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Abstract 

This study presents a UAV-based Structural Health Monitoring (SHM) system that combines Lighthouse localization with 

a two-stage CNN architecture—AlexNet for crack classification and YOLOv4 for segmentation—to enable reliable crack 

detection and spatial mapping in GNSS-denied environments. This study explores the effectiveness of this combination as 

a practical and computationally efficient solution for indoor SHM tasks. The UAV was deployed within a 1.5 m × 1.2 m 

× 1.2 m test volume to inspect synthetic cracks derived from Özgenel’s dataset, as well as a real-world wall crack. Two 

experiments were conducted: evaluating UAV localization accuracy and assessing the system’s ability to detect cracks and 

provide corresponding pose data. The system achieved a 1–2 cm margin of error in pose estimation, alongside 100% 

precision, 83.33% recall, and 91.89% accuracy in crack detection. This level of localization accuracy supports stable 

autonomous UAV flight and ensures that cracks are detected and spatially localized with minimal deviation. Beyond 

classification and segmentation, the system returns pose data tied to each detected crack, allowing users to identify defect 

locations precisely and use this information to guide inspection or maintenance tasks. Future work includes expanding the 

dataset, generalization, and evaluating scalability via multi-base station setups. 

Keywords: Crack Detection; Crack Segmentation; GNSS-Denied Environments; Lighthouse Localization; Structural Health Monitoring; 

Two-Stage CNN Model; Unmanned Aerial Vehicles. 

1. Introduction 

Structural Health Monitoring (SHM) is a systematic approach to assessing the integrity of infrastructures, ensuring 

public safety, and extending their service life. Modern SHM relies on Non-Destructive Testing (NDT) techniques, which 

evaluate structural conditions without causing damage [1]. Among these, Unmanned Aerial Vehicles (UAVs) have 

emerged as a viable inspection tool, offering a safer, more efficient alternative to manual inspections that traditionally 

require personnel to ascend to hazardous heights [2, 3]. UAVs enable rapid data acquisition by maneuvering complex 

structures [4], facilitating real-time or near-real-time defect identification through computer vision-based techniques [5]. 

A critical aspect of structural assessment is the detection of hairline cracks, which often serve as early indicators of 

fatigue, stress accumulation, and potential failure [6]. If left undetected, these fractures can propagate over time, 

compromising the stability of load-bearing structures. Traditional inspection methods struggle with consistently and 

reliably identifying hairline cracks, particularly in large-scale or hard-to-access structures [7]. By leveraging advanced 

image processing and deep learning models, UAV-based SHM systems significantly improve early-stage damage 

detection, enabling timely intervention before structural failures occur. 
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Effective UAV-based SHM systems rely on two fundamental components: localization and computer vision models. 

Localization ensures precise UAV positioning, critical for accurate flight operation, crack mapping, and comprehensive 

inspection coverage, especially in Global Navigation Satellite System (GNSS)-denied environments such as tunnels, 

indoor facilities, and under-bridge structures [8]. UAVs deviate from planned flight paths without a reliable localization 

system, reducing inspection efficiency and compromising crack tracking accuracy. Researchers have explored various 

localization techniques to address this, balancing cost, accuracy, and complexity. These techniques include Radio-

Frequency Identification (RFID), Ultra-Wideband (UWB), vision-based tracking, and the emerging Lighthouse 

localization approach. With the availability of hybrid-localization techniques that integrate multiple positioning systems 

for improved accuracy and robustness, they introduce greater system complexity, computational overhead, and hardware 

dependencies—factors that may be unnecessary for this application. Lighthouse localization, however, satisfies the 

operational requirements for UAV control in GNSS-denied environments while achieving sub-centimeter accuracy. 

Complementing localization, computer vision models—particularly deep learning-based techniques— automate crack 

detection with high precision. Convolutional Neural Networks (CNNs), including AlexNet, VGG-19, ResNet, and 

YOLO, have demonstrated effectiveness in crack identification [9], with two-stage CNN transfer learning approaches 

further enhancing classification and segmentation accuracy [10]. Our previous work [11] has demonstrated the efficacy 

of a two-stage CNN model that leverages transfer learning in UAV-based crack detection with strong performance in 

classification and segmentation tasks.  

In light of the critical importance of a localization method’s ability to generate accurate, precise, and application-

appropriate data, evaluating existing techniques for their suitability in UAV-based crack detection within GNSS-denied 

environments is essential. Improper or low-quality localization can lead to operational drift, where the UAV deviates 

significantly from its intended path or exhibits unstable movements in response to perceived position errors. This erratic 

behavior compromises the spatial reference needed for accurate crack mapping. It also introduces safety risks, as abrupt 

course corrections may cause the UAV to collide with structural elements, damage itself, or endanger nearby personnel. 

Moreover, logistical constraints such as weight, cost, and setup feasibility often render conventional high-precision 

systems impractical in real-world deployment. The challenge this study aims to address is the localization of hairline 

cracks using a system that not only achieves sufficient positional accuracy but also remains lightweight, scalable, and 

computationally efficient.  

RFID localization can be categorized into Antenna Array-Based and Synthetic Aperture Radar (SAR)-Based 

approaches. While the former relies on bulky hardware composed of multiple RFID reader antennas surrounding passive 

tags, rendering it impractical for UAV deployment, the latter enables real-time tracking using a mobile RFID reader 

traversing an array of passive tags, albeit with significant infrastructure requirements [12]. Recent developments in SAR-

based RFID localization have demonstrated steady improvements in accuracy and efficiency. In a foundational study 

[13], the proponents flew a UAV equipped with a UHF-RFID reader over a football field embedded with fixed RFID 

tags, and the resulting RFID-based position estimates exhibited a Mean Absolute Error (MAE) of 27.1 cm when 

compared to GNSS ground truth. To address computational inefficiencies in this setup, subsequent work [14] developed 

a hybrid method that utilized Particle Swarm Optimization (PSO) to significantly reduce processing time while 

improving accuracy to 15–20 cm. Further advancements have explored more hybrid methods; for instance, Böller et al. 

[15] incorporated Angle of Arrival (AoA) and Time of Flight (ToF) measurements, reducing localization error to 12.8 

cm. While promising in structured environments such as warehouses, where fixed tag arrays are acceptable, RFID 

localization remains unsuitable for UAV-based SHM. As noted in Buffi et al. [16] study, its dependence on fixed 

infrastructure and moderate spatial resolution limits its use in dynamic UAV-based SHM contexts. 

UWB localization estimates position using short-duration radio pulses exchanged between fixed anchors and mobile 

tags, relying on ToF and Time-of-Arrival (ToA) measurements to achieve high spatial accuracy [17]. In structured 

environments such as warehouses, UWB has enabled coordinated multi-UAV operations, with one study [18] 

demonstrating its application in a warehouse management system using eight fixed anchors to define the flight volume. 

The system achieved a mean localization error of 18.2 cm, preventing UAV collisions during path planning. In industrial 

scenarios, UWB has demonstrated robustness under asymmetrical anchor configurations; even under these conditions, 

the system achieved a localization error below 20 ± 7 cm, performing comparably to vision- and LiDAR-based systems 

in low-visibility environments [19]. Mobile UWB anchors mounted on Unmanned Ground Vehicles (UGV) have been 

explored, enabling UAVs to localize relative to a moving reference and supporting multi-agent system configurations. 

These setups have reported sub-centimeter accuracy, with more than 50% of position estimates falling below 10 cm of 

error [20]. However, observations suggest that UWB performance remains sensitive to anchor geometry and 

environmental conditions. Sorescu et al. [21] evaluated four configurations of anchor placements, showing that 

localization error increased from 6.95 cm in a compact 3 × 3 × 1 m setup to 9.34 cm in a more elongated 3 × 12 × 1 m 

space. This sensitivity underscores the need for careful calibration to mitigate multipath interference and signal 

degradation, particularly in sparse or cluttered deployments.  

Vision-based tracking offers high-precision localization but requires substantial infrastructure and controlled 

environmental conditions. In Preiss et al. [22] study, a vision system utilizing 24 Vicon Vantage cameras achieved 1.5-

2 cm accuracy while tracking 49 UAVs within a confined 6 m × 6 m × 3 m space. Marker-based tracking has also shown 
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promise; Mu et al. [23] localized a DJI Tello Ryze drone for precision docking using a modified YOLO algorithm, 

attaining a localization error of 1.03 cm, including successful trials on a moving UGV platform. Despite these results, 

such systems depend heavily on the system setup, structure settings, and stable lighting. To overcome this, onboard 

camera-based localization methods, such as Visual Simultaneous Localization and Mapping (vSLAM), have gained 

traction. However, as noted in Murhij et al. [24] study, integrating deep learning into UAV visual localization remains a 

challenge due to concerns on real-time processing and memory constraints. To enhance robustness under weak lighting, 

Wu et al. [25] proposed a hybrid Visual SLAM system incorporating ORB-SLAM3, GAN networks, and YOLOv5, 

achieving an average error of 1.0077 cm, comparable to baseline and hybrid SLAM models. This performance came at 

the cost of significant computational resources. These constraints highlight a key limitation of vision-based localization: 

despite their accuracy, the requirements for processing power, lighting stability, and structured environments reduce 

their practicality for lightweight, real-time UAV-based structural health monitoring. In contrast, Lighthouse localization 

presents a promising alternative that balances precision, responsiveness, and deployment simplicity, particularly in 

GNSS-denied environments.  

Lighthouse localization offers a cost-effective, high-precision alternative for UAV tracking, particularly in indoor 

navigation and autonomous landing. Unlike vision-based systems, lighthouse systems provide low-latency, high-

accuracy tracking with minimal computational demands. They are independent of ambient lighting conditions, 

performing comparably to or surpassing UWB-based localization in precision and responsiveness. Studies have 

demonstrated its feasibility for UGVs, offering low-cost, high-precision tracking in structured environments [26]. In 

industrial automation, lighthouse localization has achieved sub-millimeter accuracy for product tracking, though its full 

3D tracking capabilities remain unexplored [27]. For UAV positioning, Greiff et al. [28] validated its sub-centimeter 

accuracy through simulations, presenting it as an affordable alternative to motion capture and UWB tracking. 

Furthermore, Martin et al. [29] applied lighthouse localization for UAV docking, achieving an average landing error of 

3.5 cm, outperforming ultrasonic and optical flow sensors in indoor precision landing applications. Table 1 presents a 

comparative analysis of each localization technique, highlighting the advantages and limitations of various localization 

methods for UAV-based applications in GNSS-denied environments.  

Table 1. Localization Methods for UAV-Based Applications in GNSS-Denied Environments 

Method Accuracy Key Benefits Limitations 

RFID [10-12] ~12–27 cm Low-cost, suitable for warehouses Limited range, infrastructure-dependent, low accuracy for SHM 

UWB [15-18] 7–20 cm ± 7 cm High accuracy, robust in GNSS-denied environments Requires optimal anchor placement, susceptible to interference 

Vision-Based 

[19, 20, 22] 
1–2 cm High precision, effective for swarm UAVs Requires multiple cameras, controlled lighting, expensive setup 

Lighthouse [26] ~ 3.5 cm Cost-effective, low-latency, computationally efficient Requires line-of-sight, limited range (< 7 m) 

Each localization technique presents trade-offs in cost, accuracy, and complexity. RFID is suited for structured 

environments but lacks precision, UWB offers sub-centimeter accuracy but requires careful anchor placement, and 

vision-based tracking provides high precision but is infrastructure-dependent. Lighthouse localization emerges as a cost-

effective alternative, delivering sub-centimeter accuracy with minimal computational demands. While it requires line-

of-sight, this limitation is shared by most localization techniques, making it a viable option for autonomous UAV 

operations in controlled indoor environments. Despite advances in deep learning-based crack detection, precise and 

reliable localization remains a limiting factor in achieving fully autonomous UAV-based SHM, particularly in GNSS-

denied environments. This gap is especially critical when detecting fine, hairline cracks, where even minor localization 

errors can undermine mapping accuracy and inspection coverage. 

Thus, this study presents a novel UAV-based SHM by integrating lighthouse localization as a high-precision 

alternative for UAV-based inspections in GNSS-denied environments. By addressing this localization challenge, we aim 

to develop a fully autonomous UAV inspection system that combines state-of-the-art crack detection with precise, real-

time positioning, enabling more reliable and scalable SHM solutions. The remainder of this paper is structured as 

follows: Section 2 outlines the theoretical framework, detailing the two-stage CNN model and the Lighthouse positioning 

system. Section 3 presents the methodology, including the system architecture, dataset preparation, and physical 

experimentation. Section 4 discusses the results, highlighting localization performance and crack detection accuracy. 

Finally, Section 5 concludes the study and outlines directions for future research. 

2. Theoretical Considerations 

This section presents the theoretical foundations of this study, focusing on the two-stage CNN model with transfer 

learning for crack detection and segmentation, followed by the Lighthouse positioning system for precise localization in 

GNSS-denied environments. These components form the framework for integrating vision-based defect identification 

with high-accuracy UAV positioning, ensuring reliable and scalable SHM applications. 
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2.1. Two-Stage CNN Model with Transfer Learning 

Our previous work [11] presented a two-stage CNN model optimized through transfer learning for UAV-based SHM 

in GNSS-denied environments. As illustrated in Figure 1, the first stage uses AlexNet for binary crack classification, 

crack-positive or crack-negative, reducing computational load for the second stage, which employs YOLOv4 for precise 

crack boundary detection, leveraging its speed and real-time processing capabilities. Transfer learning with ImageNet 

weights enabled faster convergence and robust generalization. Evaluation results showed 99.42% classification accuracy 

and 85.71% segmentation accuracy, outperforming standalone YOLOv4 by reducing false positives while maintaining 

high detection rates. This approach optimized computational efficiency, allowing real-time deployment on UAVs with 

limited processing power. 

This pairing was selected for its balance of speed and accuracy—ideal for UAVs with limited onboard resources. 

While deeper models like ResNet or SENet may yield higher accuracy, their computational cost makes them less suitable 

for real-time deployment. A comparative evaluation of traditional and two-stage CNN architectures, supporting this 

rationale, is summarized in our prior study. 

 

Figure 1. Architecture of the two-stage CNN model for UAV-based crack detection 

2.2. Lighthouse Positioning System 

Lighthouse localization is a laser-based positioning system that determines an object's position through laser sweeps 

from static base stations, like the SteamVR Base Station. This method offers high accuracy, low latency, and minimal 

computational overhead, making it suitable for UAV navigation in GNSS-denied environments. The base station emits 

a structured infrared laser sweep at a known angular velocity, detected by photodiode sensors mounted on the UAV. By 

analyzing the time difference between when the sensor receives signals from the base station and between sweeps, the 

system can determine sensor’s position and track its movement relative to the base stations. With at least two base 

stations, the UAV’s 3D position and orientation are estimated using triangulation and sensor fusion algorithms [30]. 

The objective of the Lighthouse localization system is to determine the rotation angle (𝛼), defined as when the 

structured infrared light from the base station strikes the sensor. The system then employs ToF and Euclidean Distance 

calculations to estimate the sensor’s 𝑥, 𝑦, and 𝑧 coordinates in a 3D space. The predicted rotation angle (𝛼𝑝) is derived 

from the sensor rotation angle (𝛼𝑠) relative to the base station and the rotation angle from the intersection line to the 

sensor (𝛼𝑡) that accounts for the inclination of the light plane. This relationship is defined in Equation 1, while Equation 

2 provides the expression for calculating the sensor rotation angle. The variables 𝑥 and 𝑦 represent the measured distances 

along their respective axes between the UAV-mounted sensor and the base station. Figure 2a visually represents this 

localization process, illustrating the interaction between the sensor, the structured light plane, and the base station. 

𝛼𝑝 = 𝛼𝑠 − 𝛼𝑡  (1) 

𝛼𝑠 = tan−1 (
𝑦

𝑥
)  (2) 

where: 𝛼 – rotation angle; 𝛼𝑝 – predicted/calculated rotation angle; 𝛼𝑠 – measured rotation angle from the sensor; 𝛼𝑡 – 

rotation angle from the intersection line to the sensor; t – tilt angle; x, y, and z – Euclidean distance between the sensor 

and the tag. 

The tilt correction term is expressed in Equation 3. The variable 𝑟 represents the Euclidean distance along the XY-

plane between the base station and the sensor, while the variable 𝑑 is determined using the relationship illustrated in 

Figure 2b. The variable 𝑡 represents the tilt angle of the laser ray, depicted by the red line in Figure 2b, as it intersects 

with the UAV-mounted sensor. 

𝛼𝑡 = sin−1 (
𝑑

r
) =  sin−1 (

−𝑧 tan 𝑡

√𝑥2+𝑦2
)   (3) 

where: t – tilt. 
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Substituting this into the original equation provides the final expression for the predicted rotation angle (𝛼𝑝). 

𝛼𝑝 = 𝛼𝑠 − 𝛼𝑡 = tan−1 (
𝑦

𝑥
) + sin−1 (

𝑧 tan 𝑡

√𝑥2+𝑦2
)  (4) 

Thus, the lighthouse localization system can accurately determine the UAV's position relative to the base station by 

leveraging Euclidean distance calculations and the predicted rotation angle. The sensor's spatial orientation in 3D space 

is established through reference frame transformations, while ToF measurements provide precise distance estimates. 

These combined methodologies ensure robust and reliable real-time tracking, making the system well-suited for GNSS-

denied environments. 

 
(a) 

 
(b) 

Figure 2. Lighthouse Localization for UAV Tracking, (a) Top view illustrating the sensor's predicted rotation angle (αₚ), 
measured rotation (αₛ), and  tilt correction (αₜ) relative to  the base station. (b) Side view depicting the perpendicular distance 

(d) from t. 

3. Methods 

This section presents the methodology in three parts: System Overview, detailing the localization framework; Neural 

Network and Dataset, covering data acquisition and model architecture; and Physical Experimentations, describing the 

experimental setup and performance evaluation. 

3.1. System Overview 

Figure 3 illustrates the overall workflow of the crack detection and localization system. A Crazyflie micro-UAV, 

equipped with a Lighthouse Positioning Deck and a HIMAX HM01B0 low-power monochrome camera, was utilized 

for experimentation. The Lighthouse system, developed by Bitcraze, consists of base stations that define the 

experimental space and provide real-time positional tracking of the UAV. Within this controlled environment, printed 

cracked images are placed against a white background to simulate structural defects. 

 

Figure 3. System Overview of UAV-Based Crack Detection and Localization 

During operation, the UAV navigates the space while capturing images of the inspection area. These images are then 

processed through a 2-Stage CNN model to detect the presence of cracks. The Lighthouse Positioning System provides 

precise X, Y, and Z coordinates in meters to ensure accurate localization of the UAV and the detected cracks. The final 

output consists of a localized image of the detected crack, providing visual and positional information, which is crucial 

for UAV-based SHM applications in GNSS-denied environments. 
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3.2. Neural Network and Dataset 

This study utilizes the same model as in our previous work [11]. The classification dataset used for model training 

was sourced from Özgenel et al. [31], which includes 20,000 and 20,000 non-crack images extracted from 458 high-

resolution structural photos. For segmentation, 704 samples were extracted and augmented by varying orientation, 

position, and brightness, then manually annotated with bounding boxes. Both datasets followed a 60:20:20 train-

validation-test split.. The laptop used for this study possessed a Ryzen 5 5500 processor and an RTX 3060 12GB GPU 

for efficient computation. To evaluate the model’s ability to detect previously unseen cracks, the researchers developed 

synthetic defects by merging multiple cracked images, representing data beyond the training dataset. These synthetic 

cracks are then strategically placed, with different orientations, in the inspection area for detection. This experimentation 

was conducted together with the crack localization experiment. By combining these controlled tests, the study evaluated 

the detection performance of the system and the model’s ability to map crack positions using the Lighthouse positioning 

system precisely. The system was further validated on actual wall cracks following controlled environment experiments 

to assess its viability for real-world inspections.  

3.3. Physical Experimentation 

The physical experimental phase consists of two primary components: the localization experiment and the crack 

detection experiment. The localization experiment aims to evaluate the performance of the Lighthouse positioning 

system after calibration. On the other hand, the crack detection experiment assesses the system’s capability to detect and 

localize cracks within the inspection area. The experiment space, bounded by the Lighthouse positioning system, 

measures 1.5 × 1.2 × 1.2 meters, with the base stations positioned 30 cm away from the experimental area and mounted 

at 1.65 meters above the ground to ensure optimal coverage. The inspection area consists of an 81.28 cm × 101.6 cm 

white foam board, placed at the edge of the test space, simulating a structural surface for crack detection. A visualization 

of the experiment setup is presented in Figure 4. 

 

Figure 4. Experimental Volume for UAV Operation and Inspection 

3.3.1. Localization Experiment 

Before conducting localization tests, a calibration phase was performed to validate the accuracy of the Lighthouse 

positioning system. This process involved positioning the UAV at known reference points within the experimental 

area and comparing the system’s measured coordinates with the actual positions. Following calibration, a test 

trajectory was executed, during which the UAV autonomously followed a predefined flight path within the 

experimental space. Error readings were collected throughout the trajectory to assess the system’s ability to maintain 

the expected path. These results provided critical insights into the positioning system’s accuracy, informing the 

subsequent crack detection experiments. As depicted in Figure 5, the predefined flight path was structured around a 

targeted inspection trajectory, covering an area of 55 cm × 80 cm, with 16 designated waypoints where the UAV 

hovered. This setup allowed for controlled movement along the Y and Z axes while assessing the UAV’s ability to 

maintain its position along the X axis. This evaluation offers a comprehensive understanding of the Lighthouse 

positioning system’s performance.  
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Figure 5. Predefined UAV Trajectory (in cm) for Lighthouse Localization Assessment 

3.3.2. Crack Detection Experiment 

The crack detection experiment began with a calibration process to determine the optimal UAV-to-target distance 
for image capture. Based on prior findings, this X-distance was set to 13 cm to maximize detection accuracy, a 15.5 cm 
by 9 cm field-of-view. The researchers experimented with three key scenarios: (1) crack localization at different positions 
within a 40×45 cm inspection area to assess detection performance across various regions; (2) synthetic crack scenarios, 
one long vertical crack (14×80 cm), one long horizontal crack (80x14 cm) and another with a long diagonal crack (60×60 

cm) to evaluate the model’s ability to detect larger, more complex formations; and (3) real-world crack detection, where 
the system was tested on actual structural. Performance was measured based on successful crack identification and 
localization accuracy. Three of the five total case scenarios involved synthetic cracks, one with printed crack images 
positioned in several areas, and one used real cracks. Figure 6 visualizes the case scenarios, where white areas indicate 

crack presence, and black areas represent non-crack regions. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 6. Crack Case Scenarios in the Inspection Area, (a) Distributed cracks across the inspection area, (b) combined 

vertical crack, (c) combined horizontal crack, (d) real diagonal crack, and (e) actual crack on a structural wall 

4. Results and Discussion 

This section presents an evaluation of the system’s performance across three key aspects: Localization Accuracy, 

Crack Localization, and Analysis of Findings. The results highlight the system’s precision in positioning, its 
effectiveness in detecting and mapping cracks, and key insights derived from the experiments. 

4.1. Localization Results Evaluation 

Figure 7 illustrates the actual flight path of the UAV, revealing a distinct hovering pattern at each waypoint. The 
actual line represents the system’s measured values, while the command line represents the drone's theoretical path. The 
observed deviations indicate that the drone experienced slight oscillations around the waypoints during the three-second 
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hover period. This wobbling effect, inherent to the UAV's state estimation and correction mechanisms, contributed to 
variations in image capture locations, potentially shifting the recorded crack images away from the intended waypoint 
centers. 

 

Figure 7. Actual vs. Command UAV Trajectory Using the Lighthouse Localization System (units in cm) 

Figure 8 presents the offset measurements of the UAV along the X, Y, and Z axes, providing a detailed evaluation 
of localization performance over time, represented in frames. The recorded maximum offsets reached approximately 4 
cm along the X-axis, 3.5 cm along the Y-axis, and 6 cm along the Z-axis. The average offsets across all test flights were 
measured at 1.08 cm, 1.73 cm, and 1.48 cm, respectively. These values indicate that, on average, the positioning system 
maintained the UAV’s position within an accuracy of 1–2 cm, demonstrating a high level of precision in localization. 

  

 

Figure 8. Average UAV Offset in cm Across (a) the X-axis, (b) the Y-axis, and (c) the Z-axis Over Time 

Notably, the initial two waypoints exhibited larger deviations than the rest of the trajectory, particularly along the X 

and Z axes. This behavior likely resulted from the UAV’s transition from takeoff to its first waypoint, introducing minor 

inaccuracies during early image capture. The observed oscillations measured around 3.5 to 6 cm but stabilized within 

approximately three seconds. Once stabilized, the system maintained an average error of approximately 1–2 cm, within 

acceptable limits for UAV-based crack localization. Given that the target cracks span several centimeters, this level of 
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accuracy ensures the UAV’s field of view remains sufficient to detect and segment cracks, even with minor deviations. 

Beyond precision, this stability supports consistent UAV behavior, allowing rapid waypoint settling and minimizing 

motion blur during image capture. Compared to alternative localization methods (Table 1), the Lighthouse system offers 

a compelling balance of accuracy (< 2 cm), low system complexity, and ease of deployment. It requires minimal setup, 

does not rely on GPS or external cameras, and operates without intensive onboard computation. These findings confirm 

that the system enables reliable centimeter-level crack localization while remaining practical and scalable for structural 

inspections in GNSS-denied environments. 

4.2. Crack Localization 

The captured images, classification results, segmentation outputs, and estimated crack locations are presented in the 

figure. Each image includes position data in meters and a classification score ranging from 0 to 1, where values closer 

to 1 indicate a detected crack. This score represents the average classification prediction during the UAV's hover. Positive 

classifications undergo segmentation, with detected cracks highlighted using yellow bounding boxes. The background 

color of each image represents its classification outcome: red indicates no detected cracks, green signifies correctly 

classified and segmented cracks, and yellow highlights instances where classification and segmentation results do not 

align. Beneath each image, the ground truth is provided for direct comparison. Crack locations are estimated by masking 

bounding boxes in white against a black background, visually representing detected cracks. These masks are then stitched 

together using absolute coordinates to generate a composite map, where black represents the surveyed area and white 

denotes identified cracks.  

Figure 9 illustrates the system’s performance in detecting a long diagonal crack that is not part of the training dataset. 

The UAV correctly localized the crack spanning from the upper left region towards the center, with position data 

provided in meters. Among the 12 samples, only one false negative was observed, indicating strong generalization 

despite unseen orientations. This spatial localization was made possible through coordinate-based stitching of segmented 

outputs, providing detection and positional insight into defect extent and orientation. A key challenge in this experiment 

was the camera’s limited field of view, which resulted in overlapping detections. While the system performed well 

overall, the same crack appeared across multiple viewpoints, complicating precise localization. To address this, a 30% 

overlap was applied when stitching segmented masks, allowing bounding boxes to converge into a more accurate crack 

representation. This approach introduces redundancy for robustness but may require tuning to optimize and avoid over-

segmentation. 
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Figure 9. Crack Detection Performance Across Y and Z Coordinates for a Long Diagonal Crack 
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Figure 10 presents a real-world scenario where the UAV successfully identified a crack near the inspection region's 

center (approximately Y = -0.10 meters). The vertical extent of the crack, estimated to be around 28 cm, was effectively 

segmented through multiple inspection windows. Though false negatives were present in both figures, analysis suggests 

that misclassifications occurred when prediction scores fell below the set threshold (0.8). Notably, true positives were 

consistently identified around the misclassified areas, indicating that the crack remained within the UAV’s field of view, 

which is acceptable for this application. However, future work may explore dynamic thresholding mechanisms.  
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Figure 10. Crack Detection Performance on an Actual Wall Surface Across Different Y and Z Coordinates 

Table 2 summarizes the model performance across all scenarios, reporting 100% precision and 83.33% recall, with 

an overall accuracy of 91.89%. These metrics highlight the system’s robustness in classifying and segmenting cracks. 

When paired with coordinate mapping, this enables the generation of reliable spatial crack representations, supporting 

targeted maintenance and data-driven repair prioritization. These results are consistent with our previous study [11], 

where the proposed two-stage model achieved an F1-score of 88.7% for classification and 95.2% for segmentation. 

Compared to other approaches, such as ResNet50+SENet (mPA: 92.7%, IoU: 88.3%) and CNN-based classification 

with CTV2 (F1: 92.23%), the proposed method remains competitive while offering advantages in real-time deployment 

and computational efficiency. 

Table 2. Confusion Matrix for the Model’s Performance Across All Case Scenarios 

 Prediction Negative Prediction Positive  

Actual Positive 
False Negative 

4 (8.16%) 4 
True Positive 
20 (40.81%) 

Recall 
83.33% 

Actual Negative 
True Negative 

25 (51.02%) 

False Positive 

0 
 

 Precision 
100% 

Accuracy 
91.89% 
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Unlike most crack detection studies focusing on image-level classification or segmentation [32, 33], this study 

emphasizes spatial crack localization using a Lighthouse-based UAV framework. The segmentation masks are tied to Y 

and Z position data, enabling physical mapping of defect locations in real-world coordinates. While a few studies attempt 

image-based feedback [34], they often lack detailed spatial context. The present approach addresses this gap, reinforcing 

the value of pose-informed crack detection in UAV-based SHM workflows. Moreover, the pairing of AlexNet and 

YOLOv4 was chosen to balance detection speed and precision. AlexNet is a lightweight classifier that reduces processing 

load, while YOLOv4 performs accurate segmentation, making this two-stage architecture particularly suitable for real-

time UAV deployment under resource constraints. 

Although the system demonstrated reliable crack detection in indoor environments, its performance under more 

challenging surface or lighting conditions, such as wetness, shadows, or textured concrete, was not evaluated. 

Nonetheless, the grayscale conversion step in the preprocessing pipeline may help mitigate minor lighting variations, 

such as shadows, provided sufficient illumination is maintained. Evaluating the system’s robustness under real-world 

conditions remains valuable for future work. While the model effectively classifies and localizes cracks, it is currently 

limited to binary classification (crack vs. no crack) and does not distinguish between different crack types or severities. 

However, the segmentation masks produced by the model provide sufficient spatial information to enable post-

processing for crack length estimation. Further crack width or depth analysis remains outside the current scope but 

represents a valuable direction for future development. 

5. Conclusion 

This study demonstrates a novel Lighthouse localization for UAV positioning, integrated with a two-stage CNN 

crack detection model. The system achieved effective and precise crack detection by leveraging AlexNet for lightweight 

binary classification and YOLOv4 for real-time segmentation. The localization component provided sub-centimeter 

accuracy, stabilizing within a 1-2 cm margin, ensuring reliable UAV tracking in GNSS-denied environments. Spatial 

coordinate assignment (Y and Z) further enhanced the system’s utility for mapping defects, supporting targeted 

maintenance, and reducing human intervention.  

The study confirms the viability of the Lighthouse system as a cost-effective and precise solution for indoor 

infrastructure inspection. Future work may improve segmentation overlap, expand the dataset for greater generalization 

across structural conditions, and investigate scalability through multi-base station setups. Since the Lighthouse system 

calculates UAV position based on proximity to visible base stations, increasing the number of base stations could extend 

coverage, provided consistent line-of-sight is maintained [35]. These directions open new possibilities for deploying 

UAV-based SHM systems in larger or multi-room environments. This research reinforces the potential of combining 

efficient localization with deep learning for scalable, precise defect detection in GNSS-denied settings. 
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