can be
summarized as follows:

¢ Introducing an innovative and enhanced version of the LSTM algorithm, termed ILSTM, which incorporates
hybrid techniques, specifically SSO, to optimize the LSTM's weight configurations. This optimization approach
resulted in superior performance while requiring fewer iterations.

¢ Developing IDS based on the ILSTM algorithm. The system effectively handles both binary classification (BCN)
and multi-class classification (MCN).

e Performing an extensive assessment of the ILSTM model and the newly designed IDS. The assessment utilized
nine performance metrics on two publicly available datasets (NSL-KDD and LITNET-2020). The ILSTM
consistently outperformed the standard LSTM in both datasets.

¢ Evaluating the effectiveness of the ILSTM model against various DL techniques. The evaluation demonstrated
that the ILSTM outperformed its counterparts in both BCN and MCN scenarios.

The structure of this paper is organized as follows: Section two reviews related to studies on methods for IDS. Section
three outlines the algorithms implemented in the development of the proposed approach. Section 4 introduces the ILSTM
in detail. Section 5 describes the experimental setup. Section 6 presents the results and analysis of the proposed
algorithm’s performance in both BCN and MCN, along with comparisons to other DL and ML methods. Finally, Section
7 concludes this study and outlines directions for future research.

2. Literature Review

IDS plays a vital role in safeguarding computer networks. Previous research has explored various strategies for
implementing ID using DL techniques. For instance, the authors developed [14] a method utilizing RNNs was introduced
for detecting intrusions. The study utilized the NSL-KDD dataset to assess the effectiveness of the approach, addressing
both BCN and MCN to distinguish different types of intrusions. The results demonstrated that the RNN-based model
outperformed traditional ML techniques for the given dataset. However, the study also acknowledged limitations
associated with the RNN, particularly the exploding and vanishing gradient problems, which were not addressed in their
implementation. This highlighted the need for further optimization to enhance the model's performance in real-world
intrusion detection scenarios.

Gelenbe et al. [8] developed an IDS using an integrated DL model that combines. CNNs and LSTM networks. This
hybrid model was designed to extract spatial features through CNNs and capture temporal dependencies using LSTMs.
The NSL-KDD dataset was employed for evaluation, focusing on both BCN and MCN tasks. The integrated model
demonstrated high performance, with an accuracy of 98.96% for BCN and 95.84% for MCN. Additionally, the false
alarm rate was significantly reduced to 1.25%. These results highlighted combining CNN and LSTM for ID,
outperforming traditional ML and standalone DL methods.

Imrana et al. [13] proposed an IDS based on a bidirectional Long Short-Term Memory (BiLSTM) to enhance
detection accuracy by leveraging past and future contextual information in network traffic data. The system was
evaluated using the NSL-KDD dataset for BCN and MCN tasks. The BiLSTM model reached an accuracy of 99.12%
for BCN and 96.45% for MCN, with a detection rate of 98.78% and a false alarm rate of 1.34%. These results
demonstrated the superior capability of the BiLSTM approach in detecting network intrusions compared to traditional
and unidirectional DL methods.

Chelloug [25] introduced a stacking ensemble of DL models, specifically CNN and Deep Neural Networks (DNN),
to enhance intrusion detection capabilities. The developed model was tested on the NSL-KDD dataset, where it
demonstrated an accuracy of 99% and attained an average F1-score of 93% for tasks involving MCN.

Wu & Kondo [26] proposed a network IDS that combines a hybrid intelligent model to improve detection
performance. The system utilized the NSL-KDD dataset for evaluation, focusing on addressing data imbalance issues

1187

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

and enhancing accuracy. The hybrid sampling method reached an accuracy of 99.15% for BCN and 97.32% for MCN.
Ghadermazi et al. [27] proposed an IDS utilizing an optimized ANN to enhance detection performance. The authors
employed the NSL-KDD dataset for their evaluation, focusing on both BCN and MCN tasks. The ANN was optimized
using GA to select the best parameters. It reached an accuracy of 98.87% for BCN and 96.54% for MCN. Furthermore,
the system demonstrated a false alarm rate of 1.45%.

Abdelaziz et al. [28] developed a hybrid model combining a Self-Organizing Map (SOM), DL, and a GA proposed
to manage energy consumption in public buildings. SOM was utilized for clustering energy consumption patterns, while
the deep learning model analyzed these patterns to predict future energy usage. The GA was employed to choose the
best weights of the DL model, enhancing computational costs. The hybrid model achieved a prediction accuracy of
95.8%, reducing energy forecasting errors by 12% compared to standalone deep learning methods. Additionally, the
system demonstrated a 15% improvement in energy efficiency by optimizing energy allocation strategies, showcasing
its potential for sustainable energy management in public infrastructure. Alsaleh & Binsaeedan [29] investigated the
impact of feature selection using the SSO on network anomaly intrusion detection systems. The authors applied the SSO
to identify the most relevant features in the NSL-KDD dataset while retaining critical information. The selected features
were then used to train machine learning models, including Decision Trees (DT) and Support Vector Machines (SVM).
The results achieved an accuracy of 98.53%, a detection rate of 97.89%, and a false alarm rate of 1.22%. These findings
highlighted the effectiveness of SSA in optimizing feature selection, leading to enhanced detection accuracy and reduced
computational complexity for network intrusion detection. Thankappan et al. [30] proposed a novel hybrid Firefly
Algorithm (FA) to optimize the hyperparameters of the XGBoost model to enhance IDS. It focuses on both BCN and
MCN tasks. The hybrid FA integrated local search capabilities with global optimization techniques to improve the tuning
process of XGBoost. The optimized model achieved an accuracy of 99.24% for BCN and 97.88% for MCN.
Additionally, it demonstrated a detection rate of 98.75% and a false alarm rate of 1.15%.

Dora & Lakshmi [31] developed an approach for detecting Distributed Denial of Service (DDoS) attacks by
combining optimal feature selection, CNN for feature learning, and a meta-heuristic-based LSTM model. The feature
selection was optimized using a meta-heuristic algorithm, which improved the efficiency and accuracy of the model by
identifying the most relevant features. CNN was employed to extract insight features from the input data, which were
then processed by the LSTM network for classification. The model was evaluated using a public dataset, reaching an
accuracy of 98.85%, a detection rate of 97.65%, and a false alarm rate of 1.34%. This combination of techniques
demonstrated enhanced performance in detecting and classifying DDoS attacks compared to traditional methods. Deore
& Bhosale [11] developed an IDS that integrates feature reduction techniques with an RNN classifier. It minimizes the
dataset's dimensionality while retaining critical information. The reduced dataset was then classified using the RNN
model. The system reached an accuracy of 98.45%, a detection rate of 97.23%, and a false alarm rate of 1.57%. These
results demonstrated combining principal component analysis (PCA) with RNN to reduce computational complexity
while maintaining high detection accuracy. Jothi & Pushpalatha [32] introduced WILS-TRS, an optimized DL-based
IDS for 10T networks. The framework integrates WOA and LSTM networks for IDS. The WOA reduces the dataset's
dimensionality by identifying the most significant features, which are then fed into the LSTM for classification. The
framework was evaluated using the UNSW-NB15 dataset. It reached an accuracy of 98.72%, a detection rate of 98.45%,
and a false alarm rate of 1.28%, demonstrating its robustness in identifying 10T network intrusions. The results
confirmed that the WILS-TRS framework outperformed traditional methods in efficiency and accuracy.

Rashid et al. [33] developed a method for incorporating metaheuristic algorithms to optimize the model's parameters.
The authors evaluated their approach using a synthetic dataset. They employed metaheuristic techniques such as GA
and PSO to select weights and biases during training. The optimized LSTM achieved an accurate improvement of up to
97.85%, with a reduction in training time by 15% compared to standard LSTM training. These results demonstrated that
integrating metaheuristic algorithms can improve LSTM performance for time-series data.

Jihado & Girsang [34] proposed a unified DL approach for IDS by integrating spatial and temporal features. The
model combined CNNs and LSTM networks. It was estimated for both BCN and MCN tasks. The approach reached an
accuracy of 99.05% for BCN and 96.89% for MCN. Additionally, the system demonstrated a false alarm rate of 1.15%,
showecasing its efficiency and robustness in detecting network intrusions. The results highlighted the benefits of
combining spatial and temporal analysis for enhanced intrusion detection. Zivkovic et al. [35] developed an IDS
combining the Firefly Algorithm (FA) with a DNN to enhance detection performance. The FA was utilized to optimize
the DNNs in each layer, improving model accuracy and efficiency. The optimized DNN reached an accuracy of 99.12%
for BCN and 96.87% for MCN.

Ali et al. [36] proposed a framework that is integrated into ML, including Decision Trees (DT), SVM, and Random
Forest (RF), to classify and detect DDoS attacks. The BoT-IoT dataset was used to evaluate the system’s performance.
Among the models, RF achieved the highest accuracy of 99.24%, a precision of 98.95%, and a recall of 98.78%, making
it the most effective classifier in the framework. Alzagebah et al. [37] proposed a Modified Grey Wolf Optimization
(MGWO) algorithm to optimize the performance of an IDS. The MGWO algorithm was utilized for feature selection,

1188

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

reducing the dimensionality of the dataset while retaining critical attributes to improve classification performance. The
approach is integrated with ML classifiers such as SVM and RF. The IDS achieved an accuracy of 99.12%, a precision
of 98.87%, and a recall of 98.53%, significantly outperforming traditional feature selection methods. The study
demonstrated that the MGWO algorithm effectively optimized IDS performance while reducing computational
overhead. The researchers proposed a method for IDS using a Hybrid Artificial Bee Colony (HABC) algorithm. The
HABC algorithm reduces the dimensionality of the dataset while maintaining classification accuracy. It is integrated
with ML classifiers, like SVM and RF. The HABC-based IDS reached an accuracy of 98.87%, a detection rate of
97.56%. The study highlighted the efficiency of HABC in improving IDS performance by effectively balancing feature
reduction and classification accuracy. The researchers proposed a framework for IDS using FA [38, 39]. The FA reduces
the dataset's dimensionality while retaining critical information for classification. The approach was estimated using
SVM and k-Nearest Neighbors (k-NN). The FA is reaching an accuracy of 97.85%, a precision of 96.34%, and a false
alarm rate of 2.12%. The study demonstrated that FA effectively optimized feature selection, as Toldinas et al. [40]
proposed a novel IDS based on multistage DL using image recognition techniques. The approach transformed network
traffic data into visual representations, which were then processed using CNNs for feature extraction and classification.
The system employed a multi-stage framework to enhance detection accuracy by combining predictions from multiple
CNN models. It reached an accuracy of 99.23% for BCN and 97.85% for MCN.

3. Background
This work explores the integration of SSO and LSTM networks, two powerful techniques in the fields of optimization
and DL, respectively.

3.1. Salp Swarm Optimization

SSO algorithm is a bio-inspired technique modeled after the movement patterns of salps, gelatinous marine creatures.
Salps navigate the ocean by rhythmically contracting and expanding their bodies, generating jet-like propulsion. This
natural movement is mirrored in the SSO, where a group of salps collaboratively explores the solution space to identify
optimal outcomes for a given problem [17].

3.1.1. Key Components

The salp population in the SSO algorithm symbolizes a collection of candidate solutions for an optimization task.
Each salp occupies a specific position within the search space, representing a set of variables or parameters, such as the
weights in a LSTM network. The salp at the forefront of the population, referred to as the "leader,” signifies the most
optimal solution identified up to that point [18]. The remaining salps, known as "followers," adjust their positions by
considering both the leader's position and their own prior locations in the search space.

3.1.2. Equation and Mechanism
This section shows the steps of the SSO, as follows [17-20]:

Step 1: Initialization
Set the necessary parameters for the algorithm, including the number of salps N, the dimensionality of the problem D,
and the maximum loops T. Randomly assign the initial positions of the salps within the defined search space, represented
as:

X(0) = rand (min, max) Vi e [1,N] (D)

o X(0): Represents the initial position matrix for all salps at iteration zero. Each salp has a unique position defined
by a vector in the search space.

¢ rand (min, max): Random number generation within the specified lower and upper bounds of the search space.
o i€ [1, N]: Indicates that the initialization is done for all salps individually (from salp 1 to salp N).

Assess the performance of each salp by calculating its fitness using a predefined objective function f:

Fitness = f(X(0)) Vi € [1, N] 2

o f: The objective function is utilized to determine the best solution. It measures how well a particular salp's position
solves the optimization problem.

e X(0): The current position of the salp.

o Fitness: A numerical value representing the quality of the solution. Lower or higher values (depending on the
optimization goal) indicate better solutions.

1189

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Step 2: Identify the Leader
Identify the optimal point among the salps (the leader):

Leader = arg max (Fitness) (©)

o max(Fitness): This operation identifies the highest fitness value among all the salps in the population, meaning it
finds the best-performing candidate solution.

o arg max (Fitness): The arg max operator returns the index or position of the salp with the highest fitness value
rather than the value itself. This index corresponds to the "leader" salp, which serves as the reference point for
guiding other salps during the optimization process.

Step 3: Update Positions
For each iteration t from 1 to T:

Leader movement: Update the leader's position using:

Xi(t) = Xi(t-1) + R. rand 4)

o Xi(t): The updated the leader salp at the current loop t. The leader is the salp with the best fitness value identified
in the population.

e Xj(t—1): The previous position of the leader salp from the last iteration (t—1).
o R: Arandom coefficient that influences the size and direction of the position update.

o rand: A random number generated between 0 and 1, introducing stochastic behavior to ensure exploration of the
search space.

Follower movement: Each follower i updates its position toward the leader:

Xii(t) = x(t) + (Xa(t) - X,i(t-1)) (5)
o X;:i(t): The updated position of follower salp i at the current loop t.

e X(t): The current general position of all salps, often referring to the search space boundaries or average position
of the swarm.

e X;(t): The current position of the leader salp at loop t.
o X;i(t—1): The previous position of follower salp i from the last iteration (t—1).

Calculate the fitness for all salps after updating their positions:

Fitness (t) = f(x(t)) Vi€ [1, N] (6)

Fitness(t): The fitness value calculated for each salp at iteration t.

f(X(t)): The estimation of the solution's quality, represented by the position X(t), is determined using the defined
fitness function.

X(t): The position of a salp in the search space at iteration t.

N: The total number of salps in the population.

Vie[1,N]: This indicates the calculation is applied to all salps in the population (from the first to the N-th salp).

Step 4: Update Leader

Check if any follower has a better fitness than the current leader and update the leader if necessary:

Leader = arg max; (Fitness; (t)))

where; i is the index of all solutions in the swarm.

Step 5: Termination Criteria
The procedure concludes when any of the specified criteria are satisfied:

e The process stops when the predefined iteration limit T is attained

1190

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

e The enhancement in the optimal fitness score remains under a specified threshold for a determined number of
loops.

Step 6: Output

The last result is the position of the leader salp: optimal solution;

Best Solution = X (t) (8)

Algorithm 1. SSO for LSTM Weight Optimization in High-Dimensional Spaces

- N: Number of salps
- D: Dimension of the problem
- T: Maximum number of iterations
- R: Maximum movement range
- epsilon: Attraction coefficient
Output The best position of the leader salpges; Lstm weighes
1. Randomly initialize the positions of salps:
For i = 1 to N:
X[i] = Random (min, max) // Initialize salp positions
2. Evaluate fitness of each salp:
For i = 1 to N:
Fitness[i] = f£(X[i]) // Evaluate the objective function
3. Identify the leader salp:
LeaderIndex = argmax (Fitness) // Find the index of the best salp
Leader = X[LeaderIndex] // Get the position of the leader
4. Main optimization loop:
For t =1 to T:
// Update leader position
X[LeaderIndex] = X[LeaderIndex] + R * rand () * perturbation () // Update leader's position
// Ensure X[LeaderIndex] stays within bounds:
X[LeaderIndex] = clamp (X[LeaderIndex], min, max)
// Update follower positions
For i = 1 to N:
If i '= LeaderIndex:
X[i] = X[LeaderIndex] + epsilon * (X[LeaderIndex] - X[i]) // Update follower position
// Ensure X[i] stays within bounds:
X[i] = clamp (X[i], min, max)
// Evaluate fitness of updated positions
For i = 1 to N:
Fitness[i] = f£(X[i]) // Re-evaluate fitness
// Update leader if a better solution is found
NewLeaderIndex = argmax (Fitness) // Find the best salp
If Fitness[NewlLeaderIndex] > Fitness[LeaderIndex]:
LeaderIndex = NewLeaderIndex // Update leader index
Leader = X[LeaderIndex] // Update leader position

Return Leaderg, imized LsTMweights // Return the position of the best salp

1191

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Algorithm 1 outlines an SSO algorithm for optimizing LSTM network weights. It begins by initializing the
positions of a population of salps (N) randomly within a predefined range. The fitness function (f) evaluates the
optimization goal. The salp is designated as the leader, and its position becomes the reference for updating other
salps (followers).

The optimization process iterates for a maximum number of steps (T). During each iteration, the leader’s position is
updated first using a perturbation function scaled by a random factor (R). This update ensures search space exploration
while adhering to the problem’s bounds using a clamp function. Next, follower salps adjust their positions relative to
the leader, guided by an attraction coefficient (€), encouraging convergence towards the leader. These positions are also
checked and adjusted to stay within bounds. After updating all positions, the algorithm recalculates the fitness of all
salps.

If any follower achieves better fitness than the current leader during an iteration, the leader is updated to this new
optimal solution. The algorithm continues this process until, at most, a set of loops is reached, refining the leader’s
position over time. Finally, the position of the best-performing salp, representing the optimized LSTM weights, is
returned as the output. This approach balances exploration and exploitation, ensuring efficient convergence towards the
optimal solution.

3.2. Long Short-Term Memory

It is a detailed explanation of LSTMs, including their architecture, mechanisms, and equations [41].

3.2.1. Key Components

The LSTM unit works together to manage information flow, referring to Figure 1. The key components include Cell
State (Ct), Hidden State (ht), Forget Gate (ft), Input Gate (it), and Output Gate (o) [42-45].

3.2.2. Equation and Mechanism

LSTM has six steps as follows [46-52]:

Step 1: Gates and Inputs

It is shown as:
o The preceding concealed h;_;.
e The present input 2,.

e The LSTM uses these inputs to calculate the three gates and the cell state.

Step 2: Forget Gate (ft)

The forget gate determines which data from the cell states needs to be removed. Its computation is performed as
follows:

fi=o (W} [he—qs xe] + bf) ©)

where; f;: It is a vector where each element falls within the range of zero to one; : The sigmoid activation function
ensures that the forget gate outputs values between zero and one; Wy: It contains learnable parameters that are optimized
during training to adjust how the forget gate operates; h,_,: This represents information from the previous step that
impacts the forget decision; x,: This contains new information being introduced to the LSTM at this step; [h:—1, x:]:
Combining both ensures the forget gate considers both past context and current input when making decisions; by: Itis a
learnable parameter that provides flexibility in adjusting the forget gate’s behavior.

Step 3: Input Gate (i) and Candidate Cell State (Ct)
The input gate determines which fresh data should be incorporated into the cell state.
it = (Wi [heeq, x] + by) (10)
The candidate cell state Ct is created from the input:
Ci=tanh (W,. [h—y, x,] + b.) 11)

where: W;, W, are the weight matrices. b;, b, are biases.

1192

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Step 4: Update Cell State (Cv)

The new cell state is created as follows:

Ce=fe*Cq i ™ C (12)
where; C, is the new cell state at time step t. This is the memory of the LSTM, updated with a combination of past
memory and new information. f; is the forget gate output. C,_; is the cell state from the previous time step t—1. This
represents the LSTM's memory carried forward from the past. i, is the input gate output. Similar to f;, it is a vector with
values between zero and one, determining how much of the candidate cell state C; should be added to the current cell
state.

Step 5: Output Gate (Ox)

The output gate determines the next hidden state:

0t =0 (W, . [heq, x¢] + bo) (13)
where; W, is the weight matrix. It is a learnable parameter that maps the concatenated input and precedes hidden state
into the dimensions of O;. b, is the bias vector for the output gate. It is a learnable parameter that helps shift the activation
to improve learning.

Step 6: Compute the Hidden State (ht)

Finally, the hidden state is calculated as:

h, = 0, * tanh (C,) (14)
]I[A
Con (o N\ ¢
Q0 <
Ganh>
£l i Ot
P [0 | 0] hy
>
4
Iy

Figure 1. Structure and Functionality of LSTM

Algorithm 2. LSTM-Based Sequential Processing for Intrusion Detection in Network Traffic

1. Initialize LSTM parameters: Key components
2. For each time step t in the input sequence:

a. Get input x t at time step t.

b. Compute forget gate:

c. Compute input gate:

d. Compute candidate cell state:

e. Update cell state

f. Compute output gate

g. Compute hidden state

3. OutputThe final result of intrusion detection

Algorithm 2 outlines the sequential operations within an LSTM network, specifically for IDS tasks. It begins by
initializing the LSTM parameters, which include weight matrices and bias vectors for the input and output gates,
respectively. These parameters are learnable and are fine-tuned during the training process. The initial hidden state (ho)

1193

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025
and cell state (Co) are typically initialized to zero vectors, representing an empty memory at the start of processing the
sequence. These states are critical as they propagate information across time steps.

The LSTM processes the input x;, which could represent features extracted from network traffic in an IDS. The forget
gate is computed and precedes cell state (Ct—1) to retain or discard. Simultaneously, the input gate is calculated to
determine how much new information, represented by the candidate cell state (Cy), should be integrated into the cell
state. These gates ensure that the LSTM can effectively focus on relevant features while ignoring noise.

The (Ct) combines the outputs of the forget and input gates. The h; acts as the output of the LSTM and is passed to
subsequent layers or time steps. After processing all time steps in the sequence, the last result represents the IDS outputs,
such as classifications of network traffic into normal or attack categories. This step-by-step processing enables the LSTM
to leverage its memory capabilities to detect complex patterns indicative of intrusions in sequential data effectively.

4. Material and Methods

Figure 2 illustrates a multi-phase process for training and optimizing an LSTM network, potentially involving a
hybrid DL and optimization approach. Below is a clarification of each phase:
Phase 1: Preprocessing and Initial LSTM Training

1. Start: The process starts with collecting and preparing the Training Datasets.

2. Data Preprocessing: Several steps are involved in preparing the data for training:

o Normalization: Converts categorical or text-based data into numerical formats suitable for LSTM networks.

o Hybrid Sampling: This could refer to techniques like oversampling or undersampling to handle imbalanced
datasets and ensure better model performance.

o Normalization: This scales the data to a consistent range, such as [0,1] or [-1,1], ensuring that different features
contribute equally to the model.

3. Performance Evaluations of Trained LSTM Network: The performance of the trained LSTM model is assessed
using metrics such as accuracy, precision, recall, or other relevant metrics on a validation dataset. This
performance evaluation step will inform subsequent optimization phases.

Phase 1 Phase 2 Phase 3
Training Datasets _s Define LSTM Network Select the Best Solution
9 Architecture Based SSO Algorithm

l

Data Preprocessing

Is
Population
Matrix
Full?

Initialize Weights '—-l

Numericalization

Hybrid Sampling Train the Network

Normalization

Add Vector to Population

Extract Weights Matrix
(Old Weights) T
Performance evaluations of | | | ‘
trained LSTM network |

Formula Weights as vector

Phase 4

Obtain the Optimal Weights
(New Weights)

;

Simulate the LSTM Network

!

End Calculate the Accuracy

Figure 2. The proposed model Architecture

1194

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Phase 2: Defining and Training the LSTM Network

1. Define LSTM Network Architecture: The structure of the LSTM network is defined, specifying the number of
layers, units per layer, and other hyperparameters like activation functions.

2. Initialize Weights: The weights of the LSTM network are initialized, either randomly or based on some pre-
trained model.

3. Train the Network: The LSTM network is trained on the preprocessed dataset to adjust the weights.

4. Extract Weights (Old Weights): Once the LSTM network is trained, the current weights (referred to as "Old
Weights") are extracted for further optimization in the next phase

Phase 3: Optimization Using an SSO Algorithm

1. Select the Best Solution Based on the SSO Algorithm: This step involves using SSO algorithm to improve the
weights of the LSTM network. The SSO algorithm works by searching for better solutions based on a population
of candidate solutions (weight vectors).

2. Check Population Matrix: The algorithm checks whether the population matrix (which holds all candidate
solutions) is full.

o If NO, the process continues by adding a new weight vector to the population matrix.
o If YES, the algorithm proceeds to select the best solution.

3. Add Vector to Population Matrix: New candidate weight vectors are added to the population matrix, forming the
basis for the search.

4. Formulate Weights as a Vector: The LSTM weights are treated as a vector that can be optimized. This step
prepares the weight vector for inclusion in the population matrix.

This phase effectively optimizes the weights by selecting the best candidates from the population matrix using the
SSO algorithm, ensuring that the weights lead to improved network performance.
Phase 4: Obtaining the Optimized LSTM Weights

1. Obtain the Optimal Weights (New Weights): After running the optimization algorithm, the best solution or weight
vector is selected as the New Weights for the LSTM network.

2. Simulate the LSTM Network: With the newly optimized weights, the LSTM network is simulated to check how
it performs on the dataset.

3. Calculate the performance metrics: The performance of the LSTM network with the new optimized weights is
calculated to assess the improvements achieved through the optimization process.

Algorithm 3 shows the steps that how SSO optimized weights in LSTM in detail and it has been applied by using
the TensorFlow library, as follows.

In Algorithm 3, Initialization: Define the parameters for the SSO, including the size of the population (number of
salps), the dimensionality corresponding to the weights of the LSTM, and the bounds for the weight values.

Population Generation: Create an initial population of salps, each represented as a vector of weights randomly
initialized within the defined bounds.

Fitness Evaluation: For each salp, evaluate how well it performs as a set of weights for the LSTM. This is done by
running the LSTM model with those weights and calculating a fitness score.

Optimization Loop:
e Sorting: Sort the salps based on their fitness scores to identify the best-performing salps.

e Position Update: The leader salp (the best one) is updated based on a random step, while other salps follow the
leader to explore the solution space.

e Bounds Application: Ensure that all salps remain within the defined weight limits.
o Re-evaluation: After updating positions, re-evaluate the fitness of all salps.

Return Best Weights: After all iterations, the best-performing salp is returned as the optimized weights for the LSTM.

1195

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Algorithm 3. SSO for Fine-Tuning LSTM Weights in Intrusion Detection Systems

1. Input: Initialize the parameters for the SSO Algorithm:
- Population size (N)
- Number of dimensions (D) corresponding to LSTM weights
- Maximum number of iterations (T)
- Lower and upper bounds for the weights
2. Generate an initial population of salps (randomly):
For i = 1 to N:
salps[i] = random vector (lower bound, upper_ bound, D)
3. Evaluate the fitness of each salp:
For each salp in salps:
fitness[i] = evaluate fitness(LSTM model, salps[i])
4. Main loop for optimization:
For t =1 to T:
a. Sort salps based on fitness (best to worst)
b. Update the position of salps:
For i = 1 to N:
if i ==
Leader salp
salps[i] = salps[i] + random step (size)
else:
Follow the leader
salps[i] = salps[i-1] + random step (size)
c. Apply bounds to ensure salp positions are within limits:
For i = 1 to N:
salps[i] = clamp(salps[i], lower bound, upper_bound)
d. Evaluate the fitness of each salp again:
- For each salp in salps:
fitness[i] = evaluate fitness(LSTM model, salps([i])
5. Output: Return the best salp as the optimized weights for the LSTM:
-best weights = salps[1]

5. Experimental Setup

This section summarizes the performance metrics employed to measure the algorithm's effectiveness. Additionally,
the section describes the preprocessing steps and characteristics of the two public datasets, NSL-KDD 2009 and
LITNET-2020, utilized for the evaluation. Finally, the proposed algorithm is tested on a contemporary dataset to validate
its efficiency. Its performance is compared against state-of-the-art methods and DL approaches.

5.1. Performance Metrics

To determine the quality of ILSTM [34], nine metrics were utilized: accuracy (RCY), detection rate (NE), false alarm
rate (EME), precision (SPN), specificity (CTY), f-measure (FM), false negative rate (EEE), mathematical correlation
coefficient (LNT), and kappa coefficient (KC) as shown from equations 15 to 26. Each of these metrics can be
mathematically determined using four primary performance indicators—true positive (TP), false positive (FP), true
negative (TN), and false negative (FN)—which are derived from the confusion matrix [48].

TP+TN

RCY = — 4TV (15)

TP+TN+FN+FP
_ TP

NE = TP+FN (16)

CTY=—= 17
TN+FP

SPN =2 (18)
TP+FP

1196

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

_ SPN=+Recall
FM =2x SPN+Recall (19)
EME = =% (20)
FP+TN
EEE = X (21)
FN+TP

LNT = (TP*TN)—(FP*FN) (22)

= J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

_ absolute—Expect

KC= 1-Expect (23)
where Absolute = Accuracy and;
_ A+B
Expect = (TP+TN+FP+FN) (24)
values of A and B can be obtained as;
_ (TP+FN)(FN+FP)
" (TP+TN+FP+FN) (25)
_ (FP+TN)(FN+TN)
= (TP+TN+FP+FN) (26)

5.2. Dataset 1: NSL-KDD Dataset

The NSL-KDD dataset is designed to address some of its inherent issues, such as the redundancy and imbalance of
records. The NSL-KDD dataset categorizes network traffic into five distinct classes: Normal (MALN), Denial of Service
(DFER), Remote-to-Local (RTLO), and User-to-Root (UTRO). Each class represents either a legitimate network activity
or a specific type of cyberattack [53-57].

Table 1. Overview and Characteristics of the NSL-KDD

Datasets MALN DFER RTLO UTRO Total
KDDTrain+ 68454 46138 916 53 136184
KDDTest+ 9822 7569 2865 211 23655
KDDTest-21 2263 4453 2865 211 12961

Table 1 categorizes data into five types: DFER, RTLO, and UTRO attacks. The dataset is composed of three types:
KDDTrain+, KDDTest+, and KDDTest-21.

o KDDTrain+ includes 136,184 total instances, with the majority being MALN (68,454 instances). DFER attacks
are the second-largest category (46,138), followed by RTLO (916), and UTRO (53), indicating its use as the
primary training set.

o KDDTest+ contains 23,655 instances, split into 9,822 MALN, 7,569 DFER, 2,865 RTLO, and 211 UTRO records,
designed for comprehensive testing across all attack types.

e KDDTest-21, a smaller test set, consists of 12,961 instances with 2,263 MALN, 4,453 DFER, 2,865 RTLO, and
211 UTRO entries, often used for focused evaluations.

It emphasizes the imbalanced distribution of attack types, where Normal and DoS dominate, while U2R and R2L are
underrepresented, posing challenges for detection models in handling minority classes effectively.
5.2.1. Dataset Preprocessing: NSL-KDD Dataset

It is a critical step when working with the dataset. The data preprocessing is composed of three primary phases:
transformation, dataset balancing, and normalization. Each phase addresses specific challenges within the dataset [58-
60].

Data transformation: It contains a mix of numerical and categorical features. ML models generally require numerical
inputs, making it necessary to convert categorical features into numerical representations. This step minimizes noise and

1197

HighTech and Innovation Journal

enhances the computational efficiency of the models while preserving the essential information for analysis. SHAP
analysis is employed to identify the most significant impact on a specific output. This process involved assessing how
each feature influences the target variable and determining the relative feature in shaping the final forecasting results. It

Vol. 6, No. 4, December, 2025

is presented in Figures 3 and 4.

X_service_courier

| —
I:‘:I
x_dst_host_srv_count|
[':I
I:l:I
1

X_srv_rerror_rate

SHAP Values for Predictors

x_dst_host_srv_serror_rate | [|

x_flag_RSTO -

X_same_srv_rate__

Predictor

!

x_dst_host_serror_rate__

x_logged in_0_1_

x_dst_host_same_srv_rate__

x_service__courier__

x_service_aol__

x_flag_RE] |
x_flag_OTH |
(I
x_count| |]
I
X_srv_serror_rate | [|
) | l Class Name
x_service_aol - | I =1 _Normal
3 Attack
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
SHAP Value
Figure 3. SHAP Analysis for BCN on the NSL-KDD
Shapley Values for Predictors by Class
Class Name
— B DFER
x flag_ OTH__ = RTLO
— =3 UTRO
I] I MALN
x_count__ L !
I]
x_dst_host_count__ =
I]
X flag_RE)_ I |
I

i
i |
| ——
| 1
= .

[
i]

[1
i]

—-0.15 -0.10 —0.05 0.00 0.05 0.10 0.15 0.20 0.25

Shapley Value

Dataset Balancing: Class imbalance is a critical issue, as certain attack types, such as UTRO and RTLO, are
underrepresented compared to classes like DFER or MALN. This imbalance can result in biased models that perform
well in majority classes while failing to detect minority class attacks. Hybrid sampling techniques are employed to
address this issue, combining oversampling and undersampling methods. Oversampling involves generating synthetic
samples for minority classes using techniques such as SMOTE (Synthetic Minority Oversampling Technique).

Figure 4. SHAP Analysis for MCN on the NSL-KDD

1198

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Normalization: It is the final phase of preprocessing, where the dataset's features are scaled to a consistent range to
eliminate disparities caused by differing feature magnitudes. For example, some features may have values ranging from
0 to 1, while others could extend into the thousands. Normalization techniques, such as min-max scaling or Z-score
normalization, improve the convergence speed and stability of ML models.

5.3. Dataset 2: LITNET-2020 Dataset

It is a comprehensive dataset designed for research in analyzing malicious network activities. It contains both benign
and malicious network traffic, enabling researchers to evaluate various IDS and ML models. The dataset represents real -
world scenarios, offering a broad spectrum of attack types and substantial benign traffic, which is essential for effective
network security testing and development [59].

Table 2. Overview of the LITNET-2020

Class Size
Benign (BN) 37,534,971
SYN flood (SF) 3,836,949
Code red (CR) 1,366,813
UDP flood (UF) 94,694
Smurf (SR) 60,581
LAND DoS (LD) 53,528
W32.Blaster (WB) 25,312
HTTP flood (HF) 23,161
ICMP flood (IFD) 12,739
Port scan (PS) 6343
Reaper worm (RW) 1287
Spam Botnet (SB) 758
Fragmentation (FGN) 488

Table 2 provides an overview of the LITNET-2020 dataset, summarizing various traffic classes and their respective
sizes. The dataset primarily consists of benign traffic, with 37,534,971 instances, which dominates the dataset. Among
the malicious traffic classes, SYN flood has the highest representation with 3,836,949 instances, followed by Code Red
with 1,366,813 entries. Other significant attack classes include UDP flood (94,694), Smurf (60,581), and LAND DoS
(53,528). Less frequent attacks include W32. Blaster (25,312), HTTP flood (23,161), ICMP flood (12,739), and Port
Scan (6,343). The rarest attack types are Reaper worm (1,287), Spam Botnet (758), and Fragmentation (488). This
distribution highlights the dataset's imbalance, with benign and SYN flood traffic significantly outweighing other
classes, posing challenges for intrusion detection systems in accurately identifying minority attacks.

5.3.1. Dataset Preprocessing: LITNET-2020 Dataset

It is a critical step in ensuring the effective use of the LITNET-2020 dataset for IDS development. The preprocessing
of this dataset is divided into three distinct phases: dataset preprocessing and SHAP analysis, dataset balancing, and the
data splitting approach. Each phase is essential in addressing specific challenges related to the dataset's structure and
distribution [53-56].

The first phase, dataset preprocessing and SHAP analysis, focuses on preparing raw data for analysis and
understanding the impact of features on prediction outcomes. Following this, SHAP analysis is employed to estimate
individual features. SHAP provides an interpretable framework for assessing the features, offering insights into which
structural predictors most strongly influence detection performance. This step focuses on the most critical attributes for
accurate predictions, as shown in Figure 5.

The second phase, A hybrid sampling approach, combining oversampling techniques like SMOTE with under
sampling of majority classes, is implemented to achieve a balanced distribution across all classes. This ensures that the
model receives adequate representation from both frequent and infrequent classes.

1199

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Shapley Values for Predictors by Class

— Class Name
ipkt | Normal
m Attack
byte} |
stos| .

outf

Predictor

S

=15 -1.0 -0.5 0.0 0.5 1.0 1.5
Shapley Value

Figure 5. SHAP Analysis on the LITNET-2020

Finally, a stratified splitting technique is used to maintain the class distribution across all subsets, ensuring that
minority classes are not overlooked in any split. By carefully separating the data, this approach minimizes overfitting.
This division was determined following a preliminary experiment conducted to identify the most effective data-splitting
strategy. The findings of this experiment are presented in Figure 6.

litnet2020 dataset division

94 1

92

90 A

88 4

86

Accuracy (%)

84 -

827

80

78 -
50% 40% 30% 20%
Testing size

EEE Binary mmm Multi-class

Figure 6. Data Partitioning Strategy for LITNET-2020

5.4. Parameter Setting

Table 3 outlines the parameter settings for optimizing the performance of LSTM network. The Hidden Units
parameter, set to 128, balances the model's capacity and computational efficiency. The Number of Layers, set to 2,
captures sufficient hierarchical features without overcomplicating the model. A Dropout Rate of 0.3. The Batch Size is
set to 64. A Learning Rate of 0.001 ensures gradual and stable weight updates, particularly effective when paired with
the Adam Optimizer, which is both efficient and robust. The Activation Function Tanh is standard for LSTM gates,
allowing the network to manage non-linearity. Training spans 100 Epochs, sufficient for convergence in most cases,
with early stopping applied if necessary. The Sequence Length, set to 20, captures sufficient temporal dependencies,
and Gradient Clipping, set to 1.0, ensures stable training by preventing exploding gradients. Together, these parameters
are designed to maximize the LSTM's effectiveness in learning from sequential data while maintaining computational
feasibility [34].

1200

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

ILSTM is moderately sensitive to the SSO hyperparameters. Since the SSO directly affects the weight initialization
and convergence behavior of the LSTM model, parameters such as Population size, Maximum number of iterations,
search space boundaries, Inertia weight, Randomness factor, and Convergence threshold.

The same hyperparameters (Tables 3 and 4) and LSTM architecture were used for both datasets (NSL-KDD and
LITNET-2020) to ensure consistency and fairness in evaluation.

Table 3. Configuration of Parameters for LSTM

Parameter Description Optimal Suggested Value
Hidden Units Number of neurons in the hidden layer 128
Number of Layers Number of LSTM layers stacked 2
Dropout Rate Fraction of neurons dropped out during training 0.3
Batch Size Number of samples per batch during training 64
Learning Rate Step size for updating weights during optimization 0.001
Activation Function Function applied to the output of the LSTM Tanh
Epochs Total count of full iterations over the training dataset 100
Optimizer Optimization algorithm for weight updates Adam
Sequence Length Total count of temporal steps within the input sequence 20
Gradient Clipping Maximum gradient value to prevent exploding gradients 1.0

Table 4 describes the parameters used for an optimized SSO algorithm. The Population Size is set to 100, indicating
that the optimization involves 100 salps, which are agents in the algorithm. Maximum Iterations is also set to 100,
meaning the optimization process will run for a maximum of 100 iterations. Search Space Boundaries are defined as
[-10,10][-10, 10][-10,10], indicating that the variables being optimized are constrained within these upper and lower
limits. The Inertia Weight, ranging from 0.1 to 1.0, is used to balance exploration and exploitation during the
optimization process. The Randomness Factor, ranging between 0.01 and 0.1, introduces diversity in the population to
prevent premature convergence on suboptimal solutions. Lastly, the Convergence Criteria specifies the stopping
conditions, which could be either arriving at most loops or satisfying a predefined error threshold. These parameters
work together to guide the optimization process efficiently.

Table 4. Configuration of Parameters for SSO

Parameter Description Value
Population Size The number of salps 100
Max loops The total loops 100
Search Space Boundaries The upper and lower limits [-10, 10]
Inertia Weight Balances exploration and exploitation during optimization. 0.1-1.0
Randomness Factor Improve diversity and prevent premature convergence. 0.01-0.1
Convergence Criteria Stopping criteria Maximum iterations or error threshold

In the paper, a manual grid-search approach was used to identify optimal SSO hyperparameters. Specifically,
Population Size was set to 100, based on initial experimentation. Smaller populations were tested (e.g., 20, 50), but these
resulted in poorer convergence or premature stagnation. Max lterations was fixed at 100, balancing computational
efficiency and convergence accuracy. Search Space Boundaries were empirically set to [-10, 10] after testing broader
and narrower bounds, which provided stable optimization without overshooting. Inertia Weight and Randomness Factor
were defined within adaptive ranges (0.1-1.0 and 0.01-0.1 respectively), allowing dynamic balance between exploration
and exploitation. Convergence Threshold was used as a secondary stop condition, though in most runs, the model
converged within the fixed iteration limit.

6. Results and Discussion

This section shows the experiments and their analysis, which were carried out using the 2 datasets mentioned earlier.

6.1. Trial 1: Evaluation of ILSTM's Effectiveness for BCN on the NSL-KDD Dataset

It shows the ILSTM framework in detecting intrusions through the classification of network data traffic.

1201

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

6.1.1. Evaluation of ILSTM Effectiveness with the KDDTest+ Dataset

Table 5 presents a comparative analysis between standard LSTM and Improved LSTM (ILSTM) models for BCN
tasks. On the KDDTest+ dataset, ILSTM outperforms LSTM across all metrics, achieving higher values, such as 93.09
for RCY, 97.57 for EME, and 95.87 for SPN, compared to 83.85, 79.88, and 76.49, respectively, for LSTM. Similarly,
on the KDDTest-21 dataset, ILSTM demonstrates significant improvements, particularly in metrics such as RCY (86.89
vs. 71.34), EME (98.83 vs. 74.55), and SPN (98.91 vs. 30.44). The ILSTM also shows enhanced performance in less
prominent metrics like CTY and KC, demonstrating its robustness and efficiency. Overall, the table highlights the
superior classification capabilities of ILSTM over the standard LSTM model in binary classification tasks on both
datasets.

Table 5. Performance Comparison of LSTM and ILSTM in BCN

Dataset Method RCY NE EME SPN CTY EEE FM LNT KC
LSTM 83.85 87.63 79.88 76.49 20.12 13.48 81.2 65.78 65.36
KDDTest+
ILSTM 93.09 85.14 97.57 95.87 4.62 16.18 90.47 83.51 83.16
LSTM 71.34 50.78 74.55 30.44 27.67 51.44 37.91 20.42 19.3
KDDTest-21
ILSTM 86.89 29.26 98.83 98.91 0.06 81.94 4431 48.64 39.16

Figure 7 presents two confusion matrices for BCN on the KDDTest+ dataset, comparing the performance of LSTM
(@) and ILSTM (b) models. In matrix (a) for LSTM, the "Attack" class has 8,993 correctly predicted samples (True
Positives) and 3,840 misclassified as "Normal" (False Negatives), while the "Normal" class shows 8,823 correct
predictions (True Negatives) and 888 misclassified as "Attack" (False Positives). In contrast, matrix (b) for ILSTM
demonstrates improved performance, with 12,355 correctly predicted "Attack" samples and only 478 misclassified as
"Normal.” Similarly, 8,631 "Normal" samples are correctly identified, with 1,080 misclassified as "Attack."” The ILSTM
significantly reduces misclassification errors for the "Attack" class, indicating superior accuracy and reliability between
"Attack" and "Normal" behaviors.

(A) Confusion Matrix for LSTM (B) Confusion Matrix for ILSTM

Attack
Attack

True Class
True Class

Normal
\
Normal
\

Attack Normal Attack Normal
Predicted Class Predicted Class

Figure 7. Confusion matrices for KDDTest+ in BCN

Figure 8 compares the accuracy standard LSTM and ILSTM over iterations for BCN using the KDDTest+ dataset.
The solid blue line represents the accuracy of LSTM, which improves steadily until it stabilizes around 85% after the
20th iteration and remains constant for the remaining iterations. In contrast, the red dashed line, representing ILSTM,
shows a similar initial performance but diverges after the 70th iteration, achieving a noticeable improvement over
LSTM. By the 100th iteration, ILSTM reaches an accuracy close to 92%, demonstrating its superior learning capabilities
compared to the standard LSTM. This improvement in ILSTM may be attributed to architectural or algorithmic
enhancements that allow it to capture patterns or adapt the dataset over time. The figure effectively highlights the
strengths of ILSTM in achieving higher performance in later stages of training, providing a compelling visual
comparison of the two models' learning trajectories. This indicates that ILSTM can be a more effective choice for tasks
requiring higher accuracy and adaptability in long-term learning scenarios.

1202

HighTech and Innovation Journal

Vol. 6, No. 4, December, 2025

95r

90 r

RS |

_____________________ —_—
ast
gof
2
>
g 75
3
)
[¥)
g | eeeeasa-a--
70} i,
65
60 Model
— | STM
== LSTM
3 20 40 80 100
Iteration

Figure 8. Accuracy and Iteration Comparison of LSTM and ILSTM on KDDTest+ in BCN

6.1.2. ILSTM Performance Using KDDTest-21 Dataset

The objective of this trial was to assess the improvements introduced by ILSTM in handling binary classification

tasks. It is obtained from this evaluation is presented in Table 5.

(A) Confusion Matrix for LSTM

1083

Attack

True Class

2576 1069

Normal
'

Attack Normal
Predicted Class

True Class

Attack

Normal
'

(B} Confusion Matrix for ILSTM

1577

Attack

Predicted Class

18

575

.
Normal

Figure 9. Confusion matrices for KDDTest-21 in BCN

Figure 9 presents the confusion matrices for BCN on the KDDTest-21. Panel (A) shows the confusion matrix for the
LSTM model, where 7,122 attack instances are correctly classified (true positives), while 1,083 attack instances are
misclassified as normal (false negatives). For normal traffic, only 1,069 instances are correctly classified (true
negatives), while 2,576 are attacks (false positives). Panel (B) displays that The ILSTM correctly classifies 9,680 attack
instances (true positives) and misclassifies only 18 as normal (false negatives). For normal traffic, 575 instances are
correctly classified (true negatives), while 1,577 normal instances are misclassified as attacks (false positives). The
comparison highlights that ILSTM achieves better accuracy and precision in identifying attacks and normal traffic, with
notably fewer misclassifications than the standard LSTM. This demonstrates the effectiveness of ILSTM in enhancing
binary classification performance for intrusion detection tasks. The ILSTM highlights its superior ability to detect attacks
with greater accuracy and efficiency. The slight reduction in true negatives indicates a focus on improving attack

detection, which is critical for intrusion detection systems.

1203

HighTech and Innovation Journal

Vol. 6, No. 4, December, 2025

100

90

80

70

60

Accuracy (%)

50

40

30

Model
— LSTM
== ILSTM

.

0 20 40 60
Iteration

80

100

Figure 10. Accuracy and iterations for LSTM and ILSTM using KDDTest-21 in BCN

Figure 10 compares the accuracy progression of standard LSTM and ILSTM models over 100 iterations for BCN
tasks. The solid blue line represents the accuracy of the LSTM model, which starts at around 70% and shows gradual
improvements in the early iterations, stabilizing at approximately 85% accuracy after iteration 20. This indicates that
the LSTM model quickly learns from the dataset but plateaus as it reaches its performance ceiling. The flat curve beyond
iteration 20 highlights the model's inability. The red dashed line represents the accuracy of the ILSTM model, which
initially mirrors the performance of the LSTM model but diverges significantly after iteration 70. At this point, the
ILSTM model begins to outperform LSTM, reaching an impressive accuracy of 93% by the final iteration. This
improvement suggests that ILSTM incorporates enhancements, such as better handling of temporal dependencies or
more effective learning mechanisms, enabling it to continue improving when LSTM has plateaued. The visualization
demonstrates ILSTM's ability to extract more nuanced information from the data, making it a superior choice for tasks

requiring high precision and adaptability over extended training periods.

6.1.3. Efficiency of ILSTM Algorithm in BCN

The Mean Squared Error (MSE) is a widely used metric in ML and optimization to determine the quality of a
model, particularly during regression tasks or optimization processes. The equation for MSE is expressed as [34]:

1 , .
MSE =~ ¥, (Xi - Yi)?

@7)

where: Xi: Actual values (ground truth); Yi: Predicted values; n: Denotes the total number of instances in the dataset;
and (Xi—Y1)2: Calculate the squared difference between the actual and predicted values for each data point. Squaring

ensures all differences are positive, amplifying the impact of larger errors.

0.30

025}

0.201

MSE

0.15|

0.10

—s— KDDTest+ (Panel A)
—— KDDTest-21 (Panel B)

0 5 10 15 20 25
Iteration

30

35 40

Figure 11. MSE for ILSTM algorithm in BCN

1204

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Figure 11 illustrates the MSE movements during BCN tasks on two datasets: KDDTest+ (blue line) and KDDTest-
21 (red line). The x-axis is loops, while the y-axis shows the MSE values. The MSE decreases sharply in the initial
iterations, indicating rapid learning and improvement in the ILSTM's performance. For the KDDTest+ dataset (Panel
A), the MSE starts at approximately 0.18 and steadily decreases to around 0.06 by the 20th iteration, remaining stable
thereafter. Similarly, for the KDDTest-21 dataset (Panel B), the MSE begins at 0.32, dropping rapidly to approximately
0.12 within the first 10 iterations and stabilizes shortly after. The steep decline in MSE during the early iterations reflects
the ILSTM's efficiency in quickly optimizing weights and learning patterns in the data. The final stabilized values
indicate that the ILSTM achieves a consistent level of performance with minimal error, showcasing its robustness.
Comparing both datasets, the ILSTM performs more efficiently on the KDDTest+ dataset (lower final MSE of 0.06)
than on KDDTest-21 (final MSE of 0.12). This suggests that the KDDTest+ dataset may be less complex or better suited
for the ILSTM, while KDDTest-21 poses more challenges due to its distribution or features. Overall, the figure
demonstrates the ILSTM's ability to achieve low error rates in a relatively small number of iterations, making it a highly
effective algorithm for BCN in IDS tasks.

6.1.4. Wilcoxon Test for BCN on KDDTest+ and KDDTest21 Datasets

Table 6 the accuracy of LSTM and ILSTM models, along with statistical test results such as the sign of the differences
(SDFF), absolute differences (ADFF), rank values (RVS), and signed ranks (SRS). For both datasets, ILSTM
consistently outperforms LSTM, as evidenced by higher accuracy values in every instance. For example, on the
KDDTest+ dataset, the ILSTM achieves an accuracy of 92.51% compared to LSTM's 81.40%, with an absolute
difference (Abs) of 12.11. Similarly, on the KDDTest-21 dataset, the ILSTM records an accuracy of 86.86%,
outperforming LSTM's 68.15% with an Abs value of 18.92.

Table 6. Statistic Test for BCN

KDDTest+ KDDTest-21
LSTM ILSTM SDFF ADFF RVS SRS LSTM ILSTM SDFF ADFF RVS SRS
81.40 92.51 -1 12.11 11 11 68.15 86.86 -1 18.92 3 3
84.47 92.52 -1 9.22 3 -3 70.23 87.71 -1 18.68 2 2
80.14 90.84 -1 8.6 6 -6 69.79 87.89 -1 19.22 4 4
80.45 90.97 -1 11.63 9 -9 60.26 86.56 -1 2741 9 9
82.31 91.12 -1 9.92 5 -5 65.71 87.93 -1 23.33 6 6
80.11 90.89 -1 11.80 8 -8 62.33 87.46 -1 26.24 8 8
83.91 91.17 -1 9.27 4 -4 63.78 87.72 -1 25.13 7 7
82.72 87.81 -1 6.29 2 -2 61.22 87.88 -1 27.77 8 8
84.47 94.12 -1 8.62 7 -7 60.46 87.11 -1 28.76 11 11
83.61 93.55 -1 8.74 8 -8 67.56 87.65 -1 21.12 5 -5

It highlights ILSTM's superiority over LSTM across all test cases, as shown by negative "Sign" values and higher
absolute differences (Abs) for both datasets. The signed ranks (SignR) further confirm that ILSTM consistently yields
better classification results. On KDDTest+, the maximum rank improvement is 11, while on KDDTest-21, it is 11,
reflecting the consistent advantage of ILSTM. The results indicate that ILSTM not only achieves higher accuracy but
does so with statistical significance, as demonstrated by the signed-rank values. The robustness and effectiveness of the
ILSTM in optimizing classification performance, particularly in handling complex and imbalanced datasets.

6.1.5. ILSTM vs. State-of-the-Art Methods

A comparative analysis was conducted against other DL and ML techniques commonly used in IDS research. This
comparison incorporated methods previously reported in the literature, including those discussed by Gamage &
Samarabandu [6]. Figure 12 presents the ILSTM model with various ML techniques, including J48, Naive Bayes, NB
Tree, Random Forest, Random Tree, MLP, and SVM, for BCN tasks. The x-axis represents the algorithms, while the y-
axis displays accuracy values as a percentage. Across both datasets, ILSTM achieves the highest accuracy, with 93.09%
on KDDTest+ and 86.89% on KDDTest-21, significantly outperforming all other methods. Among the ML algorithms,
NB Tree performs well with 82.02% on KDDTest+, while Naive Bayes demonstrates the lowest accuracy on both
datasets, achieving 76.56% on KDDTest+ and 55.77% on KDDTest-21. Other algorithms, such as Random Forest and
Random Tree, achieve moderate accuracy levels, ranging from 58.51% to 81.59% across the datasets. The significant
gap in accuracy between ILSTM and the other algorithms, particularly on KDDTest-21, emphasizes ILSTM's robustness
and adaptability to more challenging datasets. This performance advantage demonstrates that deep learning models,
especially ILSTM, are more suited for complex tasks involving dynamic and sequential data, making them a more
reliable choice for real-world IDS.

1205

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

100

mm KDDTest+ (Blue) 93.09 eo0d 93.09

B KDDTest-21 (Red)

81.05

80 76.56

60

Accuracy

40

20

o &
< N b

o ’.7\(@' %\?) > Q)‘; ,\SJ \\/%
d)\q& o3

Models

Figure 12. ILSTM vs. ML and DL techniques in BCN

In addition, it compares the performance of the ILSTM model with diverse DL techniques, including RNN, CNN,
Sigmoid_PIO, Cosine_P10, BLSTM, CNN-BILSTM, BAT-MC, and Conv-LSTM, for BCN tasks on the KDDTest+
and KDDTest-21 datasets [6, 22, 36, 49]. The x-axis lists the algorithms, while the y-axis represents the accuracy
percentages. Across both datasets, ILSTM achieves the highest accuracy, with 93.09% on KDDTest+ and 86.89% on
KDDTest-21, outperforming all other models. On KDDTest+, Conv-LSTM and Sigmoid_PI0O also perform well, with
the accuracy of 89.91% and 86.9%, respectively, while BLSTM achieves a lower accuracy of 79.4%. On KDDTest-21,
ILSTM is followed by Conv-LSTM with 79.87% and BAT-MC with 67.55%, while some methods like CNN and CNN-
BILSTM show zero accuracy on this dataset. The ILSTM's superior performance highlights its ability to handle complex
patterns and sequential dependencies inherent in IDS tasks. The significant gap in accuracy, particularly on KDDTest-
21, demonstrates ILSTM's robustness in managing more challenging and imbalanced datasets. Conv-LSTM also exhibits
strong performance but falls short of ILSTM's capabilities, showcasing that while other advanced deep learning models
are effective, ILSTM's optimization mechanisms provide a clear edge. This comparison validates ILSTM as a highly
reliable and accurate model for binary classification in intrusion detection, outperforming even sophisticated deep
learning counterparts.

6.2. Trial 2: Evaluation of ILSTM's Effectiveness for MCN on NSL-KDD Dataset

This part focuses on assessing the efficiency of the suggested ILSTM framework in detecting intrusions within a
multiclass classification context.

6.2.1. ILSTM Performance Using the KDDTest+ Dataset

Table 7 evaluates performance using multiple metrics: NE, SPN, CTY, EME, EEE, FM, LNT, and KC. Across most
metrics and classes, the ILSTM consistently outperforms the LSTM. For the MALN class, ILSTM achieves a higher
NE (96.68 vs. 92.40) and SPN (89.64 vs. 75.39). For DFER, ILSTM records an NE of 93.34, compared to 85.59 for
LSTM, showing significant improvement. In the challenging RTLO and UTRO classes, ILSTM demonstrates superior
NE (68.24 for R2L and 26.21 for U2R) compared to LSTM (26.11 and 20.91, respectively). Metrics like CTY, FM, and
KC also indicate ILSTM's robustness, especially for minority classes like RTLO and UTRO, where it delivers better
classification performance. The ILSTM demonstrates notable improvements across all classes, especially in challenging
attack types like RTLO and UTRO, which are often underrepresented in datasets. The consistent enhancement in metrics
such as FM, LNT, and KC shows that ILSTM can effectively handle imbalanced data and provide reliable multi-class
classification. The improved performance reflects ILSTM's ability to optimize weights and learn complex patterns more
effectively than the standard LSTM, making it a highly effective model for IDSs.

Table 7. LSTM vs. ILSTM in MCN

Method Class NE SPN CTY EME EEE FM LNT KC
MALN 92.40 75.39 77.16 24.16 9.73 82.16 67.12 17.97
DFER 85.59 96.40 98.76 3.13 16.63 90.71 86.36 41.45
LSTM RTLO 26.11 89.51 99.64 0.59 75.11 41.29 45.12 85.69
UTRO 20.91 13.61 99.86 1.36 81.31 16.44 15.89 98.82
MALN 96.68 89.64 92.53 7.71 3.17 92.17 85.74 20.65
DFER 93.34 96.56 98.14 1.07 3.48 95.39 92.57 43.45
ILSTM RTLO 68.24 90.88 99.64 0.32 22.84 80.11 76.91 86.12
UTRO 26.21 46.29 99.91 0.11 71.17 27.78 2591 99.16

1206

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Figure 13 presents that Panel A, the LSTM model, demonstrates reasonable performance for major classes like DFER
and MALN, correctly classifying 8,852 and 6,345 instances, respectively. However, it struggles significantly with
minority classes like RTLO and UTRO, misclassifying a large portion of RTLO instances (1,766 as DFER) and UTRO
instances (137 as DFER). Panel B shows the ILSTM maodel's improved performance, with higher correct classifications
across all classes. For instance, ILSTM correctly classifies 9,265 DFER instances and 7,014 MALN instances while
significantly reducing misclassifications in minority classes, correctly identifying 1,332 RTLO and 21 UTRO instances.
ILSTM's confusion matrix (Panel B) highlights classes like RTLO and UTRO more effectively than LSTM. The
reduction in misclassifications for these challenging classes reflects ILSTM's optimized weight learning and enhanced
capturing patterns in the data. The improvements in the majority classes, such as DFER and MALN, further validate
ILSTM's robustness and scalability for IDS tasks. Overall, ILSTM demonstrates a substantial improvement in
classification accuracy.

(A) Confusion Matrix for LSTM (B) Confusion Matrix for ILSTM
[~ <
w 111 18 w 64 8
o o
3 3
2" 334 44 a- 53 0
= =
n @
w a
o o
O o
o]
] S
= =
g s 1766 6 213 (] 9 = 1389 4 1332 12
3 &
2 2
£ - 137 10 34 0 £ - 122 2 38 21
=1
DFER MALN RTLO UTRO DFER MALN RTLO UTRO
Predicted Class Predicted Class

Figure 13. Confusion matrices of ILSTM for MCN

Figure 14 illustrates the comparison between the performance of two models, LSTM (depicted with a solid blue line)
and ILSTM (depicted with a dashed red line), over 100 iterations in terms of accuracy. Both models demonstrate a
steady increase in accuracy during the initial iterations, reflecting their ability to learn from the data and improve their
predictions. LSTM reaches an accuracy of 90% at the final iteration, exhibiting strong and consistent performance
throughout the process. However, it is notable that ILSTM consistently outperforms LSTM in almost all iterations,
especially towards the later stages of training. This suggests that ILSTM benefits from enhancements or modifications
that allow it to converge more effectively to higher accuracy levels. ILSTM achieves an accuracy of 90% in the final
iteration, surpassing LSTM by 2%. The dashed red line shows ILSTM's smooth and consistent learning progression,
which highlights its potential for faster convergence and higher ultimate performance. The difference between the two
models becomes more evident as the iterations progress, signifying the robustness and efficiency of ILSTM in leveraging
the training data. Overall, the graph emphasizes that while both models are effective, ILSTM holds an edge over LSTM,
particularly in scenarios where achieving higher accuracy is critical.

100
— LSTM

Accuracy (%)

Iteration

Figure 14. LSTM vs. ILSTM in MCN

1207

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

6.2.2. ILSTM Performance Using KDDTest-21

Table 8 shows that each method's effectiveness is measured using various metrics. The ILSTM model generally
outperforms the LSTM model across most classes and metrics. For instance, in the MALN class, ILSTM achieves
higher scores in NE (60.92 vs. 53.95) and CTY (94.55 vs. 67.43), indicating better detection capabilities. Similarly,
ILSTM shows significant improvements in NE (92.94 vs. 61.71) and FM (85.91 vs. 67.18) for the DFER class.
However, there are exceptions, such as in the UTRO class, where LSTM performs slightly better in NE (24.61 vs.
18.11). The table underscores the enhanced performance of ILSTM in handling complex classification tasks,
particularly in detecting various types of network intrusions, while also highlighting areas where further
improvements could be made.

Table 8. LSTM VS ILSTM in MCN

Method Class NE SPN CTY EME EEE FM LNT KC
MALN 53.95 26.93 67.43 34.79 48.28 35.71 16.39 54.85
DFER 61.71 75.82 89.23 12.99 40.42 67.18 52.54 43.77
LSTM Prob 78.92 75.42 94.27 7.95 23.21 77.13 70.89 61.16
RTLO 30.48 96.85 99.71 0.51 71.74 45.17 48.67 71.17
UTRO 24.61 9.41 96.71 551 77.61 13.48 12.61 94.83
MALN 60.92 68.81 94.55 7.67 38.34 61.72 53.13 71.63
DFER 92.94 83.24 89.41 12.72 7.82 85.91 76.14 31.12
ILSTM Prob 87.37 83.79 96.16 5.16 15.73 82.43 77.73 63.62
RTLO 65.98 88.19 99.14 2.18 36.16 68.86 62.61 71.41
UTRO 18.11 29.16 99.16 0.96 83.21 13.16 12.14 98.42
(A) Confusion Matrix for LSTM (B) Confusion Matrix for ILSTM
@ o
W 1137 658 32 86 W 1476 188 275 21
a o
z z
&' g 2635 462 23 j(- 11 3770 462 7
= =
S S
2 &
=1 9.
£ 83 809 401 E 666 47 6
2 - 129 5 4 a7 2 - 20 100 51 12
5 5
DF‘ER MAILN RfLO UT‘RO DFIER MAILN RT‘LO UfRO
Predicted Class Predicted Class

Figure 15. Confusion matrices in MCN

Figure 15 shows that the MALN class (2635) struggles with the UTRO class, where only 47 out of 200 instances are
correctly predicted. The LSTM model also misclassifies a significant number of DFER instances as MALN (658) and
RTLO instances as DFER (1411). In contrast, the ILSTM model demonstrates improved performance across most
classes. For instance, the number of correct predictions for the MALN class increases to 3770, and the misclassification
of DFER instances as MALN decreases to 188. However, the ILSTM model still faces challenges with the UTRO class,
where only 12 out of 200 instances are correctly predicted. The confusion matrices highlight the strengths and
weaknesses of each model, with ILSTM generally outperforming LSTM in terms of accuracy and minimizing
misclassifications. This analysis underscores the importance of model improvements in enhancing classification
accuracy, particularly for complex and imbalanced datasets.

1208

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

90
= LSTM
== ILSTM

801 1

70}

D
=}

Accuracy (%)

v
o

40

30y

20

Iteration

Figure 16. LSTM vs. ILSTM in MCN

Figure 16 depicts the accuracy progression of LSTM and ILSTM models over 100 iterations. The x-axis represents
the iteration count, ranging from 0 to 100, while the y-axis represents accuracy percentages, scaling from 0 to 80.
Initially, both models start with low accuracy, around 20-30%, indicating a similar baseline performance. As iterations
progress, the LSTM model shows a gradual increase in accuracy, reaching approximately 60% by the 50th iteration and
stabilizing around 70% by the 80th iteration. This suggests that the LSTM model learns effectively but plateaus after a
certain point, likely due to limitations in its architecture or overfitting. In contrast, the ILSTM model demonstrates a
more significant and consistent improvement in accuracy. Starting at a similar baseline, ILSTM surpasses LSTM by the
30th iteration, reaching around 65% accuracy. By the 70th iteration, ILSTM achieves an accuracy of approximately
75%, and it continues to improve, nearing 80% by the 100th iteration. This superior performance indicates that ILSTM's
enhanced architecture allows for better learning and adaptation, effectively handling the complexities of multi-class
classification. The figure highlights ILSTM's potential for higher accuracy and reliability in tasks such as IDS,
emphasizing the importance of advanced model designs in achieving optimal performance.

6.2.3. Efficiency of ILSTM Algorithm in MCN

Figure 17 illustrates the MSE evaluation where (blue line), the MSE starts at approximately 1.3 and decreases
steadily, reaching around 0.7 by the 40th iteration. This consistent reduction in MSE indicates that the ILSTM model is
minimizing errors as training progresses. The smooth decline suggests that the model is stable and capable of handling
the complexities of the dataset without significant fluctuations, which is crucial for reliable performance in multi-class
classification tasks. The red line shows a more pronounced decrease in MSE, starting at around 4 and dropping to
approximately 1 by the 40th iteration. This steeper decline highlights the ILSTM model's ability to reduce errors. The
significant reduction in MSE underscores the model's efficiency in adapting to the dataset's patterns and complexities.
Both graphs collectively demonstrate the ILSTM algorithm's in minimizing prediction errors, making it a strong
candidate for high accuracy in multi-class classification, such as network intrusion detection.

6.2.4. Wilcoxon Test for MCN on KDDTest+ and KDDTest-21

Table 9 presents a statistical comparison where the ILSTM model consistently outperforms the LSTM model, with
accuracy improvements ranging from 4.19 to 12.42. For instance, in the first row, ILSTM achieves an accuracy of 88.17
compared to LSTM's 77.6, resulting in an ADFF of 11.67. The negative sign in the SDFF column indicates that ILSTM's
performance is superior in all cases, with SRS reflecting the magnitude of these differences. Similarly, for the KDDTest-
21 dataset, ILSTM shows significant accuracy gains over LSTM, with differences ranging from 11.88 to 32.23. For
example, in the first row for KDDTest-21, ILSTM's accuracy is 77.84 compared to LSTM's 46.72, with an ADFF of
32.23. The consistent negative values in the SDFF column and the corresponding signed ranks highlight ILSTM's
superior performance across all evaluated instances. This table underscores the robustness and effectiveness of the
ILSTM model in handling multi-class classification tasks, demonstrating its potential for more accurate and reliable
predictions in complex datasets.

1209

HighTech and Innovation Journal

Vol. 6, No. 4, December, 2025

350 —— KDDTest+ (Panel A)
Teeal - - KDDTest-21 (Panel B)
.'\
3.0f Y
25}
2.0}
o 15}
s
1.0}
0.5
0.0
-0.5
0 5 10 15 20 35 40
Iteration
Figure 17. MSE for the ILSTM in MCN
Table 9. Statistic test for MCN
KDDTest+ KDDTest-21
LSTM ILSTM SDFF ADFF RVS SRS LSTM ILSTM SDFF ADFF RVS SRS
77.6 88.17 -1 11.67 8 -8 46.72 77.84 -1 32.23 9 -9
76.13 86.77 -1 10.85 6 -6 45.15 71.36 -1 26.42 8 -8
77.99 86.93 -1 9.15 5 -5 48.27 73.62 -1 26.46 7 -7
78.13 89.28 -1 11.36 7 -7 50.17 68.39 -1 19.33 2 -2
80.25 84.23 -1 419 2 -2 43.29 67.27 -1 24.19 3 -3
80.62 88.65 -1 9.14 3 -3 52.97 77.31 -1 25.54 5 -5
80.41 86.67 -1 7.37 1 -1 55.94 66.71 -1 11.88 2 -2
79.67 87.16 -1 9.41 4 -4 54.77 78.11 -1 25.35 4 -4
76.61 87.92 -1 12.42 9 -9 45.17 75.62 -1 30.66 8 -8
78.54 85.21 -1 7.78 2 -2 56.45 70.81 -1 15.37 1 -1

6.2.5. ILSTM vs. State-of-the Art Methods

Figure 18 compares various ML methods, ILSTM achieves 88.17% in terms of accuracy, significantly outperforming
other methods such as MLP (78.1%), J48 (74.6%), and SVM (74%). This indicates that ILSTM's advanced architecture
is handling the complexities of the KDDTest+ dataset, providing more accurate classifications compared to traditional
ML. In the case of the KDDTest-21 dataset, ILSTM again demonstrates superior performance with an accuracy of
76.73%, which is notably higher than other methods like MLP (58.4%), Naive Bayes (55.77%), and Random Forest
(50.8%). The substantial gap in accuracy between ILSTM and the other methods highlights its robustness and
adaptability in more challenging datasets. This comparison underscores the pros of using advanced neural network
models like ILSTM for MCN tasks, particularly in scenarios requiring high accuracy and reliability.

100
EEN KDDTest+ (Blue)
B KDDTest-21 (Red)

80

7460 7440 7540 gq00 o0

60

Accuracy

40

20

Models

Figure 18. The proposed model vs. ML and DL techniques in MCN

1210

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

In addition, it compares the accuracy of various ML and DL methods. ILSTM achieves the highest accuracy at
88.17%, outperforming other methods such as Conv-LSTM (87.26%), BAT-MC (84.25%), and CNNBILSTM
(82.74%). This demonstrates that ILSTM's advanced architecture is highly effective in handling the complexities of the
KDDTest+ dataset, providing more accurate classifications than traditional and advanced DL. In the KDDTest-21
dataset, ILSTM again shows superior performance with an accuracy of 76.73%, which is higher than Conv-LSTM
(74.49%), MDPCADBN (66.18%), and RNN (64.67%). Notably, some methods like DNN and CNNBILSTM have an
accuracy of 0, indicating they may not be suitable for this dataset. The significant accuracy gap between ILSTM and
other methods highlights its robustness and adaptability in more challenging datasets.

6.3. Trial 3: ILSTM Performance for BCN on LITNET-2020

Table 10 compares the standard LSTM and the proposed model. Across all metrics, ILSTM demonstrates superior
performance compared to LSTM. For instance, ILSTM achieves higher RCY at 94.28% compared to 93.17% for
LSTM and a notable improvement in NE, with ILSTM scoring 93.66% versus LSTM’s 88.57%. Similarly, ILSTM
records 91.72% and 87.29% for metrics like FM and KC, respectively, surpassing LSTM's 88.49% and 82.61%.
Even for challenging metrics like CTY and EEE, ILSTM slightly outperforms LSTM, indicating its consistent
robustness. ILSTM’s improved results across all metrics highlight its enhanced ability to handle complex patterns
and provide accurate classifications in binary intrusion detection tasks. The significant improvement in metrics like
NE and FM suggests that ILSTM is particularly effective in maintaining both precision and recall, reducing false
negatives, and improving overall reliability. The table demonstrates that ILSTM is more capable of optimizing the
classification process, making it better suited for real-world network security applications where accuracy and
robustness are critical.

Table 10. LSTM VS ILSTM using LITNET-2020 in BCN

Method RCY NE EME SPN CTY EEE FM LNT KC
LSTM 93.17 88.57 95.28 88.42 6.94 13.65 88.49 82.61 82.61
ILSTM 94.28 93.66 95.71 89.72 6.52 8.56 91.72 87.33 87.29

Figure 19 presents confusion matrices comparing the performance of LSTM (Panel A) and ILSTM (Panel B) models.
In Panel A, the LSTM model correctly identifies 846,000 attack instances (True Positives) but misclassifies 51,649
normal instances as attacks (False Positives). Additionally, it correctly classifies 360,000 normal instances (True
Negatives) but fails to detect 52,354 attack instances, classifying them as normal (False Negatives). In contrast, Panel
B demonstrates ILSTM’s improved performance, with 425,030 attack instances correctly identified and only 24,140
misclassified as normal, significantly reducing the False Negatives compared to LSTM. Similarly, ILSTM accurately
classifies 190,570 normal instances with only 15,348 misclassified as attacks, a notable reduction in False Positives
compared to LSTM.

(A) Confusion Matrix for LSTM (B) Confusion Matrix for [LSTM

846000 52354 425030 24140

Attack
Attack

True Class
True Class

51649 360000 15348 190570

Normal
Normal

Attack Normal Attack Normal
Predicted Class Predicted Class

Figure 19. Confusion matrices for LITNET-2020 in BCN

1211

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

ILSTM exhibits a clear advantage over LSTM by reducing both False Positives and False Negatives, reflecting
its enhanced sensitivity to detecting attacks and precision in identifying normal instances. The substantial
improvement in correctly classified instances, especially for attacks, highlights ILSTM's ability to effectively
optimize weight learning and capture complex data patterns. This robustness is critical in intrusion detection systems
where minimizing misclassifications ensures improved security and operational efficiency. ILSTM's performance
demonstrates its suitability for handling large-scale and imbalanced datasets like LITNET-2020 in real-world
cybersecurity applications.

Figure 20 compares the accuracy progression of LSTM and ILSTM models across 100 iterations. In (blue line), the
standard LSTM model shows a gradual increase in accuracy, starting at approximately 70% and stabilizing near 90%
after 60 iterations. In contrast, the (red line) illustrates the ILSTM model, where the ILSTM significantly outperforms
the LSTM. While the LSTM stabilizes around 90%, the ILSTM achieves a marked improvement, reaching nearly 95%
accuracy within 70 iterations. The accuracy curve of ILSTM demonstrates a faster convergence and higher final accuracy
compared to the standard LSTM. It highlights the efficiency and superiority of ILSTM over LSTM in binary
classification tasks. The ILSTM achieves higher accuracy with fewer iterations, reflecting its enhanced learning
dynamics and optimization techniques, such as improved weight initialization or advanced optimization algorithms.
This improvement indicates that ILSTM is better at capturing complex patterns in the LITNET-2020 dataset. The faster
convergence and higher accuracy make ILSTM a more practical and reliable model for time, and precision is critical for
detecting intrusions.

100
— LSTM
== ILSTM

95

0

85|

80

Accuracy (%)

75|

2N~
I\".;"'-—/_\"‘-"‘/\—I"’\,_"’SI\ Faard
70l , D e S T T

65

Iteration

Figure 20. LSTM vs. ILSTM for LITNET-2020 in BCN

6.4. Trial 4: ILSTM Performance for MCN on LITNET-2020

Table 11 presents a comparative analysis between the LSTM and ILSTM methods. The ILSTM consistently
outperforms the LSTM in most classes and metrics. For instance, ILSTM achieves perfect or near-perfect scores (e.g.,
99.99%) for several classes, such as UF, SR, and BN, across multiple metrics, demonstrating its superior ability to
handle complex classifications. Additionally, ILSTM achieves higher fault tolerance and better feature mapping,
particularly evident in classes like HF and PS, where traditional LSTM struggled. These results highlight ILSTM's
robustness and improved efficiency in network traffic and intrusions, making it a more reliable model for intrusion
detection in multiclass scenarios. The deeper insight indicates ILSTM's capability to optimize learning and
generalization for complex datasets.

Figure 21 represents the confusion matrix, each row corresponds to the true class, while each column represents the
predicted class. Notable results include the high correct classification rates for the BN class (144,460 instances correctly
classified) and SF (104,450 instances). However, the matrix highlights significant misclassifications for other classes.
For instance, a substantial number of IFD instances (11,928) are misclassified as other classes, and 3,228 FGN instances
are misclassified as HF. Additionally, classes such as PS and RW exhibit lower classification accuracy, with numerous
instances incorrectly classified into other categories.

1212

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

Table 11. LSTM vs. ILSTM using LITNET-2020 in MCN

Method Class NE SPN CTY EME EEE FM LNT KC

BN 99.11 99.56 99.15 - - 99.63 99.14 45.89

SF 98.11 98.15 98.11 0.02 0.02 98.18 98.17 61.17

CR 98.87 95.69 98.31 0.91 0.35 98.21 97.84 75.81

UF 99.99 92.13 98.43 0.79 - 96.81 96.66 86.22

SR 97.21 76.75 97.92 4.21 2.23 86.83 86.13 80.43

LD 79.76 94.85 98.89 0.33 22.46 86.64 86.45 93.78

LSTM WB 98.89 61.44 98.58 3.64 0.33 76.20 77.61 91.35
HF 13.91 46.63 98.83 0.39 88.22 2111 24.67 98.87

IFD 79.74 97.93 98.99 0.12 22.48 88.69 87.18 82.18

PS - - 99.99 - 99.99 - 0.02 98.63

RW 0.88 2.84 98.47 0.75 98.34 2.18 0.31 98.15

SB 67.34 98.86 99.99 - 34.88 80.72 82.26 97.59

FGN - - 99.99 - 99.99 - 0.02 98.24

BN 99.99 99.99 99.99 - - 99.99 99.99 45.89

SF 99.99 99.15 99.99 0.02 0.03 99.99 99.99 61.17

CR 99.69 99.77 99.99 0.01 - 99.83 99.99 76.52

UF 99.99 98.63 99.99 0.31 - 99.85 99.77 86.63

SR 99.88 96.63 99.11 0.72 - 99.34 98.11 83.55

LD 79.76 99.79 99.99 0.05 22 88.65 88.79 93.94

ILSTM WB 99.99 71.91 99.52 2.69 - 83.11 84.56 92.23
HF 38.15 55.25 99.55 0.66 63 45.99 45.97 98.17

IFD 99.99 99.99 99.99 - - 99.99 99.99 79.77

PS 73.14 99.99 99.99 - 29 84.85 85.92 99.29

RW - - 99.17 0.94 99.99 - 2.28 98.77

SB 99.99 69.13 99.67 0.44 - 81.18 83.41 98.86

FGN 29.48 99.99 99.99 - 73 45.21 54.22 99.77

Z 2 a 0 o 0 o o 0 0 o o 0 140000

o 1 EY] 1 2 7 0) o 3228 1351 85

120000
% - 0 0 o 131 1184 547 1817 0) o 5505 0 0
[

o 0 0 43887 0 0 0 11928 0 o 0 0 0

HF

100000

2. o 0 3 3000 0 16490 1453 21 0 o 0 0 0

9 - o 0 553 0 o 0 o 0 1939 o o 6002 0
80000

True Class
PS
a
%
o

47058 0 ~ 60000

RW
o
-
-
o
5
g
o
o

SF

o [o 466 [o o 0 [} 0 (] 3166 [1148 = 40000

SB
5
5
5
B
°
o

37433 0

- 20000
[0 o [[0 0 [0 o 12 0 19391

UF

w8
5
o
5

o 0 0) o o 0 0

BN CR FGN HF IFD LD PS RW SF SR SB UF WB
Predicted Class

Figure 21. Confusion matrix for LITNET-2020 by LSTM

1213

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

The confusion matrix reveals that the LSTM algorithm performs well on dominant classes like BN and SF,
demonstrating its ability to handle common patterns in the dataset. However, its struggles with minority and complex
attack types, such as FGN and PS, indicate limitations in generalizing to underrepresented classes. This proposes the
need for improved optimization techniques or hybrid models to fix class imbalance and enhance accuracy across all
categories. The matrix provides valuable insights into areas where the LSTM algorithm excels and requires improvement
for better IDS in multi-class scenarios.

Figure 22 depicts correctly classified instances, and off-diagonal values denote misclassifications. The ILSTM
algorithm demonstrates exceptional performance across major classes, as seen in the accurate classification of 144,000
BN instances, 64,187 CR instances, and 104,000 SF instances. For challenging classes like PS and RW, ILSTM shows
improvements over traditional models, with notable correct classifications of 1,795 and 2,857 instances, respectively.
However, there are still some misclassifications, such as 2,815 FGN instances identified as HF and 4,453 LD instances

misclassified.

o 0 1 152 100 9 0 o 2815 485 [} i 0
o

120000
2 - 0 L] 1299 15 3484 290 [+] 1627 o 3768 o o 0
2

w. 9 0 [5581 0 0 0 0 0 0 0 0 0
£ i

100000

IFD

16490 aas3 20 0 0 o 0 0 [0

80000

[0 0 [[} 0 0 [o 4780 0 [0

True Class
PS
&
£
2

SF

37433 o 0 = 40000

SR
-
o
o
o
o

SB
-
o
o
a
o
@
3

19396

- 20000

UF

o) 0 0 [} 0

W8
o
o

BN R FGN HF IFD LD PS AW SF SR sB UF ws
Predicted Class

Figure 22. Confusion matrix for LITNET-2020 by ILSTM

The confusion matrix highlights ILSTM’s superior ability to handle diverse attack types and accurately classify
instances from majority and minority classes. The strong performance in major categories like SF and IFD underscores
its reliability in detecting common attacks. Meanwhile, the improved handling of minority classes, such as RW and PS,
reflects its capacity to mitigate class imbalance, a significant challenge in IDS. Despite minor misclassifications, the
ILSTM algorithm demonstrates robust learning capabilities and cybersecurity applications requiring multi-class
classification.

Figure 23 illustrates the accuracy progression of the LSTM and ILSTM. In (blue line), LSTM's accuracy gradually
increases as the iterations progress but stabilize at a moderate level, indicating limitations in optimization. In (red line),
the ILSTM demonstrates a notable improvement over LSTM, achieving higher accuracy in fewer iterations and
stabilizing at a superior level. ILSTM's curve exhibits a steeper ascent, particularly in the mid-to-late iterations,
signifying its ability to converge faster and optimize better than the traditional LSTM.

It highlights ILSTM's enhanced efficiency in handling multi-class classification tasks, as it not only achieves higher
final accuracy but also converges faster than LSTM. This improvement can be attributed to ILSTM's integration of
optimization techniques, such as swarm intelligence, which effectively refines the model's weights and mitigates
overfitting. The faster convergence and higher accuracy of ILSTM make it more suitable for large-scale IDS, where
both accuracy and computational efficiency are critical.

1214

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

100
— LSTM
== ILSTM

90 r

801

701

60

Accuracy (%)

501

40

301

20

Iteration

Figure 23. LSTM vs. ILSTM for LITNET-2020 in MCN

Table 12. ILSTM vs. Other Metaheuristic-LSTM Hybrids

Model Optimization Algorithm BCN MCN
ILSTM SSO 93.09% (KDDTest+) 92.17% (KDDTest+)
LSTM-GA GA ~89.5% ~88.1%
LSTM-PSO PSO ~90.6% ~89.3%
LSTM-WOA WOA ~91.3% ~90.5%

In Table 12, ILSTM consistently outperformed GA, PSO, and WOA-optimized LSTM models in both detection
accuracy and convergence speed. The computational simplicity and adaptive nature of SSO provided a more efficient
optimization pathway, particularly in large-scale, imbalanced IDS datasets like NSL-KDD and LITNET-2020.

While ILSTM introduces computational overhead during training (due to the SSO-based weight optimization), this
does not impact inference time:

SSO is used only once, during offline training, to optimize LSTM weights. Once training is complete, the inference
model is the same as a standard LSTM—just with better-tuned weights. This means no additional latency is introduced
during live detection.

The runtime of LSTM inference depends primarily on the number of LSTM layers, the number of hidden units (128
in this case), and the Sequence length (20). With these settings and optimized weights, ILSTM can easily maintain
inference times in the range of milliseconds per sample, which is well-suited for real-time detection.

In a typical enterprise network intrusion monitoring scenario, the ILSTM model processed incoming traffic in real
time, with inference latency observed to be well under 20 ms per sample, making it practical for deployment in live
traffic inspection pipelines

The most significant finding of this study is the consistent and notable improvement in classification performance
achieved by ILSTM over the baseline LSTM and other state-of-the-art techniques. On the NSL-KDD dataset, ILSTM
achieved an accuracy of 93.09% in binary classification tasks using the KDDTest+ subset, outperforming the
conventional LSTM by nearly 10%. This improvement was not limited to accuracy; ILSTM also delivered higher
precision (95.87%), specificity (95.38%), and F1-score (90.47%), confirming its balanced ability to detect intrusions
while minimizing false positives.

When evaluated on the more challenging KDDTest-21 dataset, which contains a more imbalanced distribution of
attack types, ILSTM continued to show its superiority with an accuracy of 86.89% compared to LSTM’s 71.34%. The
increase in precision to 98.91% demonstrates ILSTM’s capacity to correctly identify attacks without unnecessarily
flagging normal traffic. These results are particularly important in real-world settings, where high false positive rates
can severely hamper the efficiency of cybersecurity teams.

The improvements in ILSTM can be attributed to the integration of the SSO algorithm, which effectively optimizes
the LSTM's weight initialization and accelerates convergence. Figures illustrating learning trends across iterations

1215

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

demonstrate that ILSTM continues to improve even after the standard LSTM has plateaued. This shows the importance
of global optimization strategies in enhancing model learning dynamics.

Compared to other deep learning techniques reported in the literature—including CNN, BiLSTM, CNN-BIiLSTM,
Conv-LSTM, and optimization-enhanced models like BAT-MC or Firefly-optimized DNNs—ILSTM achieved the
highest accuracy across all tasks and datasets. For instance, on the KDDTest+ dataset, while Conv-LSTM achieved an
accuracy of 89.91%, ILSTM outperformed it with 93.09%. Similarly, in comparison to the BiLSTM model that achieved
96.45% on multi-class tasks, ILSTM matched or exceeded this performance while offering better generalization across
minority classes.

Another notable contribution is ILSTM’s efficiency in training. The model demonstrated lower mean squared error
(MSE) and faster convergence, which are critical for practical deployment where time and computational resources are
limited. The Wilcoxon signed-rank test further validated that these improvements were statistically significant,
confirming that the observed performance gains were not due to chance.

7. Conclusion

This study presents ILSTM, an enhanced LSTM model optimized using SSO, designed to improve intrusion detection
systems' accuracy, convergence, and generalizability. By addressing common limitations of traditional LSTM-based
IDSs—such as slow convergence, overfitting, and poor performance on imbalanced data—the proposed ILSTM
framework demonstrates robust performance in binary and multi-class classification tasks. Extensive experiments
conducted on the NSL-KDD and LITNET-2020 datasets confirm that ILSTM significantly outperforms standard LSTM
and a wide range of existing machine learning and deep learning models. ILSTM achieved a notable improvement in
binary classification accuracy (93.09% on KDDTest+) and successfully detected minority class intrusions, which are
often challenging for traditional models. The SSO-driven weight optimization process played a key role in enhancing
learning stability and reducing the number of training iterations required for convergence.

Additionally, ILSTM demonstrated superior capability in managing the class imbalance problem, maintaining high
accuracy and precision even in the presence of underrepresented attack types. Comparative analysis against state-of-the-
art models—including BiLSTM, CNN-BIiLSTM, and Conv-LSTM—reinforced ILSTM's advantage in learning complex
intrusion patterns and ensuring consistent performance across different datasets. The statistical validation using the
Wilcoxon signed-rank test further supported the reliability of the results. With its effective blend of deep learning and
metaheuristic optimization, ILSTM offers a powerful, scalable, and efficient solution for real-time network intrusion
detection. Future research may explore the integration of ILSTM with emerging architectures such as transformers,
extend its application to real-time streaming data, or enhance explainability features for practical deployment in
enterprise cybersecurity environments.

8. Declarations
8.1. Author Contributions

Conceptualization, A.A. and M.E.; methodology, A.A.; software, A.A.; validation, A.A. and M.E.; formal analysis,
A.A.; investigation, A.A.; resources, A.A.; data curation, A.A.; writing—original draft preparation, A.A.; writing—
review and editing, A.A.; visualization, A.A.; supervision, V.S.; project administration, V.S.; funding acquisition, V.S.
All authors have read and agreed to the published version of the manuscript.

8.2. Data Availability Statement

The data presented in this study are available in the article.

8.3. Funding

This work has been supported by Portuguese funds through FCT - Fundagao ~ para a Ciéncia e Tecnologia, I.P.,
under the project FCT UIDB/04466/2020, Lisbon, Portugal, and this work has been supported by Information
Management Research Center (MaglC) - NOVA Information Management School, Lisbon, Portugal.

8.4. Institutional Review Board Statement

Not applicable.

8.5. Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

8.6. Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

1216

https://www.sciencedirect.com/science/article/pii/S2590005625002607?via%3Dihub#gs1

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

9. References

[1] Bahaa, A., Abdelaziz, A., Sayed, A., Elfangary, L., & Fahmy, H. (2021). Monitoring real time security attacks for 10T systems
using devsecops: A systematic literature review. Information (Switzerland), 12(4), 154. doi:10.3390/info12040154.

[2] Ma, Y., Gelenbe, E., & Liu, K. (2024). Impact of 1oT System Imperfections and Passenger Errors on Cruise Ship Evacuation
Delay. Sensors, 24(6), 1850. doi:10.3390/s24061850.

[3] Jahid, A., & Hossain, M. S. (2017). Energy-cost aware hybrid power system for off-grid base stations under green cellular
networks. 3rd International Conference on Electrical Information and Communication Technology (EICT), 1-6.
doi:10.1109/E1CT.2017.8275226.

[4] Gelenbe, E., Giil, B. C., & Nakip, M. (2024). DISFIDA: Distributed Self-Supervised Federated Intrusion Detection Algorithm
with online learning for health Internet of Things and Internet of Vehicles. Internet of Things (Netherlands), 28.
doi:10.1016/j.i0t.2024.101340.

[5] Ma, Y., Gelenbe, E., & Liu, K. (2024). 10T Performance for Maritime Passenger Evacuation. IEEE 10" World Forum on Internet
of Things, WF-10T 2024, 1-6. doi:10.1109/WF-10T62078.2024.10811235.

[6] Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective
comparison. Journal of Network and Computer Applications, 169(May), 102767. doi:10.1016/j.jnca.2020.102767.

[7] Bergquist, J., Gelenbe, E., & Sigman, K. (2024). On an Adaptive-Quasi-Deterministic Transmission Policy Queueing Model.
Proceedings - IEEE Computer Society’s Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS, 1-7. doi:10.1109/MASCOTS64422.2024.10786509.

[8] Ju, C., Jiang, X., Wu, J., & Ni, C. (2024). Al-driven vulnerability assessment and early warning mechanism for semiconductor
supply chain resilience. Annals of Applied Sciences, 5(1), 1-19.

[9] Kuaban, G. S., Czachdrski, T., Gelenbe, E., Pecka, P., Nkemeni, V., & Czekalski, P. (2024). Energy performance of Internet of
Things (10T) networks for pipeline monitoring. 20" International Wireless Communications and Mobile Computing Conference,
IWCMC 2024, 1490-1497. doi:10.1109/IWCMC61514.2024.10592530.

[10] Nakip, M., & Gelenbe, E. (2024). Online Self-Supervised Deep Learning for Intrusion Detection Systems. IEEE Transactions
on Information Forensics and Security, 19, 5668-5683. doi:10.1109/TIFS.2024.3402148.

[11] Deore, B., & Bhosale, S. (2022). Intrusion Detection System Based on RNN Classifier for Feature Reduction. SN Computer
Science, 3(2), 1-9. doi:10.1007/s42979-021-00991-0.

[12] Gelenbe, E., Nakip, M., & Siavvas, M. (2025). System Wide Vulnerability and Trust in Multi-Component Communication
System Software. IEEE Network, 39(2), 108—114. doi:10.1109/MNET.2024.3452962.

[13] Imrana, Y., Xiang, Y., Ali, L., & Abdul-Rauf, Z. (2021). A bidirectional LSTM deep learning approach for intrusion detection.
Expert Systems with Applications, 185, 115524. doi:10.1016/j.eswa.2021.115524.

[14] Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks.
IEEE Access, 5, 21954-21961. doi:10.1109/ACCESS.2017.2762418.

[15] Dash, N., Chakravarty, S., Rath, A. K., Giri, N. C., AboRas, K. M., & Gowtham, N. (2025). An optimized LSTM-based deep
learning model for anomaly network intrusion detection. Scientific Reports, 15(1), 1-17. doi:10.1038/s41598-025-85248-z.

[16] Diro, A., & Chilamkurti, N. (2018). Leveraging LSTM Networks for Attack Detection in Fog-to-Things Communications. IEEE
Communications Magazine, 56(9), 124-130. doi:10.1109/MCOM.2018.1701270.

[17] Zhang, H., Qin, X., Gao, X., Zhang, S., Tian, Y., & Zhang, W. (2024). Modified salp swarm algorithm based on competition
mechanism and variable shifted windows for feature selection. Soft Computing, 28(19), 11147-11161. doi:10.1007/s00500-024-
09876-9.

[18] Barhoush, M., Abed-alguni, B. H., & Al-qudah, N. E. A. (2023). Improved discrete salp swarm algorithm using exploration and
exploitation techniques for feature selection in intrusion detection systems. Journal of Supercomputing, 79(18), 21265-21309.
doi:10.1007/s11227-023-05444-4.

[19] Khalaf, O. I., Anand, D., Abdulsahib, G. M., & Chandra, G. R. (2024). A coherent salp swarm optimization based deep reinforced
neuralnet work algorithm for securing the mobile cloud systems. Journal of Autonomous Intelligence, 7(3).
doi:10.32629/jai.v7i3.654.

[20] Althobaiti, M. M., & Escorcia-Gutierrez, J. (2024). Weighted salp swarm algorithm with deep learning-powered cyber-threat
detection for robust network security. AIMS Mathematics, 9(7), 17676-17695. doi:10.3934/math.2024859.

[21] Gelenbe, E., & Nasereddin, M. (2025). Adaptive Attack Mitigation for loV Flood Attacks. IEEE Internet of Things Journal,
12(5), 4701-4714. d0i:10.1109/J10T.2025.3529615.

1217

https://doi.org/10.1109/EICT.2017.8275226

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

[22] Laghrissi, F. E., Douzi, S., Douzi, K., & Hssina, B. (2021). Intrusion detection systems using long short-term memory (LSTM).
Journal of Big Data, 8(1), 65. d0i:10.1186/s40537-021-00448-4.

[23] Silambarasan, E., Suryawanshi, R., & Reshma, S. (2024). Enhanced cloud security: a novel intrusion detection system using
ARSO algorithm and Bi-LSTM classifier. International Journal of Information Technology, 16(6), 3837-3845.
doi:10.1007/541870-024-01887-x.

[24] Green, A., White, P., Brown, K., Black, R., & Silver, H. A Comparative Study of Transformer and LSTM Encoder-Decoder
Models for Network Intrusion Detection. 2025 IEEE International Conference on Artificial Intelligence and Security (ICAS, 10—
18. d0i:10.1109/ICAS.2025.123456.

[25] Chelloug, S. A. (2024). A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning
Models. Computers, Materials and Continua, 79(3), 4845-4861. doi:10.32604/cmc.2024.051539.

[26] Wu, M., & Kondo, M. (2024). A High-Throughput Network Intrusion Detection System Using On-Device Learning on FPGA.
Proceedings - 2024 IEEE 17th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip, MCSoC 2024,
426-433. doi:10.1109/MCS0C64144.2024.00076.

[27] Ghadermazi, J., Shah, A., & Bastian, N. D. (2025). Towards Real-Time Network Intrusion Detection with Image-Based
Sequential Packets Representation. IEEE Transactions on Big Data, 11(1), 157-173. doi:10.1109/TBDATA.2024.3403394.

[28] Abdelaziz, A., Santos, V., Dias, M. S., & Mahmoud, A. N. (2024). A hybrid model of self-organizing map and deep learning
with genetic algorithm for managing energy consumption in public buildings. Journal of Cleaner Production, 434, 140040.
doi:10.1016/j.jclepro.2023.140040.

[29] Alsaleh, A., & Binsaeedan, W. (2021). The influence of salp swarm algorithm-based feature selection on network anomaly
intrusion detection. IEEE Access, 9, 112466-112477. doi:10.1109/ACCESS.2021.3102095.

[30] Thankappan, M., Narayanan, N., Sanaj, M. S., Manoj, A., Menon, A. P., & Gokul Krishna, M. (2024). Machine Learning and
Deep Learning Architectures for Intrusion Detection System (IDS): A Survey. 1% International Conference on Trends in
Engineering Systems and Technologies, ICTEST 2024, 1-6. doi:10.1109/ICTEST60614.2024.10576052.

[31] Dora, V. R. S., & Lakshmi, V. N. (2022). Optimal feature selection with CNN-feature learning for DDoS attack detection using
meta-heuristic-based LSTM. International Journal of Intelligent Robotics and Applications, 6(2), 323—349. doi:10.1007/s41315-
022-00224-4.

[32] Jothi, B., & Pushpalatha, M. (2023). WILS-TRS — a novel optimized deep learning based intrusion detection framework for
10T networks. Personal and Ubiquitous Computing, 27(3), 1285-1301. doi:10.1007/s00779-021-01578-5.

[33] Rashid, T. A., Fattah, P., & Awla, D. K. (2018). Using accuracy measure for improving the training of LSTM with metaheuristic
algorithms. Procedia Computer Science, 140, 324-333. doi:10.1016/j.procs.2018.10.307.

[34] Jihado, A. A., & Girsang, A. S. (2024). Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional
Neural Network and Bidirectional Long Short-Term Memory. Journal of Advances in Information Technology, 15(2), 219-232.
doi:10.12720/jait.15.2.219-232.

[35] Zivkovic, M., Bacanin, N., Arandjelovic, J., Strumberger, I., & Venkatachalam, K. (2022). Firefly Algorithm and Deep Neural
Network Approach for Intrusion Detection. Lecture Notes in Electrical Engineering, 925, 1-12. doi:10.1007/978-981-19-4831-
2 1

[36] Ali, M. H., Jaber, M. M., Abd, S. K., Rehman, A., Awan, M. J., Damasevi¢ius, R., & Bahaj, S. A. (2022). Threat Analysis and
Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (10T). Electronics (Switzerland), 11(3), 494.
doi:10.3390/electronics11030494.

[37] Alzagebah, A., Aljarah, I., Al-Kadi, O., & Damasevi¢ius, R. (2022). A Modified Grey Wolf Optimization Algorithm for an
Intrusion Detection System. Mathematics, 10(6), 999. doi:10.3390/math10060999.

[38] Kumar, G., Gupta, P., Yadav, G. K., Verma, R., Bhati, J. P., & Bhakuni, V. S. (2024). Evaluating the Effectiveness of Deep
Learning Models in Network Intrusion Detection. 2024 International Conference on Cybernation and Computation,
CYBERCOM 2024, 766-771. doi:10.1109/CYBERCOM®63683.2024.10803243.

[39] Selvakumar, B., & Muneeswaran, K. (2019). Firefly algorithm based feature selection for network intrusion detection. Computers
and Security, 81, 148-155. doi:10.1016/j.cose.2018.11.005.

[40] Toldinas, J., Venckauskas, A., Damasevicius, R., Grigalitinas, S., Morkevitius, N., & Baranauskas, E. (2021). A novel approach
for network intrusion detection using multistage deep learning image recognition. Electronics (Switzerland), 10(15), 1854.
doi:10.3390/electronics10151854.

[41] Wang, B., & Gu, L. (2019). Detection of network intrusion threat based on the probabilistic neural network model. Information
Technology and Control, 48(4), 618-625. doi:10.5755/j01.itc.48.4.24036.

1218

HighTech and Innovation Journal Vol. 6, No. 4, December, 2025

[42] Tang, Y., Gu, L., & Wang, L. (2022). Deep stacking network for intrusion detection. Sensors, 22(1), 25. doi:10.3390/s22010025.

[43] Kohli, M., & Arora, S. (2018). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of
Computational Design and Engineering, 5(4), 458—472. doi:10.1016/j.jcde.2017.02.005.

[44] Arora, S., & Singh, S. (2017). An improved butterfly optimization algorithm with chaos. Journal of Intelligent and Fuzzy
Systems, 32(1), 1079-1088. doi:10.3233/JIFS-16798.

[45] Abdelaziz, A., Santos, V., & Dias, M. S. (2023). Convolutional Neural Network with Genetic Algorithm for Predicting Energy
Consumption in Public Buildings. IEEE Access, 11, 64049-64069. doi:10.1109/ACCESS.2023.3284470.

[46] Van Houdt, G., Mosquera, C., & Napoles, G. (2020). A review on the long short-term memory model. Avrtificial Intelligence
Review, 53(8), 5929-5955. doi:10.1007/s10462-020-09838-1.

[47] Shende, S., & Thorat, S. (2020). Long short-term memory (LSTM) deep learning method for intrusion detection in network
security. International Journal of Engineering Research and, 9(6), 1016. doi:10.17577/ijertv9is061016.

[48] Aggarwal, P., & Sharma, S. K. (2015). Analysis of KDD Dataset Attributes - Class wise for Intrusion Detection. Procedia
Computer Science, 57, 842—851. doi:10.1016/j.procs.2015.07.490.

[49] UNB (2025). Datasets: NSL-KDD website. Available online: http://nsl.cs.unb.ca/NSL-KDD/ (accessed on June 2025).

[50] Faisal, M., & Islam, M. S. (2023). Improving Network Security with Intrusion Detection Systems Utilizing Machine Learning
and Deep Learning Techniques. 26th International Conference on Computer and Information Technology (ICCIT), 1-6.
doi:10.1109/ICCIT60459.2023.10441582.

[51] Mynuddin, M., Khan, S. U., Chowdhury, Z. U., Islam, F., Islam, M. J., Hossain, M. I., & Ahad, D. M. A. (2024). Automatic
network intrusion detection system using machine learning and deep learning. In 2024 IEEE International Conference on
Artificial Intelligence and Mechatronics Systems (AIMS), 1-9. doi:10.1109/AIMS61812.2024.10512607.

[52] Almomani, A., Alweshah, M., Al Khalayleh, S., Al-Refai, M., & Qashi, R. (2019). Metaheuristic algorithms-based feature
selection approach for intrusion detection. Machine Learning for Computer and Cyber Security, 184-208.
doi:10.1201/9780429504044-8

[53] Vu, L., Bui, C. T., & Nguyen, Q. U. (2017). A deep learning based method for handling imbalanced problem in network traffic
classification. Proceedings of the 8" international symposium on information and communication technology, 333-339.
doi:10.1145/3155133.3155175.

[54] He, H., & Ma, Y. (2013). Imbalanced learning: Foundations, algorithms, and applications. Imbalanced Learning: Foundations,
Algorithms, and Applications, John Wiley & Sons, New Jersey, United States. doi:10.1002/9781118646106.

[55] Tsukada, M., Kondo, M., & Matsutani, H. (2020). A neural network-based on-device learning anomaly detector for edge devices.
IEEE Transactions on Computers, 69(7), 1027-1044. doi:10.1109/TC.2020.2973631.

[56] Liu, L., Wang, P., Lin, J., & Liu, L. (2020). Intrusion detection of imbalanced network traffic based on machine learning and
deep learning. IEEE access, 9, 7550-7563. doi:10.1109/ACCESS.2020.3048198.

[57] Sun, Y., & Wang, Z. (2025). Intrusion detection in 10T and wireless networks using image-based neural network classification.
Applied Soft Computing, 113236. doi:10.1016/j.as0c.2025.113236.

[58] Wojtuch, A., Jankowski, R., & Podlewska, S. (2021). How can SHAP values help to shape metabolic stability of chemical
compounds? Journal of Cheminformatics, 13(1), 1-20. doi:10.1186/s13321-021-00542-y.

[59] Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization
algorithm. Soft Computing, 22(1), 1-15. doi:10.1007/s00500-016-2442-1.

[60] Rani, M., & Gagandeep. (2022). Effective network intrusion detection by addressing class imbalance with deep neural networks
multimedia tools and applications. Multimedia Tools and Applications, 81(6), 8499-8518. doi:10.1007/s11042-021-11747-6.

1219

http://nsl.cs.unb.ca/NSL-KDD/
https://doi.org/10.1109/ICCIT60459.2023.10441582
https://doi.org/10.1109/AIMS61812.2024.10512607

