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Abstract 

Volcanic eruption refers to a natural catastrophe on Earth that poses imminent danger to communities surrounding 

volcanoes. Therefore, ongoing monitoring of volcanic processes is crucial for effective analysis and observation of volcanic 

activities preceding an eruption. In response to this, the study presents a novel hybrid time series approach, integrated with 

machine learning techniques, to enhance the identification and classification of seismic events associated with volcanic 

eruptions. In this case, time series techniques, including STA/LTA, template matching, and autocorrelation, were 

implemented to facilitate the detection and classification process. The challenges, however, lie in addressing noise and 

ensuring accuracy in the analysis of seismic signals. To resolve this, a new hybrid time series method was proposed to 

improve signal analysis accuracy by integrating multiple time series techniques. In practice, the dataset was collected from 

Mount Merapi in Indonesia between 2019 and 2021, consisting of a compilation of seismic data categorized by event type, 

thus enhancing classification accuracy. On top of that, prior to implementing machine learning techniques for signal 

classification, the hybrid method was employed to efficiently remove noise, ensuring that genuine seismic events were 

clearly distinguished from spurious signals. Notably, the experimental learning rate was set at 0.01. The results 

demonstrated that the proposed hybrid method outperformed stand-alone time series techniques, achieving an accuracy of 

0.93 to 0.95. This signifies the effectiveness of precise seismic event recognition and categorization, greatly enhancing the 

volcano monitoring system. Furthermore, the findings offer substantial improvements in the forecasting and risk mitigation 

associated with volcanic eruptions, hence, advancing reliable seismic analysis methodologies. Ultimately, the method 

enhances hybrid methods and machine learning for seismic event analysis and volcano monitoring. 
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1. Introduction 

Indonesia is situated in the convergence of three tectonic plate boundaries and occupies a geographically unique 

position referred to as the Ring of Fire (ROF), characterized by intense tectonic activity, leading to numerous active 

volcanoes in Indonesia, including [1] approximately 130 active volcanoes, from Sabang to Merauke [2]. This geographical 

position significantly increases the potential for spontaneous volcanic eruptions, such as the eruptions recorded in one of 

the active and hazardous volcanoes in Indonesia, Mount Merapi [3, 4]. 
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As illustrated in Figure 1, Mount Merapi volcano, located in Central Java, is marked by densely populated slopes, 

where many residents live as close as 28 km (17 miles) north of Yogyakarta, the city near Mount Merapi with a population 

of 2.4 million. Considering the dense population, in addition to 73 recorded eruptions over the past 500 years, thorough 

investigation into the risks posed by Merapi is critical [5]. In fact, between 1672 and 2010, over 80 eruptions were 

reported. The rest intervals range from 1 to 18 years, averaging 4 years. The 2010 eruption caused extensive damage to 

community-owned properties on the slopes of the mount [6]. The latest eruption was reported on October 4, 2021, when 

magma supply triggered a shallow volcanic earthquake 8 km below the Earth’s surface in October 2019 [7]. 

Considering Mount Merapi's high level of activity, monitoring the mountain's activities is essential for effective 

analysis. Specifically, monitoring the volcano activity requires proper data on the eruption phase of the mountain. This is 

critical for assessing an unsettled volcano's activity level and predicting the probability and timing of a future eruption. 

Moreover, tracking volcanoes is an essential component of scientific approaches to minimize hazards to human society 

[8]. Another point to consider: the effectiveness of event detection depends on the data quality, including the precision, 

completeness, consistency, and frequency of past events. Moreover, maintaining substantial datasets of eruptions and 

consistently prepared monitoring data is required to effectively utilize statistical analysis [9]. 

 

Figure 1. The Map of Merapi Mountain, Indonesia 

While the majority of detection works have been automated, the categorization task remains largely reliant on manual 

intervention. Manual classification tasks exist, although in a limited number. In addition, a number of factors potentially 

cause labeling to be less reliable. As the classification depends on the operator's subjective assessment, different 

individuals potentially arrive at other criteria when multiple individuals perform the task. One technique for analyzing 

seismic data waveforms involves a time series algorithm. The technique is categorized into three primary types: 1) Short-

Term Average/Long-Term Average (STA/LTA), 2) Template Matching, and 3) Autocorrelation/Cross-correlation [10]. 

Although time series algorithm techniques pose different ways of working from one another, the approach shares a 

single way of processing data from seismic signals. 

The time and effort required to collect information regarding the sequence and locations of events are significantly 

minimized through efficient detection methods, particularly in regions with moderate seismic activity at local or regional 

scales [11]. Moreover, seismic signals are identified by analyzing time series data or matching patterns in seismic 

waveforms to determine the correlation with volcanic seismic events [12]. Typically, the event detection task is framed 

as a problem of classifying, wherein cutout seismic waveforms are categorized into two primary categories: earthquakes 

and noise [13]. In seismic investigations, signal classification classifies waveform data by attributes, including cepstrum, 

spectrum, and temporal waveforms. The automatic classification of seismic signals, however, remains a significant 

challenge, as a substantial portion of the process is conducted manually. As outlined in Falcin et al. (2021) [8], automatic 

recognition requires models linked to volcanic activity, heavily relying on waveform and spectrum analysis. While the 

process is frequently executed semi-automatically or automatically during the detection phase, the classification phase 

remains primarily manual. Therefore, the accuracy of manual classification varies depending on the user and is time-

consuming [14-16]. 
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Notably, the STA/LTA technique has been employed by Vaezi & van der Baan (2015) [17], utilizing statistical 

criteria to compare the Short-Term Average/Long-Term Average (STA/LTA) with the Power Spectral Density (PSD). 

This is performed by calculating the ratio of the mean energies of the data calculated consecutively over two subsequent 

moving time frames—a short window followed by a long window. The findings indicate that the Power Spectral Density 

(PSD) method outperforms the Short-Term Average/Long-Term Average (STA/LTA) method in automatically 

detecting seismic signals. When compared to STA/LTA, despite exhibiting superior performance in analyzing weak 

signals, PSD works have yet to be tested for real-time data. Moreover, this technique involves constraints and variables 

that require meticulous calibration. Additionally, these algorithms are sensitive towards sudden spikes in amplitude, thus 

capable of identifying noise as microearthquake events that possess energy equal to or surpassing actual 

microearthquake events [18]. 

Another experiment utilizing STA/LTA to detect seismic events has been conducted by Pantobe et al. (2024) [19]. 

The experiment, combined with CNN-SE-T for real-time detection of seismic occurrences for timely alerts and 

responses, is a complex endeavor that requires precise identification of P-wave arrivals. The challenge, however, relies 

on the complex detection of eruptive precursory signals, posing difficulty in predicting dangerous sudden phreatic or 

hydrothermal non-magmatic eruptions within a timely framework. The findings demonstrate that the model is capable 

of optimizing a velocity model in the shallow dome, despite the limited ability to automate the magnitude determination 

due to the low SNR and frequency resonance. Additionally, the STA/LTA presents notable disadvantages when the 

signals are exceedingly weak. In this instance, selecting an appropriate threshold value is particularly challenging, 

frequently leading to incorrect judgment. 

The next method is template matching techniques that represents one of the time series methods to analyze seismic 

events. The method operates by detecting events based on the similarity of waveforms by calculating the cross-

correlation coefficient (CC) value of a seismic signal. According to the study by Ma et al. (2020) [20] on icequake 

detection, the technique is effective in identifying larger events with low SNR, whereas, limited to simple waveforms. 

Likewise, Yang et al. (2021) [21] performed a study by detecting the depth of microearthquake sources, in which 

various machines were employed to analyze micro-earthquakes utilizing a benchmarked dataset from an underground 

cavern collapse in South Louisiana, comprising a total of 444 datasets and 444 micro-earthquakes. The findings suggest 

that the CNN model demonstrates an ability to discern essential elements from the input signal and elucidate the outputs 

at the hidden layers. Further analysis indicates that feature selection and transformation are crucial for the performance 

of feature-based classifiers. Additionally, the degree of rectilinearity demonstrates a notably stronger correlation with 

the source depth. Regardless, template matching emerges as the most effective technique to identify recurrent, more 

minor earthquakes in the different traditional detection techniques that rely on the similarity of the whole waveforms. 

In this context, the detection accuracy is contingent upon the number of templates and the difficulty in differentiating 

between periodic signals and noise. 

The last technique of time series is autocorrelation. Ikeda & Takagi (2019) [22] have proposed a study that involved 

autocorrelation to identify temporal variations in seismic velocity and scattering characteristics, particularly by 

autocorrelation analysis of ambient seismic noise. The study emphasizes the efficacy of seismic interferometry and 

autocorrelation analysis in identifying temporal alterations in subsurface structures as a result of seismic activities. 

Moreover, the approach provides valuable insights into the subsurface dynamics led by earthquakes. Additionally, 

processing requirements obstruct real-time monitoring, further influencing the outcomes due to dependency on 

predetermined frequency bands. Therefore, supplementary tools and enhanced methodologies. 

Further study guided by Nurtas et al. (2024) [23] provides an analysis of earthquake time series forecasting utilizing 

Integrated Moving Average with Exogenous Variables (SARIMAX) models. The objective is to evaluate the efficacy 

of the SARIMAX model in predicting earthquakes by incorporating pertinent exogenous variables, including historical 

seismic activity, geological attributes, and geodetic data. In practice, the parameters of the SARIMAX model were 

determined through an analysis of the autocorrelation function (ACF) and the partial autocorrelation function (PACF) 

of the time series. Afterward, the model was trained on historical data to predict future values of the series. The study 

reported valuable insights into the integration of time-series analysis with external geological elements to enhance 

predictive modeling. The forecast accuracy, however, was inadequate—40% reliability, reflecting a limited level of 

resilience. The performance was significantly affected by the quality and comprehensiveness of prior earthquake data. 

Additionally, the resampling of data to daily intervals introduced certain biases. 

Apart from the studies, one of the primary challenges in applying machine learning in seismology is automating the 

process of volcano-monitoring data, which remains predominantly performed manually. Recently, machine learning 

(ML) has been implemented in seismology, with various applications for identifying invisible signals and patterns and 

extracting information features related to the field of seismology [24]. On the other hand, implementing ML in 

seismology has not extended to suppressing volcanic eruptions, rather essentially processing seismic data to convey 

information related to volcanic activity. Despite the progress of ML applications, challenges persist in seismology 

implementation. 
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The application of ML in seismology has experienced significant advancements, as demonstrated by a number of 

related studies. Seismological studies utilizing machine learning have been implemented in diverse areas, such as 

volcano monitoring, earthquake forecasting, volcanic eruption predicting, and identification and categorization of 

seismic vibrations. In this study, seismic signal data were specifically utilized and subjected to ML algorithm processing. 

Furthermore, Wiszniowski et al. (2021) [11] conducted a study on auto-discovery to initiate the event by monitoring 

volcano activity, requiring a vast volume of data evaluated in real-time. The findings indicate that the modified SLRNN 

is more effective at detecting seismic occurrences than the deep learning techniques. Furthermore, the SLRNN method 

requires fewer data for training samples. Nevertheless, this experiment is not applicable in real-time use. 

To add to this, waveform autocorrelation and template matching methods have been widely utilized to classify 

seismic signals for detection. In this case, the classification based on waveform similarity achieved high recognition 

accuracy. These methods, however, generally require extensive databases to improve accuracy [25]. This strategy 

frequently decreases the magnitude of completeness by approximately one, leading to a tenfold increase in discovered 

occurrences. Despite the effectiveness, the methods are typically restricted to the analysis of short-term data, such as 

data preceding significant earthquakes, due to the expensive computational requirements described by Ross et al. (2021) 

[26]. 

These features gather seismic-related data from seismic signals such as the time waveform, spectrum, and cepstrum 

[14]. In addition, a variety of machine learning methods have been employed in seismology, including Neural Networks 

(NN), Multilayer Perceptron (MLP), Support Vector Machine (SVM), Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) [13, 27]. The methods frequently 

decrease the magnitude of completeness by approximately one, leading to a tenfold increase in discovered occurrences. 

While effective, the methods are typically limited to the analysis of data over short periods, particularly in the lead-up 

to significant earthquakes, due to the expensive computational requirements. 

A notable advancement has been established by Centeno et al. (2024) [28], in which the study successfully 

implemented a CNN and U-Net to segment and measure volcanic plumes in photographs. Moreover, the study utilized 

boosting-based machine learning ensembles to categorize the seismic events associated with ash plumes, demonstrating 

the efficacy of the methods in managing data produced during seismic and eruptive emergencies. In alignment with this, 

Ozkaya et al. (2024) [29] introduced the use of KNN and SVM for earthquake detection and classification from seismic 

signal data. The study utilized a public dataset consisting of three categories: (1) noise, (2) P-waves, and (3) S-waves to 

define earthquakes. Seven features of the vector were implemented as inputs to the classifier seismic signal by employing 

KNN and SVM algorithms. The findings reached an accuracy of 90%; nonetheless, further tests with a larger dataset of 

seismic signals are required. 

While ML technologies have markedly progressed in a multitude of domains, distinct challenges persist. The 

imbalance in natural datasets, for example, leads to mis-assessment or misinterpretation in numerous instances. The 

efficacy, precision, and adaptability of machine learning are the primary factors of the wide application within 

earthquake seismology. Despite the progress, numerous issues persist that machine learning effectively addresses. 

Moreover, the application continues to enhance and extend the understanding of earthquake seismology [13]. 

To further elaborate, the objective of the study is to create a forecasting model for volcanic eruptions utilizing seismic 

signal data, noise identification and categorization, time-series analysis, and machine-learning techniques. To ensure the 

comprehensiveness of the data, unprocessed seismic data were collected from Mount Merapi in a defined time frame 

from 2019 to 2021. Additionally, the daily frequency of occurrences was recorded. Correlating to this, the newly 

presented methods exhibited higher accuracy in identifying and classifying volcanic eruptions while working with a 

short dataset, compared to other methods. Evidently, the hybrid time-series model outperformed other models in 

accurately recognizing and detecting seismic events associated with volcanic eruptions. 

2. Time Series Algorithm 

2.1. STA/LTA Algorithm 

The STA/LTA algorithm represents a significant technique that effectively reduces high-energy transients in ambient 

vibration recordings. A notable characteristic of this method lies in the ability to be triggered or identified based on the 

STA/LTA ratio [30]. The Short-Term Amplitude (STA) / Long-Term Amplitude (LTA) method is a commonly utilized 

methodology for earthquake detection, as depicted in Figure 2. This information stems from the findings of human 

experts regarding earthquake detection. According to these experts, significant fluctuations in amplitude serve as visual 

indicators of potential earthquakes. As a further point, the STA/LTA method relies on two fundamental parameters: the 

short-term and long-term window duration. The standard parameter selections consist of a brief time frame of three 

seconds for the short-term analysis and an extended time frame of 30 seconds for the long-term study. Furthermore, the 

third parameter option is introduced to modify the overlap between the short-term window and the tail end of the long-

term window [10].  
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 Figure 2. STA/LTA Algorithm 

The STA/LTA algorithm is defined by the following equations: 
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where: 𝑥𝑖: current sample of time series data; 𝑛𝑠 : length of the short window; 𝑛𝑙: length of the long window; 𝑟𝑖: ratio of 

short amplitude and long amplitude 

STA/LTA operates independently of historical data, thus being valuable for newly established stations where 

existing data are unavailable. The STA/LTA method is advantageous for the minimal prerequisites, the linear time 

complexity of O(n), and the ability to detect signals with distinctive properties. The effectiveness, however, depends on 

a substantial signal-to-noise ratio (SNR). 

2.2. Template Matching 

Template matching is a prevalent method in signal processing that quantifies the similarity of signals through cross-

correlation. Conventional template-matching methods offer notable benefits, particularly when dealing with low signal-

to-noise ratio (SNR) data [20]. This phenomenon is rooted in the physical nature of earthquakes, where seismic waves 

generated from a common source exhibit a consistent waveform when traveling through Earth. In this case, an initial 

event catalogue listing is essential and is regarded as a template. In addition, cross-correlation was performed between 

the new window and the template, while a threshold was applied to establish the minimal level of similarity required for 

identifying a match. This is commonly regarded as cross-correlation that has been adjusted to be amplitude invariant 

[10]. More specifically, the template matching is defined as follows: 

𝑟𝑖 =
∑ (𝑥𝑖 − �̅�) (𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2 (𝑦𝑖 − �̅�)2𝑛
𝑖=1

                                                                                                                                   (2) 

where: �̅�: first signal; �̅�: second signal; 𝑟: correlation coefficient; 𝑖: current sample; 𝑛: total number of samples. 

Template matching involves iterating through each template and comparing the template with the chosen waveform 

to identify a match. This is analogous to the template matching format employed in other disciplines. One clear example 

is in computer vision, where digital image model matching is utilized to locate cases of image models within a larger 

image. In these scenarios, a similarity threshold is employed to selectively exclude matches, particularly in digital image 

processing (computer vision). The temporal complexity of template matching is O(kn), where k represents the number 

of templates and n represents the number of windows in the signal being processed. 

This technique exhibits higher sensitivity compared to STA/LTA and is capable of detecting noise in the signal. In 

addition, the technique contributes to identifying novel signals by correlating the signals with the equivalent signals in 

the template list. Furthermore, the detection requirements are more stringent compared to STA/LTA; therefore, a specific 

set of template catalogs is required. Furthermore, increasing the number of template catalogue lists improves the 

precision of model matching and the computational complexity. 

2.3. Autocorrelation / Cross-Correlation 

Autocorrelation compares a signal with a delayed version, a phenomenon referred to as auto-covariance in specific 

scientific disciplines. This technique is employed in signal processing to detect repetitive patterns in a signal, in addition, 

examines the complete waveform as a continuous signal separated into separate windows of a predetermined length. 

The autocorrelation is computed by correlating the seismic signature with the copy. Moreover, seismic interferometry 

creates images of underground structures by comparing seismic signals recorded by several receivers [31] using the 

above mentioned concept.  



HighTech and Innovation Journal         Vol. 6, No. 1, March, 2025 

109 

 

Furthermore, each window within the signal is correlated with every other window, reflecting the relative shift of 

the signal. In this case, various redundancy strategies are implementable to eliminate potential noise, such as setting a 

minimum correlation threshold or requiring a minimum number of matches [10]. As a further enhancement, normalized 

autocorrelation was utilized to ensure resilience against amplitude variations. In fact, autocorrelation is a statistical 

concept describing a correlation between a variable and the past value. To clarify, the equation is defined as follows: 

𝑟𝑖 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�) 𝑛

𝑡=𝑘+1

 ∑ (𝑦𝑡 − �̅�) 𝑛
𝑡=1

                                                                                    (3) 

where: 𝑦 ̅: signal length; 𝑘: signal delay length. 

The time complexity of autocorrelation is quadratic, denoted as O(n2), where n is the length of the wave. Specifically, 

autocorrelation is highly effective in identifying earthquake signals by accurately and precisely detecting recurring 

signals. Unlike template matching, autocorrelation does not require a catalogue list. Autocorrelation, however, is 

commonly regarded as technical resources for detecting earthquakes at shorter intervals. 

3. Related Works  

In recent years, seismology research has been conducted to detect and classify volcanic eruptions utilizing seismic 

signal data by [8, 15, 16] comprehensively examining cutting-edge machine learning methods for analyzing volcanic 

seismic data. The area of study is divided into two stages: detecting and categorizing seismic signal data for volcanic 

eruptions. Despite the positive outcomes, identifying and categorizing volcanic seismic events that co-occur in 

continuous data remains particularly challenging and thus requires extensive effort. A related study by Coombs et al. 

(2018) [32] focuses on identifying and classifying volcanic eruptions by employing near and real-time data. The finding 

reports that the capacity in detecting is approximately 60 explosives. Despite the success, enhancing the precision of the 

alerts is required. In 2020, a large number of machine-learning models were developed to analyze raw seismic velocity 

data. The models divide the sliding time windows into categories to automatically extract data for volcanic eruption 

recognition and real-time forecasting [33]. While being exclusively applicable for short-term alerts and offering a 

minimum four-hour warning for events, the models are unsuitable for predicting long-term increased eruptions. 

According to Manley et al. (2020) [34], machine-learning approaches effectively categorize seismic time series into 

eruptive and non-eruptive behavior patterns. The overall state of a volcano is classified through single-station seismic 

data by assembling a model. However, analyzing a more extensive and varied dataset is necessary to ascertain whether 

these crucial characteristics are present across the overall volcanoes. Moreover, Saad & Chen (2021) [35] reported a 

study on applying a machine-learning algorithm to automatically recognize and classify the noise of events and 

earthquake signals. By identifying the arrival time of the P-wave using a number of recording data from different 

observation stations, the study achieved improved performance. Nevertheless, the model is limited to processing the 

data at a sampling rate of 100 Hz. On the other hand, Wiszniowski et al. (2021) [11] introduced improvements to machine 

learning models for interpreting seismic signal data by incorporating the polarization analyzer feature. This enhancement 

was explicitly applied to regions characterized by moderate seismic activity. In this case, precise seismic phase detection 

and identification are required for detecting seismic events and calculating parameters. Despite this, a significant 

drawback persists in the implementation of event detection methods that rely on manual data processing. The SLRNN 

demonstrates the ability to detect low-strength events impractical for manual analysis. This is primarily led by the larger 

ratio of seismic noise to the signal at most stations. 

As a further point, Mandita et al. (2024) [36] combined STA/LTA and machine learning for detecting and classifying 

seismic signals. In the study, three distinct ML algorithms—Classis, Vanilla, and BiLSTM—were employed for 

detection and classification, combined with STA/LTA. The findings suggest that a combination of STA/LTA and ML 

provides an accuracy of around 0.70 and 0.80 in terms of detecting and classifying seismic events. Despite the ability of 

the model to detect and classify, challenges persist in terms of implementing datasets from different mountains and 

adding information related to the eruption status of volcanoes. 

Furthermore, a number of ML algorithms have been employed to detect volcanic eruptions. Each approach 

demonstrates varying levels of precision when applied in seismology, such as in the domains of detecting and 

categorizing seismic signals and in the annotation and evaluation of both annotated and unannotated data, as reported 

by Mustafa et al. [37]. The accuracy is nearly identical when utilized in detecting volcanic eruptions. To expand on this, 

Sandhya et al. (2023) [38] predicted the magnitude of earthquakes utilizing data from the Horn of Africa. The study 

employs LSTM and BiLSTM models to predict earthquakes' magnitude. The objective is to perform a multivariate time-

series regression to predict earthquakes with magnitudes of three or higher for the next three months. In practice, the 

outcomes and outputs acquired from long-term memory were compared. 

A number of automated defect detection methods have been developed to enhance productivity and minimize time 

usage, among which deep-learning-based systems have demonstrated high efficiency [39]. The proposed technique was 

implemented in two phases: training and prediction. During the training phase, a Convolutional Neural Network (CNN) 
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model was trained, incorporating actual data extracted from seven annotated seismic volumes. Each data point in these 

volumes was labeled, indicating the probability of faults. During the prediction stage, the trained network worked to 

compute the probability of faults at each location within the new seismic picture volumes. Despite this, further study is 

required to determine the effectivity of the trained CNN model when applied in different input samples. 

Along those lines, the study provides a comprehensive assessment of machine learning (ML) applications in wide 

areas of earthquake seismology [13]. Specifically, ML is employed to create earthquake catalogs, analyze seismic 

activity, predict ground motion, and utilize geodetic data. Machine learning technologies have advanced significantly in 

these sectors. However, distinct problems require solutions. For instance, disparities in natural datasets pose a challenge 

in numerous scenarios, potentially leading to inaccurate assessments or misrepresentations. A number of unresolved 

issues in earthquake seismology have been addressed efficiently using machine learning (ML). Moreover, the 

implementation of ML broadens and enhances understanding in this area. 

Adding to the above idea, the study offers a thorough evaluation by identifying and classifying earthquakes by 

utilizing KNN and SVM algorithms through the provided seismic signal data provided by Ozkaya et al. (2024) [29]. In 

this case, the dataset—noise, P-waves, and S-waves—was employed to characterize earthquakes. In addition, seven 

vector features were implemented as inputs for classifying the seismic signals using the KNN and SVM algorithms. The 

study successfully achieved 90% accuracy. To advance the finding, further testing is required with a more extensive 

dataset of seismic signals. 

Despite the notable advancements, a number of limitations persist. In addition, a significant number of models have 

been tested on limited or specific datasets, thereby impeding an accurate assessment on generalizability across different 

volcanic and seismic regions. Furthermore, persistent noise in seismic data continues to obstruct, hindering accurate 

classification, particularly for low-strength events. While certain models excel at providing short-term alerts, further 

development is required to enhance long-term prediction capabilities. Moreover, a number of methods rely on manual 

processing, diminishing the efficiency for real-time applications. To resolve this, developing standardized datasets, 

generating noise-robust models, and expanding research into long-term forecasting methods are essential. Additionally, 

as machine learning is integrated into seismology, further innovation is indispensable to enhance understanding and 

mitigate seismic hazards. 

4. Material and Methods 

4.1. Data Analysis   

The seismic signal data utilized in the study were pre-processed to eliminate poor signal quality from the seismic 

signal database. To identify any discrepancies within the seismic signal database, a thorough re-evaluation is essential, 

conducted with the assistance of experts in seismology. A number of observation stations, however, are limited to 

effectively observe phenomena related to volcanic activity. Another point to consider is inspecting an event to assure the 

appropriateness to be visually labeled. This task is more accessible when signal quality outweighs the surrounding noise 

level. Seismic signal categorization involves manually dividing the information into smaller segments of varying 

durations to identify underlying patterns. Following the extraction, each segment is categorized into a specific class based 

on the characteristics of the underlying physical event (reference class). In this study, the seismic signal data contained 

information related to volcanic activity, called occurrences. 

On top of that, feature extraction describes the process of obtaining information from a dataset. In fact, analyzing 

seismic signal data in pattern-recognition systems is a crucial stage. The primary objective is to offer significant 

characteristics for the discerning procedure for seismic signals. During the feature extraction process, signal parameters 

are computed from the raw data by incorporating valuable information to distinguish between different classes of seismic 

signals. In this study, volcanic activity data were collected from observational locations near the volcano. Moreover, the 

primary data were collected from the Centre for Research and Development of Geological Disaster Technology 

(BPPTKG) at the Mount Merapi observation station in Yogyakarta. Specifically, the data were collected from multiple 

observation points over a specific time frame.  

Located in the provinces of Yogyakarta, Central Java, Indonesia, Mount Merapi has been selected as the subject of 

the study due to the unique nature of each eruption, wherein seismic signal data varies across different eruptions. 

Accordingly, the study is focused on analyzing the seismic event data set of Mount Merapi in Indonesia. On the other 

hand, Mount Merapi has exhibited considerable volcanic activities in recent decades, as indicated by a number of 

eruptions throughout the current decade. Following this, seismic waveform data were collected from observation stations 

within a specified period. 

In addition, seismic signal data related to the activity were collected from observation stations surrounding Mount 

Merapi throughout a specific timeframe, under particular frequencies of 0.5 Hertz to 50 Hz. To illustrate more clearly, 

Figure 3 displays the data obtained from Mount Merapi's activities in the form of connected photos, serving as the subjects 

of this study. 
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Figure 3. Data Seismic Events 

These events are divided into a large number of classes based on wave patterns and spectral characteristics, as 
presented in Tables 1 and 2. Information was collected from Mount Merapi, between 2019 to 2021. The data used in the 
tests were primers obtained from a monitoring station near Mount Merapi. The seismic event data was examined prior to 
categorization according to data type with the assistance of domain experts. Data were collected from Mount Merapi, and 
subsequently categorized into eight and four distinct classifications of the seismic signals. A total of approximately 5000 

to 10000 seismic event data were successfully gathered, encompassing diverse indications. Following this, the seismic 
event data were classified into eight classes, as listed in Table 1.  

Table 1. The Classification of Eight Class-Seismic Signal Type 

No Seismic Signal Type 

1. AP 

2. DG 

3. Low Frequency 

4. Multiple Phase 

5. Rockfalls 

6. Tremor 

7. VT-A 

8. VT-B 

Table 2 presents the seismic event data classified into four classes.  

Table 2. The Classification of Four Class- Seismic Signal Type  

No Seismic Signal Type 

1. DG 

2. MP 

3. Rockfalls 

4. VT-B 

4.2. Data Preprocessing  

Preprocessing the seismic signal data is essential in eliminating low-quality signals from the seismic signal database 

and ensuring the accuracy and reliability of the research. Another point to consider is, identifying discrepancies in a 
seismic signal database requires professionals with a specialized background in seismology. Additionally, understanding 
that certain observation stations work effectively only when observing volcanic activity is essential. Moreover, ensuring 
precision requires a visual inspection to assure the accuracy of the event labeling. This procedure is more feasible when 
the signal quality surpasses the noise level of the surrounding seismic signal. Seismic signal data pattern categorization 
entails partitioning the dataset into smaller segments to subsequently be categorized into specific classes based on the 

underlying physical event. Regarding seismic signal data, the assessment of volcanic activity relies on the analysis of 
waves and spectrum, with each segment being categorized according to the corresponding reference class. 

This study focuses on collecting seismic data by categorizing the events as presented in Table 1. The seismic data 
were sampled at frequencies of 0.5 Hz to 100 Hz, incorporating measurements from the time waveform, spectrum, and 
cepstrum. Afterwards, the data were filtered using a Butterworth bandpass filter under the frequency of 1–25 Hz. 
Notably, a sliding window method is commonly applied in seismic data processing to analyze seismic signals in specific 
time segments while reducing and differentiating noise in seismic signals. In addition, a Butterworth filter is a frequency 
filter employed in signal processing, including seismic signals. This filter is designed to provide a smooth frequency 

response in the pass-band (allowed frequency band) and roll-off (reduction of amplitude outside the band). On the other 
hand, a sliding window is a flexible tool that provides a dynamic analysis on seismic signals, enhancing the precision of 
detection and data processing. In this case, the window size and stride are typically adjusted based on the nature of the 
data and the purpose of the analysis. Furthermore, the features listed in Table 1 were obtained from multiple mountain 
observation stations that continuously monitored volcanic activity. For a more detailed illustration, Figure 4 depicts the 
pre-processing and feature extraction processes. 
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Figure 4. Extraction Features and Data Preprocessing 

Figure 4 displays the seismic signal feature extraction and data preprocessing, commencing with seismic waveform 

data. In the initial phase, the data was fed into a bandpass filter utilizing Butterworth and sliding window techniques. 

This step is essential in extracting relevant information and distinguishing between noise and genuine or spurious events 

during the seismic signal detection stage. In this case, a hybrid time series analysis model was utilized to classify the 

seismic waves according to the labeled seismic event classes. Afterward, the pre-processed data was fed into further 

data preprocessing prior to applying machine learning techniques for further processing. 

During the preprocessing stage of developing a model for predicting volcanic eruptions, the data set was 

systematically divided into training and testing data. The results of training and testing were subsequently utilized to 

form a hybrid time series and ML model to detect and classify seismic signals, in addition to predicting seismic signals, 

as well as the status of the anticipated type of eruption. 

4.3. Volcano Activity Level 

The Indonesian government, through the National Disaster Management Agency (BNPB), has developed volcano 

status levels as a critical component of mitigation plans. The classification is based on the severity and potential high-

risk impacts of volcanic activity [40]. Moreover, the level of volcanic activity is categorized into the following: 

 Normal (Level 1), assigned to volcanoes with inactive magma. Moreover, normal status indicates a volcano with 

essential volcanic activity. 

 Waspada (Level 2), where volcanic activity exhibits an observable increase, detected by abnormal visual or seismic 

observations, changes in magma activity, hydrothermal increases, and tectonic events. 

 Siaga (Level 3), where an eruption potentially occurs; nevertheless, the outcome is indeterminate. In this level, 

observational data indicate an increase in seismic and volcanic monitoring, in addition to visual and non-visual 

changes in the volcanic crater activity. 

 Awas (Level 4), indicating that a volcanic eruption is imminent or actively occurring. At this level, the alert status 

alarms a disastrous condition.  

4.4. Hybrid Time Series Method  

Mandita et al. (2024) [36] have successfully developed an STA/LTA model combined with ML, including Classic, 

Vanilla, and BiLSTM, which effectively detected and classified a seismic signal. While predicting the status of a 

volcanic eruption, the accuracy level remained approximately 70-80. In contrast, the model built in this study integrates 

the time series method with two distinct models: the Proposed Method Hybrid STA/LTA & Template Matching and the 

Proposed Method Hybrid STA/LTA & Autocorrelation collaborated with the ML algorithm for detecting and classifying 

seismic signals, as well as predicting the status of volcanic eruptions. While both studies utilize the time series method 

to detect and classify seismic signals, the previous experiment employed a one-time series model, whereas this study 

combined several time series models. The novelty of this research involves a hybrid time series model that merges a 

combination of several time series methods. Additionally, the built model, combined with the ML algorithm, is proficient 

in predicting volcanic eruption status. 

Correlating to this, a hybrid time-series approach for volcanic prediction has been proposed. This methodology 

integrates algorithms, machine learning, and time-series analysis. A hybrid time series combines a large number of 

components or models to capture different patterns or characteristics of the data. In addition, two types of hybrid time 

series built in this experiment comprise STA/LTA and template matching, as well as STA/LTA and autocorrelation. 

Specifically, the hybrid time series method is defined as follows: 

𝑟𝑖 =
𝑆𝑇𝐴𝑖

𝐿𝑇𝐴𝑖

∑ (𝑥𝑖 − �̅�) (𝑦𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2 (𝑦𝑖 − �̅�)2𝑛
𝑖=1

                                  (4) 

𝑟𝑖 =
𝑆𝑇𝐴𝑖

𝐿𝑇𝐴𝑖

∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘− �̅�) 𝑛
𝑡=𝑘+1

 ∑ (𝑦𝑡 − �̅�) 𝑛
𝑡=1

                                                                                           (5) 

where: ri: ratio of STA/LTA & template matching; and the ratio of STA/LTA & autocorrelation; �̅� : first signal; �̅�: second 
signal; 𝑛: total number of samples; 𝑘: signal delay length. 
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Equations 4 and 5 present a new method for categorizing and identifying volcanic eruptions using time-series 

techniques and machine learning. The proposed method integrates a time-series algorithm to classify and identify signal 

seismic occurrences. In this case, two approaches were proposed: short-term average/long-term average (STA/LTA) 

and template matching, as well as a combination of STA/LTA with autocorrelation combined with ML algorithms—

Classic, Vanilla, and BiLSTM. Subsequently, the ML algorithms were compared to determine the model that exhibited 

the highest accuracy in analyzing a seismic signal. To clearly illustrate, the proposed method for volcanic eruptions is 

presented in Figure 5, depicting the newly proposed method for volcanic eruptions, commencing with detecting seismic 

event data to detect actual or false seismic events from the volcano, using a hybrid time series algorithm to process the 

seismic data during the classification stage. 

Equally important, two types of hybrid time series algorithms were implemented, including STA/LTA with template 

matching and STA/LTA with autocorrelation. The objective is to detect and classify seismic signal data. A predictive 

model using hybrid time series and ML collaboration was built to predict volcanic eruptions. Additionally, the study 

employed a number of machine learning models—Classic, Vanilla, and BiLSTM—to analyze seismic signal data. In 

this case, the ML algorithms were compared to determine the model that achieved the highest accuracy during the 

seismic signal analysis process. The subsequent phase involved training and testing the model to forecast volcanic 

eruptions. Upon completing the overall required operations, the highest-performing ML model for volcanic prediction 

was performed and validated. Lastly, the final stage is expected to produce a validated model that accurately predicts 

daily seismic events with higher precision. 

 

Figure 5. The Proposed Method 

5. Results and Discussions  

This chapter discusses the findings of the study in detecting true or false seismic events. The seismic event data were 

analyzed based on detection and classification to identify actual or false events. As previously outlined, the seismic events 

were divided into eight classes and four classes of seismic event types. At this point, data identification and feature 

extraction were performed. The data were analyzed to determine the possibility of generating the desired machine-learning 

model. Moreover, the data were purified to build the highest-performing machine-learning model for detecting and 

classifying seismic occurrences. 
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Furthermore, the inputs for the ML model were divided into eight and four inputs, respectively. In particular, the eight 

inputs are defined as follows: 

The definitions of the four inputs are as follows: 

Data analysis was conducted on the data classification outcomes involving seismology experts. During the iterative 

data testing, performing data validation is essential to obtain the ideal outcomes from the constructed model. The process 

involved training and testing the model, focusing on detecting and classifying the seismic occurrences. Moreover, three 

models were employed in detecting and classifying the seismic data.  

5.1. Support Vector Machine (SVM)  

The built model incorporates SVM with the time series method, specifically the STA/LTA method, to detect and 
classify seismic signals. The model was employed to analyze seismic signals and predict volcanic eruptions. 
Moreover, two classes of seismic events—four classes and eight classes of seismic events—were employed, as 
presented in Tables 1 and 2, the results of which are as follows: 

Figure 6 represents the results of the time series method. In the process, SVM was utilized in detecting and classifying 

seismic events, as well as predicting volcanic eruption status. In this study, three Support Vector Machine (SVM) 

models—linear, polynomial, and RBF—were employed to identify and categorize seismic occurrences and distinguish 

between genuine and spurious events for forecasting volcano eruptions. As a result, the model exhibited the lowest linear 

accuracy of 0.88 for the input of four classes, compared to the polynomial accuracy of 0.9. Additionally, the polynomial 

models outperformed the RBF model, achieving an accuracy of 0.88, similar to the accuracy exhibited by the linear and 

RBF models. 

 

Figure 6. The results of the SVM Model with four classes and eight classes input 

Parallel to this, the employment of eight classes as input generated an accuracy of approximately 0.81 to 0.89. The 
linear model achieved an accuracy of 0.85, surpassing the RBF model’s accuracy of 0.81 in classifying and detecting 
seismic events. The accuracy of the linear model, however, was lower than that of the polynomial model (0.89). Both 
classes with four or eight inputs signify that the polynomial model generates superior outcomes, with an accuracy of 0.9 
for the four input classes and 0.89 for the eight input classes. The model, therefore, was employed to detect and classify 

seismic events and predict volcanic eruptions. 
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5.2. K Nearest Neighbors (KNN) 

In practice, this study employed the KNN to classify and detect signal seismic events using four and eight classes, 
respectively. The results of which are presented as follows: 

Expanding further, Figure 7 illustrates the experimental results for eight classes using five K. For accuracy, K = 1 

achieved the highest-performing value at 0.84, outperforming other results. For other additional K, results range from 
0.7 to 0.73, with K = 3 achieving a value of 0.73, K = 5 achieving a value of 0.74 and K = 9 achieving a value of 0.71, 
with poor accuracy observed at K = 7, with a value of 0.7. In terms of precision, the highest-performing results were 
exhibited at K = 1 with a value of 0.85. While other K achieved values between 0.66 to 0.75, where K = 3 achieved a 
value of 0.75, with K = 5 achieving a value of 0.71, K = 7 achieved a value of 0.66 and K = 9 achieved a value of 0.67. 
This suggests that K = 7 performs the lowest results among all. For recall, the highest-performing results are exhibited 

at K = 1 with a value of 0.84. For other K, the values  range between 0.7 to 0.74, with the lowest result at K = 7, with a 
value of 0.7 compared to other K values. For the F1 score, the highest-performing result was obtained with several 0.84 
at K = 1. For other K results, K = 3 at 0.73, whereas for K = 5, the value was 0.72. For other K, K = 7 achieving a value 
of 0.68, and finally K = 9, with a value of 0.69. The results demonstrate that K = 7 with a value of 0.66 exhibits the 
lowest performance among all.  

 

Figure 7. The results with eight classes input 

Furthermore, Figure 8 presents the results for the four classes, evaluated across different five K experiments. Among 
these, a single value emerged as the highest-performing K experiment, in which K = 1 achieved the highest-performing 

results, compared to other values. For the accuracy, K = 1 achieved 0.87, while the results of other K ranged from 0.77 
to 0.78 for K with values 5, 7, and 9, and K = 3 achieved the lowest output. For precision, K = 1 achieved the highest-
performing value compared to other K values. K = 5, K = 7, and K = 9 achieved similar value of 0.76. For accuracy, K 
= 3 achieved the lowest value compared to other K values, with a value of 0.75. In recall, K = 1 with a value of 0.87 
emerged as the highest-performing value. K = 5 and K = 9 achieved a value of 0.77, slightly lower than the results at K 
= 7 with a value of 0.78. Meanwhile, the output with the lowest value at K = 3 achieved a value of 0.75. Regarding the 

F1 score value, K = 1 achieved the highest-performing result with a value of 0.87. Additionally, K=5, K=7 and K=9 
achieved similar value of 0.76. In contrast, K=3, with a value of 0.75 achieved the lowest result.  

 

Figure 8. The results with four classes input 
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5.3. Long Short-Term Memory (LSTM) 

The LSTM employed to classify and detect seismic events, the results of which are presented in Tables 3 and 4.  

 Table 3. The accuracy results for eight classes 

No. Methods Accuracy 

1. Classic LSTM 0.84 

2. Vanilla LSTM 0.85 

3. BiLSTM 0.87 

4. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.88 

5. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.89 

6. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.90 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0.91 

8. Proposed Method Hybrid STA/LTA & Template Matching and BiLSTM 0.93 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and BiLSTM 0.93 

Table 3 presents the accuracy results for eight classes of seismic event classification. Classic LSTM achieved an 

accuracy of 0.84, while Vanilla LSTM achieved a slightly different accuracy of 0.85, compared to BiLSTM, with an 

accuracy of 0.87. This reflects a difference of 0.02 points between Vanilla LSTM and BiLSTM. In practice, the proposed 

method involved three methods: Classic, Vanilla, and BiLSTM. The hybrid STA/LTA and Template Matching method 

with Classic LSTM, achieved an accuracy of 0.88, slightly different from the hybrid STA/LTA and Autocorrelation 

method with an accuracy of 0.89. Combined with Vanilla LSTM, the hybrid method achieved an accuracy of 0.89, while 

the STA/LTA & Template Matching and STA/LTA & Autocorrelation models achieved an accuracy of 0.90. 

Additionally, the hybrid methods with BiLSTM achieved an accuracy of 0.93 in terms of the proposed hybrid STA/LTA 

and Template Matching method, and the proposed hybrid STA/LTA and Autocorrelation method achieved similar 

accuracy. Moreover, the proposed method achieved similar accuracy in terms of the STA/LTA & Template Matching and 

STA/LTA & Autocorrelation with BiLSTM – with a value of 0.93. Notably, the method outperformed the other methods 

in terms of accuracy.  

The results of the proposed method for the four classes are listed in Table 4.  

Table 4. The accuracy results for four classes 

No. Methods Accuracy 

1. Classic LSTM 0.85 

2. Vanilla LSTM 0.86 

3. BiLSTM 0.88 

4. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.89 

5. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.90 

6. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.91 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0.93 

8. Proposed Method Hybrid STA/LTA & Template Matching and BiLSTM 0.95 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and BiLSTM 0.95 

Table 4 lists the accuracy results for the four seismic event classification classes, presenting that Classic LSTM 

achieved an accuracy of 0.85, slightly lower than the Vanilla LSTM model’s accuracy of 0.86. This is particularly 

different from Classic LSTM, with an accuracy of 0.01. Likewise, the results of the Vanilla LSTM were lower than 

BiLSTM, with an accuracy of 0.88, representing an enhancement of 0.02 over the Vanilla LSTM. Additionally, the 

proposed method for STA/LTA & Template Matching and Classic LSTM achieved an accuracy of 0.89, slightly 

different from the STA/LTA & Autocorrelation and Classic LSTM methods with an accuracy of 0.90. Similarly, the 

proposed method with Vanilla LSTM for STA/LTA & Template Matching achieved an accuracy level of 0.91, with a 

slight difference for the STA/LTA & Autocorrelation, with an accuracy of 0.93. Moreover, the last proposed method, 

hybrid STA/LTA & Template Matching and hybrid STA/LTA & Autocorrelation, achieved a similar level of accuracy. 

In addition, the proposed methods with hybrid STA/LTA & Template Matching and hybrid STA/LTA & Autocorrelation 

achieved an accuracy of 0.95. Notably, the results of the proposed hybrid time series and BiLSTM method outperform 

the other methods. 



HighTech and Innovation Journal         Vol. 6, No. 1, March, 2025 

117 

 

5.4. Comparison of Others Model with the Proposed Model 

The accuracies of the comparison and proposed model are presented in Table 5.  

Table 5. The comparison results of the utilized model and the proposed model for eight classes 

No. Methods Accuracy 

1. SVM 0.90 

2. KNN 0.87 

3. Classic LSTM 0.84 

4. Vanilla LSTM 0.85 

5. BiLSTM 0.87 

6. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.88 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.89 

8. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.90 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0.91 

10. Proposed Method Hybrid STA/LTA & Template Matching and BiLSTM 0.93 

11. Proposed Method Hybrid STA/LTA & Autocorrelation and BiLSTM 0.93 

Table 5 represents the comparative accuracy between the proposed approach and the other methods. In detail, in 

terms of detecting and classifying seismic event signals, SVM and KNN achieved an accuracy of 0.90 and 0.87, 

respectively. In this task, SVM outperforms KNN. The Classic LSTM model achieved a performance score of 0.84, 

whereas the Vanilla LSTM model achieved a slightly higher score of 0.85. Comparatively, the BiLSTM model surpassed 

the Vanilla LSTM and BiLSTM models with a performance score of 0.87, demonstrating a 0.02-point disparity. 

However, when comparing the accuracy of the SVM with the proposed technique, the SVM achieved lower accuracy 

than that of the proposed method. The proposed method demonstrates higher accuracy, achieving a precision of 0.93, 

surpassing the SVM and KNN. Compared with the SVM, KNN, Classic LSTM, Vanilla LSTM, BiLSTM, and hybrid 

method with Classic LSTM or Vanilla LSTM, the proposed method—the hybrid STA/LTA & Template Matching and 

STA/LTA & Autocorrelation with BiLSTM—achieved a superior accuracy of 0.93. This represents an accuracy 

improvement from 0.06 to 0.09 in the proposed model. 

Table 6 illustrates the comparison accuracy between the proposed method with SVM and KNN, achieving an 

accuracy of 0.90 and 0.85, respectively. This signifies that SVM outperforms KNN for detecting and classifying seismic 

event signals. While the Classic LSTM model achieved an accuracy of 0.85, the Vanilla LSTM model achieved a slightly 

lower accuracy of 0.86, resulting in a difference of 0.01 compared to the Classic LSTM model. Moreover, the Vanilla 

LSTM achieved poorer results compared to the BiLSTM, which achieved an accuracy of 0.88. Meanwhile, when 

compared to the proposed method, the accuracy of SVM was lower than that of the proposed method. The proposed 

method achieved an accuracy of 0.95, surpassing the SVM and KNN. Furthermore, when evaluated against the SVM, 

KNN, Classic LSTM, Vanilla LSTM, BiLSTM, and hybrid method with Classic LSTM or Vanilla LSTM—hybrid 

STA/LTA & Template Matching and STA/LTA & Autocorrelation with BiLSTM—the proposed method achieved the 

highest accuracy of 0.95. This represents an improvement in the proposed model's accuracy from 0.05 to 0.1. 

Table 6. The comparison results of the utilized model and the proposed model for four classes 

No. Methods Accuracy 

1. SVM 0.90 

2. KNN 0.85 

3. Classic LSTM 0.85 

4. Vanilla LSTM 0.86 

5. BiLSTM 0.88 

6. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.89 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.90 

8. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.91 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0,93 

10. Proposed Method Hybrid STA/LTA & Template Matching 0.95 

11. Proposed Method Hybrid STA/LTA & Autocorrelation 0.95 
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Table 7 presents an overview of the accuracy, precision, recall, and F1 score for eight seismic event classes, 

summarizing the performance of a number of machine learning models and methods employed for classification tasks. 

These metrics offer a comprehensive assessment of the model's effectiveness. 

Table 7. The Accuracy, Precision, Recall, and F1 Score Model LSTM for Eight Classes of Seismic Events 

No. Methods Accuracy Precision Recall F1 Score 

1. Classic LSTM 0.84 0.85 0.83 0.839 

2. Vanilla LSTM 0.85 0.86 0.84 0.849 

3. BiLSTM 0.87 0.88 0.86 0.869 

4. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.88 0.89 0.87 0.879 

5. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.89 0.90 0.88 0.889 

6. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.90 0.91 0.89 0.899 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0.91 0.92 0.90 0.909 

8. Proposed Method Hybrid STA/LTA & Template Matching and BiLSTM 0.93 0.94 0.92 0.929 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and BiLSTM 0.93 0.94 0.92 0.929 

The Classic LSTM model achieved an accuracy of 84%, with precision, recall, and F1 scores of 85%, 83%, and 

0.839, respectively, reflecting a balanced performance in identifying relevant instances with reliable predictions. The 

Vanilla LSTM model achieved a slight improvement of 85% accuracy, 86% precision, 84% recall, and an F1 score of 

0.849. The BiLSTM model further enhanced these metrics, with an accuracy of 87%, precision of 88%, recall of 86%, 

and an F1 score of 0.869, therefore, the incorporation of the bidirectional layers enabled the model to capture contextual 

dependencies with greater efficacy.  

Moreover, significant advancements are presented through the Proposed Hybrid Methods, which combine Hybrid 

STA/LTA & Template Matching or Autocorrelation techniques with LSTM-based models. These hybrid approaches 

consistently improved the accuracy, precision, recall, and F1 scores. Notably, the Hybrid STA/LTA & Template 

Matching with Classic LSTM achieved 88% accuracy, 89% precision, 87% recall, and an F1 score of 0.879. In addition, 

the Autocorrelation with Classic LSTM hybrid improved the accuracy to 89% and F1 score to 0.889. 

The upward trend persisted as Vanilla LSTM served as the baseline in these hybrid methods. The Template 

Matching and Vanilla LSTM hybrid achieved 90% accuracy, while the Autocorrelation and Vanilla LSTM hybrid 

achieved 91% accuracy and an F1 score of 0.909. The highest performing results were obtained with hybrid methods 

incorporating BiLSTM, where both Template Matching and Autocorrelation achieved 93% accuracy, with precision of 

94%, recall of 92%, and an F1 score of 0.929. 

These findings highlight the significant performance enhancements exhibited by the proposed hybrid methods. The 

improvements in precision and recall demonstrate the ability to reliably identify relevant instances while minimizing 

errors, establishing the methods to be highly suitable for applications requiring robust predictive accuracy. 

Table 8 presents the accuracy, precision, recall, and F1 score for eight classes of seismic events, demonstrating the 

efficacy of various machine learning models and hybrid techniques in classification tasks. These metrics—Accuracy, 

Precision, Recall, and F1 Score—provide a comprehensive evaluation of model reliability, efficacy in detecting relevant 

events, and the balance between precision and recall. 

Table 8. The Accuracy, Precision, Recall, and F1 Score Model LSTM for Four Classes Seismic Events 

No. Methods Accuracy Precision Recall F1 Score 

1. Classic LSTM 0.85 0.86 0.84 0.849 

2. Vanilla LSTM 0.86 0.87 0.85 0.859 

3. BiLSTM 0.88 0.89 0.87 0.879 

4. Proposed Method Hybrid STA/LTA & Template Matching and Classic 0.89 0.90 0.88 0.889 

5. Proposed Method Hybrid STA/LTA & Autocorrelation and Classic 0.90 0.91 0.89 0.899 

6. Proposed Method Hybrid STA/LTA & Template Matching and Vanilla 0.91 0.92 0.90 0.909 

7. Proposed Method Hybrid STA/LTA & Autocorrelation and Vanilla 0.93 0.94 0.92 0.929 

8. Proposed Method Hybrid STA/LTA & Template Matching and BiLSTM 0.95 0.96 0.94 0.949 

9. Proposed Method Hybrid STA/LTA & Autocorrelation and BiLSTM 0.95 0.96 0.94 0.949 
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As illustrated in the table, the Classic LSTM model achieved an accuracy of 85%, with a precision of 86% and a 

recall of 84% with an F1 score of 0.849, establishing a solid baseline for comparison. The Vanilla LSTM slightly 

outperformed this, with an accuracy of 86%, precision of 87%, recall of 85%, and an F1 score of 0.859. The BiLSTM 

model further improved these results, achieving 88% accuracy, 89% precision, 87% recall, and an F1 score of 0.879, 

benefiting from the bidirectional architecture, enhancing the model's ability to process contextual information. 

Moreover, the proposed hybrid methods demonstrated significant performance by combining STA/LTA techniques 

(Template Matching or Autocorrelation) with LSTM-based models. Specifically, when paired with Classic LSTM, the 

hybrid techniques achieved 89% and 90% accuracy, with F1 scores of 0.889 and 0.899, respectively, reflecting improved 

accuracy in predicting positive cases while maintaining intense precision and recall. Higher performance was observed 

in the use of Vanilla LSTM as the baseline in these hybrid approaches. The Hybrid STA/LTA & Template Matching 

with Vanilla LSTM achieved 91% accuracy, while the Hybrid STA/LTA & Autocorrelation with Vanilla LSTM 

achieved 93% accuracy, delivering F1 scores above 0.90. This underscores the significant impact of the hybrid approach 

in enhancing model performance. 

As equally important, the most remarkable results were observed in hybrid methods utilizing BiLSTM. Hybrid 

STA/LTA & Template Matching with BiLSTM and Hybrid STA/LTA & Autocorrelation with BiLSTM, achieved 95% 

accuracy, with a precision of 96%, recall of 94%, and an F1 score of 0.949. The results highlight the robustness and 

effectiveness of combining STA/LTA techniques with BiLSTM for advanced classification tasks. 

Overall, the hybrid methods consistently enhanced the baseline models' performance, particularly when integrated 

with BiLSTM, establishing the methods as promising solutions for applications requiring high prediction accuracy and 

reliability. 

Figure 9 illustrates the output of volcanic eruption prediction utilizing the proposed method, in which the volcanic 

eruption status is classified as “waspada”, and the type of seismic signal is identified as mp with a magnitude of 4.9. 

 

 Figure 9. The results of Volcano Activity 

Based on experimental analysis with eight and four classes, the proposed methods included hybrid STA/LTA & 

Template Matching and STA/LTA & Autocorrelation with BiLSTM, which were observed to be more accurate in 

detecting and classifying seismic events, as well as in predicting volcano eruptions. Notably, the proposed method 

achieved higher-performing results among all. 

6. Conclusion 

As detailed in the preceding sections, this study proposes a model for detecting, classifying, and predicting volcanic 

eruptions by employing a hybrid time series method and ML. Multiple models have been developed to compare the 

accuracy levels in analyzing a seismic signal with the proposed model. To compare the level of accuracy at the 

experimental stage, seismic events are divided into two classes: eight and four classes. The primary data is collected 

from one of the active volcanoes in Indonesia, Mount Merapi, which has been actively emitting lava in recent decades. 

Moreover, the study has been performed to detect and classify seismic events, as well as predict volcanic eruptions, 

exhibiting varying levels of accuracy. 

Furthermore, the comparative analysis between the employed methods with the proposed method achieves an 

accuracy level between 0.84 to 0.89, whereas the proposed model achieves an accuracy level from 0.90 to 0.95. The 

proposed method provides higher accuracy than other methods, with an accuracy between 0.93 to 0.95 for the STA/LTA 

& Template Matching and STA/LTA & Autocorrelation with BiLSTM models—the proposed model. This signifies that 

the proposed method presents high-performing results compared to other methods. Correlating to this, future research 

involves tuning the model to detect and classify seismic event data by employing other datasets or data from other 

volcanoes, including a larger volume of datasets. Moreover, a classification of seismic events will be added to the 

proposed method's accuracy. Additionally, another future research will improve the status of volcanic eruptions for 

seismic events, thus producing more precise results. 
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