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Abstract

This study aims to assess Al-driven personalization strategies in smart cities, focusing on promoting digital inclusion across
diverse urban populations. As artificial intelligence becomes increasingly central to urban service delivery, ensuring
equitable and effective personalization is critical to preventing the amplification of digital inequality. To address this
challenge, a hybrid evaluation framework is proposed, integrating Multi-Criteria Decision Making (MCDM) techniques,
specifically Step-wise Weight Assessment Ratio Analysis (SWARA), Linguistic g-Rung Orthopair Fuzzy Numbers (Lg-
ROFNSs), and the Multi-Attributive Border Approximation Area Comparison (MABAC) with a Machine Learning (ML)
classification model based on Random Forest. The framework is applied to stakeholder input from ten Indonesian smart
cities, evaluating personalization readiness across five dimensions: accessibility, affordability, user engagement, privacy,
and personalization effectiveness. The results indicate that accessibility and user engagement are the most influential
criteria, while affordability and privacy are areas requiring strategic policy focus. The integrated model classifies cities by
readiness level and identifies sensitivity patterns relevant to inclusive digital policy-making. The novelty of this research
lies in its synthesis of MCDM and ML approaches to produce a transparent, scalable, and data-driven tool for evaluating
Al personalization. This contributes to inclusive smart city development by aligning Al implementation with broader social
equity objectives.

Keywords: Machine Learning; MCDM; Data-Driven Evaluation; Al Personalization; Classification; Smart City.

1. Introduction

The emergence of smart cities represents a strategic response to accelerating urbanization, focusing on enhancing
infrastructure, public services, and sustainability by integrating advanced technologies [1, 2]. Among these technologies,
Artificial Intelligence (Al) plays a pivotal role, particularly through Al-driven personalization, which enables services
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to dynamically adapt to individual user needs [3]. This transformation is further supported by hybrid approaches
combining Machine Learning and Multi-Criteria Decision-Making methodologies, facilitating more data-informed and
context-sensitive decision-making [4]. While Al-based personalization holds great promises for improving efficiency,
responsiveness, and citizen satisfaction, it also poses significant risks of exacerbating digital inequality if inclusivity and
equity are not prioritized explicitly [3, 5]. As smart cities increasingly adopt Al to optimize public services, ensuring the
fair distribution of benefits across socio-economic groups is essential. Scholars have highlighted the need to embed
social sustainability principles, such as inclusion, equity, and citizen participation, throughout the smart city development
process to ensure these systems are just and inclusive [6, 7].

Recent studies have demonstrated Al's capacity to transform urban governance through real-time analytics and
predictive service delivery, enhancing both the efficiency of public services and the quality of life for residents [8].
However, ethical concerns, including privacy, autonomy, and algorithmic bias, have emerged as major challenges. As
Lawelai et al. [9] argue, algorithmic systems may inadvertently reinforce existing social inequalities without
participatory safeguards, emphasizing the need for inclusive and transparent evaluation frameworks. Achieving
sustainable smart city digitalization necessitates frameworks prioritizing community engagement, equitable access, and
accountability. While several value-sensitive design approaches have been proposed [10, 11], many existing evaluation
models for Al-driven personalization fail to comprehensively address key aspects of digital inclusion, such as
accessibility, affordability, digital literacy, and infrastructure gaps. Moreover, few frameworks provide policymakers
with structured tools to assess trade-offs and make evidence-based, inclusive decisions that consider the needs of all
urban populations [12].

From a methodological perspective, integrating MCDM and Machine Learning offers a balanced approach to urban
evaluation by combining qualitative reasoning with quantitative insights. MCDM facilitates prioritizing complex urban
objectives, such as environmental impact, affordability, and user satisfaction, while ML enhances classification and
predictive analysis capabilities [13]. The importance of hybrid methods that incorporate public sentiment to enhance
trust and adoption of Al technologies has been emphasized. However, despite these advancements, challenges remain
concerning data governance and unequal access to Al-driven services, which impede the equitable implementation of
smart city technologies [14, 15].

The integration of ML and MCDM into Al-driven personalization evaluations marks a significant advancement in
assessing these strategies to improve digital inclusion in smart cities [16]. Therefore, this study proposes a hybrid
evaluation framework that integrates fuzzy MCDM methods, namely SWARA, Lg-ROFNs, and MABAC with a
Random Forest classifier to assess Al personalization readiness across five dimensions: accessibility, affordability, user
engagement, privacy, and personalization effectiveness. Using expert-based data from ten Indonesian smart cities, the
framework is empirically validated to demonstrate its applicability in real-world urban contexts.

This study makes three key contributions to literature. First, it conceptualizes an inclusive and empirically validated
framework for evaluating Al-driven personalization in smart cities. Second, it integrates fuzzy logic-based MCDM
techniques SWARA, Lg-ROFNs, and MABAC with Random Forest classification to support interpretable and robust
analysis. Third, it demonstrates the framework’s practical utility in enabling evidence-based, inclusive digital
governance across diverse urban contexts.

The objectives of this study are to: (1) identify and prioritize key criteria that influence Al personalization in smart
cities, (2) evaluate the readiness of urban regions using expert-based fuzzy assessments, and (3) validate the evaluation
through supervised classification. The framework aims to assist policymakers in designing data-driven, inclusive Al
strategies for urban development.

The structure of this paper is organized as follows. Section 1 introduces the study and outlines the research
background. Section 2 reviews the state-of-the-art literature on Al-driven personalization in smart cities, with a focus on
identifying existing methodological gaps. Section 3 describes the research methodology, emphasizing the proposed
hybrid ML and MCDM framework and the techniques implemented. Section 4 presents the empirical analysis and
discusses its implications for smart city policy development. Finally, Section 5 concludes the paper by summarizing key
findings and outlining directions for future research.

2. Literature Review
2.1. Theoretical Background

This structured approach is complemented by the integration of Machine Learning algorithms that discuss how
intelligent data collection and processing can significantly improve decision-making outcomes in the context of
transportation systems [17]. The utilization of ML technology offers a different understanding of system dynamics and
provides a foundation for resilient and adaptive transportation networks in the ever-evolving smart city landscape. In
addition, the application of the MCDM method in smart cities is well documented. For instance, it illustrates how data-
driven preference learning can effectively address the challenges of interacting with various criteria, thereby improving
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decision-making in urban environments [18]. This is further supported by research using the hybrid MCDM method to
evaluate urban mobility systems, which demonstrates the practical application of this technique in real-world scenarios
[19]. Methodologies like these are critical in ensuring that urban mobility solutions are efficient and equitable and meet
the needs of all citizens.

Al-based systems can analyze large amounts of data to tailor services to individual preferences, thereby driving digital
inclusion. For example, developing an intelligent decision support system that combines ML and MCDM methodologies
can improve service personalization [20]. These integrations enable the understanding and prediction of more diverse
user needs, which is critical to fostering an inclusive digital environment. In addition, the impact of the application of
Al on the decision-making process in smart cities is enormous, highlighting that Al and the Internet of Things can
significantly improve intelligent decision-making capabilities and drive social innovation [21]. This perspective aligns
with the findings of those who argue that the synergy between Al and big data analytics creates a robust framework for
informed decision-making in smart cities [22]. Frameworks like these are critical to addressing urban areas' challenges,
including sustainability, resource management, and community.

2.2. Challenges in Al Personalization Evaluation

Al-driven personalization holds considerable potential for enhancing service delivery and promoting sustainability
within smart cities [23]. However, existing evaluation frameworks often fail to address critical challenges, particularly
digital inequality, where Al systems may disproportionately benefit individuals with higher levels of digital literacy,
better access to technology, and greater socio-economic resources. This issue is further compounded by inequitable
access, especially in low-income areas, where large segments of the population are excluded from the benefits of Al
systems. Ethical concerns, including privacy violations, algorithmic bias, and threats to user autonomy, further
complicate the adoption of Al technologies. Current evaluation models predominantly focus on technical and economic
criteria, while neglecting social dimensions, thus limiting their capacity to ensure fairness and inclusiveness in Al
systems. Brito et al. [24] underscores the importance of incorporating fairness and inclusivity within Al systems to
mitigate digital inequalities.

Furthermore, MCDM models fail to account for the complexities inherent in digital inclusion and often overlook the
inclusion of stakeholder input, particularly from marginalized groups [25]. This challenge extends to adopting Al-driven
recommendation systems, which are central to personalization efforts in smart cities. In addition, existing frameworks
often lack transparency and scalability, making it difficult for stakeholders to comprehend the decision-making processes
underpinning Al systems, thus undermining public trust. Furthermore, most models fail to address the diverse and
complex needs of larger cities, limiting their applicability across varied urban environments. Data governance remains
a significant issue, as many frameworks lack comprehensive guidelines for safeguarding personal data, thereby
compromising privacy [26]. The unequal distribution of access to Al technologies exacerbates the digital divide, with
only certain segments of the population benefiting from technological advancements. These gaps in current
methodologies highlight the urgent need for the development of inclusive, scalable frameworks capable of
comprehensively assessing Al personalization, ensuring that technological benefits are equitably distributed across all
urban populations.

2.3. MCDM in Smart City Performance Evaluation

The sheer number of indicators and complexity involved in assessing urban performance in smart cities necessitates
the application of multicriteria evaluation methods, which are often associated with ambiguity and uncertainty [27].
Comparison of cities is important to provide an overview of the situation of cities globally. In recent years, the concept
of smart city has attracted more and more attention, leading to increased competition between cities [28]. For example,
a study by Ozkaya & Erdin evaluated smart cities using the MCDM approach [29] to help identify and analyse key
criteria, such as quality of life, infrastructure, and social and environmental sustainability. However, due to the
complexity and multitude of factors to consider, more flexible and adaptive methods are needed. MCDM is an effective
tool for dealing with uncertainty [30], because it allows decision-making by considering various criteria simultaneously
[31].

3. Method
3.1. Identification of Criteria

Al-based personalization evaluation in smart cities requires a comprehensive framework that addresses a range of
key criteria related to accessibility, affordability, user engagement, privacy and security, and effectiveness. Each of these
criteria includes a variety of subcriteria that are important for ensuring equitable access and outcomes for diverse socio-
economic groups. Accessibility is a fundamental criterion that includes several subcriteria of technology accessibility,
language accessibility, accessibility for people with disabilities, and geographical accessibility. Emphasizing the
importance of addressing social structures that limit access to Al technology suggests that equitable benefit distribution
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can only be achieved through an inclusive design and implementation process [32]. Additionally, the need to invest in
digital infrastructure to ensure equitable access to Al tools in urban and rural areas was highlighted in a study that
underscored the importance of reliable internet access and hardware availability [33]. Affordability is another important
criterion, which includes access costs, data costs, hardware requirements, and long-term affordability. Economic
evaluations of the application of Al, particularly in health and education, show that cost barriers can significantly hinder
access for socio-economic groups [34]. For instance, it discusses how Al-equipped educational tools can adapt to
individual learning needs but emphasizes that they must be affordable to ensure widespread adoption [35].

Highlighting the gap in access to generative Al technologies in developing countries, where inadequate infrastructure
exacerbates economic disparities [36]. User Engagement is critical to the successful implementation of Al-based
services. These criteria include cultural relevance, ease of use, user-centered feedback mechanisms, trust and
convenience, and social inclusion. Supporting a sociological perspective on Al, emphasizing the need for user
engagement strategies that consider diverse user backgrounds and experiences to encourage inclusiveness [37]. Support
this further by advocating for Al tools designed with user input in mind, ensuring that they meet the needs of all
community members [38]. Privacy and Security criteria include data anonymization, consent mechanisms, and data
storage and transmission security. Emphasizing the importance of ethical considerations in the application of Al,
particularly in healthcare, where data privacy and accountability are essential to maintain public trust [39]. Similarly,
there is a need for user-centric principles in Al-based healthcare monitoring systems to ensure that privacy issues are
adequately addressed [40].

Effectiveness includes impact on targeted outcomes, scalability, sustainability, and adaptability. The effectiveness of
Al applications in smart cities can be evaluated based on their ability to provide tangible benefits to users while being
scalable and sustainable over time. Furthermore, it advocates for a human-centered design approach that mitigates bias
in Al systems, thereby increasing its effectiveness across various populations [41]. In addition, the scalability of Al
solutions is essential to meet the growing needs of urban populations, as previous research has proposed cognitive 10T
architectures that can adapt to changing urban dynamics [42]. Evaluation of Al-based personalization in smart cities
should consider a multi-sided framework that addresses accessibility, affordability, user engagement, privacy and
security, and effectiveness. By focusing on their respective criteria and subcriteria, policymakers and city planners can
work to create an inclusive and equitable smart city environment that benefits all groups of people.

3.2. Design of Hybrid SWARA, Lg-ROFN, and MABAC

Solving complex problems in real-life scenarios often involves selecting the best alternative from several options
based on multiple measurable and non-measurable factors, which is the core purpose of Multi-Criteria Decision-Making
(MCDM) methods [43]. Despite their usefulness, conventional MCDM approaches that depend on exact data values
struggle to accommodate the uncertain and dynamic nature of real-world systems. These traditional techniques often
suffer from limitations such as imprecise data handling, inability to assign appropriate importance to criteria, and
inconsistencies when applied to pre-established datasets [44].

In this study, MCDM was applied using three methods, including SWARA, to determine the weight of the criteria
and produce a more objective assessment of the importance of each criterion [45]. Lq-ROFNs handle uncertainty by
considering varying levels of importance in the data [46]. Finally, MABAC is used to evaluate alternatives by measuring
distances within the attribute space, which allows for better comparisons between existing options [47]. The combination
of these three methods provides a comprehensive and accurate approach to assessing the performance of smart cities and
providing relevant insights into sustainable and inclusive policy development. The procedure comprises the following
stages:

Step 1: Sum the expert assessments for each criterion and calculate the average value for each opinion, as expressed
by Equation 1.

_ Lt

where; t; reflect the average expert assessment for criterion j, and ¢;, reflect the assessment of criterion j by expert k,
and r denotes the total number of experts.

Step 2: Find the comparative value and the value of the coefficient, as expressed by Equation 2.

1 i
b= 1{s+1 I} 2

where; S; reflect the comparative value assigned to criterion j, and k; reflect the coefficient related to this comparative
value.

Step 3: The weight of each criterion is recalculated based on the coefficient value, as expressed by Equation 3.
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1
q; = {E j;i 3
kj

where; q; reflect the recalculated weight of criterion j. Recalculation is expressed as q; = 1 when k; = 1, and q; = ?
]

whenj > 1.

Step 4: Determining the final weight for each criterion, as expressed by Equation 4.

4j
w; = 4
R =T @

where; w; reflects the relative importance of criterion j based on the expert evaluations and the recalculated values, that
is calculated by dividing the recalculated weight g; by the sum of all recalculated weights }7_, q;, where n is the total
number of criteria.

Step 5: Once the weights for each subcriterion have been determined, the subsequent step involves defuzzifying the
aggregated Lg-ROFNSs using a score function, as illustrated in Equation 5 [48].

Lq_ROFN; = (u; — v;) )

where; Lqg_ROFN; reflect the resulting fuzzy number for criterion i, which reflects the uncertainty or imprecision in
evaluating that criterion. The y; reflect the upper bound of the fuzzy number for criterion i. The v; represents the lower
bound of the fuzzy number for criterion i.

Step 6: Aggregating the expert evaluations by incorporating the initial weights derived from the SWARA method.
The aggregation is expressed by Equation 6.

Lq—ROFNaggregated = X.(w; — Lq_ROFN;) (6)

Lq_ROFN,ggregatea Teflect the aggregated fuzzy number derived by considering each criterion's weighted evaluations.
The w; reflect the weight assigned to criterion i calculated through the SWARA method. Lq_ROFN; represents the fuzzy
evaluation of the i, criterion. The sum of these weighted fuzzy numbers provides a comprehensive aggregated
evaluation for the alternatives being considered, considering the importance of each criterion and the uncertainty inherent
in the fuzzy evaluations.

Step 7: Determine aggregation linguistic evaluations with different importance levels for criteria, as expressed by
Equation 7.

FinalWeight; = a Xx SWARA_Weight; + (1 — a) X Lq_ROFN; @)

FinalWeight; reflect the combined importance of criterion i, considering both expert judgment and the uncertainty
of fuzzy evaluations. The coefficient o (ranging from 0 to 1) acts as a scaling factor, determining each method influences
the final weight. SWARA_Weight; represents the importance of the i-th criterion as calculated through the SWARA
technique, while the expression (1 — «) denotes the complementary proportion of weight attributed to the Lqg_ROFN;
based evaluation.

Step 8: Format the matrix X by evaluating m alternatives based on n criteria. The alternatives are represented as
vectors A; = (xj1,Xj2, -+, Xin), Where X;; reflect the value of the i-th alternative concerning the j-th criterion
i=12,..,m; j = 1,2..n. The format of the matrix can be expressed by Equation 8.

€4 Cp . C_y
aAi1[X_11 X_12 . X_1n

X = %2(x51 X ... Xopp (8)
Am|{X_ 1 X_mz - X_mn

The evaluation matrix X is constructed by organizing the assessments of m alternatives across n criteria. Each
alternative is represented as a vector A; = (x;q, X2, .-, Xin), Where each element x;; is the value of the i,; alternative
according to the j-th criterion.

Step 9: The elements of the initial matrix are normalized according to the formulation provided in Equation 9.

c, C .. C,
ATty tyy ety

N = Aty t oty 9)
Anltm: tmz - ton
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Normalization ensures that all criteria are on the same scale. The normalized matrix N is calculated by applying a
normalization method to each element x;; of the matrix.

Step 10: Determining the normalization of matrix elements, as expressed by Equation 10.

) i
Benefit t;; = x‘j —
.

I
, for Cost t;; = i’_’ il (10)

—x{

L L

x; and x; represent the maximum and minimum values for the i,, criterion across all alternatives, respectively. The
t;; represents the normalized value for the i-th alternative according to the j-th criterion.

Step 11: Calculating the elements of the weighted matrix. The calculating of the elements of the weighted matrix V
by adjusting the normalized evaluations based on the weights assigned to each criterion. Each element v;; in the matrix
is the product of two components: the normalized value of the i-th alternative for the j criterion, denoted as ¢;;, and the
weight assigned to the j-th criterion, represented by fw;. The calculation of the elements of the weighted matrix can be
expressed by Equation 11.

vl‘]’ = fWi . t” (11)

By multiplying the normalized evaluation t;; by the corresponding weight fw;, we obtain the weighted value v;;,
which reflects both the importance of the criterion and the performance of the alternative for that criterion. This weighting
is crucial because it ensures that more important criteria have a greater influence on the decision process.

Step 12: Determining the border approximation area matrix. Once the weighted matrix is obtained, then calculate the
border approximation area matrix G for each alternative. This matrix is calculated by taking the geometric mean of the
weighted values across all criteria for each alternative. The determining border approximation area matrix can be
expressed by Equation 12.

gi = (H}nﬂ vij)m (12)

g; represents the border approximation for the i-th alternative. This is done by multiplying all the weighted values
v;; for a particular alternative across the criteria and then taking the m-th root, where m is the number of criteria.

Step 13: Calculate the distance of the border approximation area. Calculating the distance of each alternative helps
assess how far each alternative is from the ideal or optimal solution, where the distance is expressed as the difference
between the weighted matrix V and the border approximation matrix G, as expressed by Equation 13.

Q=V-6 (13)

Q reflect the distance matrix, where each element g;; reflect the difference between the weighted value v;; of the i-
th alternative for the j-th criterion and the corresponding border approximation value g;.

Step 14: Performance classification based on threshold value. The classification helps simplify decision-making by
distinguishing between alternatives that perform above a certain threshold, as expressed by Equation 14.

S; <k = Moderate (14)

Performance = {
S; reflect a score of the i-th alternative based on the calculated distance from the border approximation. When the
score S; greater than the threshold k, then the alternative is the classified performance as having High Performance,
meaning it performs well compared to the ideal solution. When the score is less than or equal to k, the alternative is
classified as having Moderate Performance, indicating that it does not meet the optimal standard. This final classification
helps decision-makers easily categorize and compare the alternatives based on their relative performance. The outcomes
generated from each stage of the MCDM process serve as inputs for the subsequent classification phase.

3.3. Classification of Random Forest

The integration of Random Forest algorithms within the context of smart cities has garnered significant attention due
to their effectiveness in analyzing complex urban data and enhancing decision-making processes. One of the significant
advantages of random forests is their flexibility in handling different types of data without requiring strict assumptions
about the underlying distribution [49]. Random forest is a classifier that consists of a collection of structured tree
classifiers [50], with independently identical distributed random trees, and each tree throws a unit sound for the final
classification of the input x. The random forest uses the Gini Index to determine the final class in each tree. The final
class of each tree is collected and selected by the weight values to build the final classifier, expressed by Equation 15.

Gini (T) =1 - Y. (p;) (15)
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The Gini Index denoted as Gini(T), reflect a measure of inequality or impurity commonly used in decision trees and
classification problems. The term p; represents the proportion of data points in the j-th class. This is calculated as the
number of data points in class j divided by the total number of data points. The summation Y_, p? Sums the squares of
the proportions for all classes. When the dataset T is divided into two subsets, T; and T,, with sizes N; and N,,
respectively, where the indices in the data split correspond to class n as expressed by Equation 16.

Ginigye(T) = 2 gini(Ty) + =2 gini(T,) (16)

As a complement to the stages implemented in the MCDM process, the Random Forest algorithm plays a role in
classifying and predicting test data, where the target class is determined based on the results of the decision from the
MCDM method, as expressed by Equation 17.

Trueif MCDM_Result = Classification_result

False if MCDM_Result # Classification_result 17

TargetClass = {

True and False denote the possible values of the TargetClass, reflecting the agreement or disagreement. The
conditions outlined specify the criteria for assigning each value based on the equality or inequality of the decisions.

3.4. Proposed Framework

The foundation of any academic research lies in a structured framework that guides researchers through the
complexity of investigation. Therefore, this study proposes a structured framework applicable across disciplines to guide
systematic research. The framework shown in Figure 1 is designed to be adaptable, allowing researchers to tailor it to
their specific needs while still adhering to rigorous academic standards.

Evaluating Al-driven personalization Smart Cities

METHODOLOGY | | ACTORS and ACTIONS |
o
e <
= c
4 —
© =
2 Accessibility || Affordability Effectiveness \ O
Securit! —
c =,
S : — =
D Technological Accessibility ; Language Accessibility; Accessibility for Indentification -
s People with Disabilities; Geographic Accessibility; Cost of Access; )
D Data Costs; Hardware Requirements; Long-term Affordability; Evaluation
o —{ Cultural Relevance; Ease of Use; User-Centered Feedback [+ g
] Mechanisms; Trust and Comfort; Social Inclusion; Data le)
= Anonymization; Consent Mechanisms; Security of Data Storage; Consensus 73
8 Impact on Target Outcomes; Scalability; Sustainability; Adaptability. / o
= L ~ =
@) [ WEIGHTED (SWARA) ][ NORMALIZATION (Lg-ROFNs) | <
= )
= R RANKING (MABAC) B <:> [ .
S Si > Threshold => Good Performance < Feeback =
Si < Threshold => Moderate Performance _/ «
c DETERMINE True if MCDM_Result = Recommendation o
9 TARGET CLASS | Classification Result j =
s} Class False if MCDM_Result # Collection of Data %
8 Classification Result (2
el Ly REFINE ] e Collaborate With Research < —=h
D TARGET CLASS S
% c IS i Monitoring and Validation =
I - Good Performance o
O Decision Making S
(RANDOM FOREST) - Moderate Performance /

Figure 1. Proposed Framework

Based on the illustration in Figure 1, the framework proposed outlines an approach for assessing Al-driven
personalization and promoting digital inclusion by integrating MCDM techniques and machine learning algorithms. The
methodology considers accessibility, affordability, engagement, privacy, and effectiveness to evaluate strategies for
promoting digital inclusion in smart cities.

3.5. Data Collection

The data of this study comes from a questionnaire distributed to respondents in 10 cities that have implemented smart
city technology, including the community, academics, experts, and the government. Necessary instructions and guidance
are provided during the filling process to ensure the validity of the questionnaire. A total of 700 questionnaires were
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distributed offline and online and through micro-interviews by phone, and after screening and analysis, 512 final
questionnaires were created, with a return rate of 73.14%. The recommended sample size from previous studies showed
that 50 was considered poor, 300 was considered good, 500 was considered excellent, and 1000 was considered
outstanding [51]. Therefore, 512 sample data used in this study meet the standard. Overall, the basic information the
respondents summarized is shown in Table 1.

Table 1. Basic demographic information the respondents

Type Options Frequency Percentage
Less than 1 year 130 25.39%
Number of years using Al- 1-3 years 180 35.16%
driven personalization tools 3-5 years 130 25.39%
More than 5 years 72 14.06%
Public transportation 140 27.34%
Smart energy management 110 21.48%
Health monitoring systems 90 17.58%
Waste management 80 15.63%
Types of smuasr;;:ity services Traffic management and smart parking 55 10.74%
Environmental monitoring 50 9.77%
Digital government services 70 13.67%
Education and learning platforms 45 8.79%
Telemedicine and health services 60 11.72%
Recommendation systems 160 31.25%
Predictive analytics 120 23.44%
AI-d;L\‘/:ehnn%eurzgrlasleiéation Natural language processing (NLP) 100 19.53%
Image and video recognition 80 15.63%
Sentiment analysis 52 10.16%
Daily 210 41.02%
Frequency of Al-driven Weekly 160 31.25%
personalization use Monthly 95 18.55%
Rarely 47 9.18%
Government official 100 19.53%
Engineer/Technical role 130 25.39%
Primary role in smart city Researcher 80 15.63%
initiatives Consultant 50 9.77%
Policy maker 60 11.72%
Developer 92 17.97%

The questionnaire is designed with scenario design as the main idea so that respondents can quickly provide feedback
in real [52]. The questionnaire format is built based on the criteria summarized through literature review and interviews
with relevant experts, as shown in Table 2.

Table 2. List of factors and criteria

No. Factor Criteria
1 Accessibility Technological Accessibility, Language Accessibility, Accessibility for People with Disabilities, and Geographic Accessibility.
2 Affordability Cost of Access, Data Costs, Hardware Requirement, Long-term Affordability.
3 User Engagement Cultural Relevance, Ease of Use, User-Centered Feedback Mechanisms, Trust and Comfort, and Social Inclusion.
4 Privacy and Security ~ Data Anonymization, Consent Mechanisms, Security of Data Storage and Transmission
5 Effectiveness Impact on Target Outcomes, Scalability, Sustainability, Adaptability

The factors and criteria outlined in Table 2 are integral to the stages of the MCDM and classification implementation
processes, which will be discussed in detail in the subsequent chapter.
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4. llustrative Study
4.1. MCDM Using Hybrid SWARA, Lg-ROFN, and MABAC

The initial phase of the MCDM implementation involves assigning weights to each criterion using the SWARA
approach, in which a ranking index ranging from 1 to 20 affects the corresponding weight values. The relevant data is
presented in Table 3.

Table 3. List of the initial weight of criteria

No. Factors Code Criteria Initial Weight

C1 Technological Accessibility 0.03516
Cc2 Language Accessibility 0.05907

1 Accessibility
C3 Accessibility for People with Disabilities 0.08555
c4 Geographic Accessibility 0.10889
C5 Cost of Access 0.12360
C6 Data Costs 0.12661

2 Affordability
Cc7 Hardware Requirements 0.11817
C8 Long-Term Affordability 0.10129
Cc9 Cultural Relevance 0.08027
C10 Ease of Use 0.05914

3] User Engagement Cl1 User-Centered Feedback Mechanisms 0.04072
C12 Trust and Comfort 0.02631
C13 Social Inclusion 0.01601
Cl4 Data Anonymization 0.00921

Privacy and -

4 Security C15 Consent Mechanisms 0.00502
C16 Security of Data Storage and Transmission 0.00260
C17 Impact on Target Outcomes 0.00128
C18 Scalability 0.00060

5 Effectiveness
C19 Sustainability 0.00027
C20 Adaptability 0.00011

To enhance the subjectivity of the initial weights and better capture uncertainty and linguistic judgments, the
company employs Lq-ROFNSs. A panel of experts evaluates each criterion using predefined linguistic terms—Excellent
(E), Good (G), Moderate (M), Below (B), and Poor (P)—which are then mapped to corresponding g-rung orthopair fuzzy
values, as detailed in Table 4.

Table 4. Linguistic terms for evaluation

Linguistic terms Membership Non-membership
Excellent (E) 0.9 0.05
Good (G) 0.7 0.2
Moderate (M) 05 0.4
Below (B) 0.3 0.6
Poor (P) 0.3 0.85

Based on linguistic terms in Table 4, the experts evaluate the criteria as seen in Table 5.
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Table 5. List of final weight of criteria

Code Criteria Evaluation (u ; v) Lg-ROFN Final Weight
C1 Technological Accessibility {0.9;0.05} 0.85 0.36110
Cc2 Language Accessibility {0.7;02}%} 0.50 0.23544
C3 Accessibility for People with Disabilities {0.7;02} 0.50 0.25133
c4 Geographic Accessibility {0.9;0.05} 0.85 0.40533
C5 Cost of Access {0.7;0.2} 0.50 0.27416
C6 Data Costs {0.7;02} 0.50 0.27597
Cc7 Hardware Requirements {0.7;02} 0.50 0.27090
C8 Long-term Affordability {0.7;0.2} 0.50 0.26077
Cc9 Cultural Relevance {09;0.05} 0.85 0.38816
C10 Ease of Use {0.9;0.05} 0.85 0.37548
c1u1 User-Centered Feedback Mechanisms {09;0.05} 0.85 0.36443
C12 Trust and Comfort {09;0.05} 0.85 0.35579
C13 Social Inclusion {0.7;0.2} 0.50 0.20961
Cl4 Data Anonymization {05;04} 0.10 0.04553
C15 Consent Mechanisms {0.7;0.2} 0.50 0.20301
C16 Security of Data Storage and Transmission {0.7;0.2} 0.50 0.20156
C17 Impact on Target Outcomes {0.9;0.05} 0.85 0.34077
C18 Scalability {09;0.05} 0.85 0.34036
C19 Sustainability {05;04} 0.10 0.04016
C20 Adaptability {05;04} 0.10 0.04007

Table 5 presents the evaluation outcomes, aggregated values, and final decision weights for each criterion. In the Lg-
ROFNs computation process, the coefficient a is set at 0.6. An illustrative example of weight determination using both
the SWARA and Lg-ROFNs methods is provided below:

FinalWeightt =a X SWARA_Weight; + (1 — a) X LqROFN;
FinalWeightc: = 0.6 *0.03516 + (1 - 0.6) * 0.85 = 0.36110.

Overall, the comparison of the initial weight value and the evaluation results is shown in Figure 2.
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Figure 2. Comparison of initial and final weights of criteria C1-C20

The chart illustrates a clear shift in the distribution of criterion importance between the initial and final weights across
20 criteria. Several criteria, such as C4, C9, C10, C11, C17, C18, experienced significant increases in final weight,
indicating their elevated relevance after a more refined evaluation potentially through expert judgment or advanced
MCDM methods. In contrast, criteria such as C14, C15, C19, and C20 were assigned minimal final weights, suggesting
they were considered less impactful or redundant. Some criteria like C5, C6, C7, C8 and C16 maintained relatively stable
weights, reflecting consistent perceived importance. Overall, the final weighting emphasizes a focused prioritization on
a smaller subset of criteria, likely enhancing decision-making efficiency and model clarity by concentrating influence
on the most critical factors. In complex MCDM scenarios involving numerous and often conflicting criteria, fully
subjective approaches may fall short in capturing the full complexity of the decision context.
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The integration of SWARA with Lg-ROFNs offers a scalable hybrid solution, enabling the simultaneous

consideration of both qualitative judgments and quantitative data in more intricate decision-making processes.

This study utilized 24 pioneering smart cities and regencies in Indonesia as the basis for data collection. Respondent
data was gathered through online questionnaires to facilitate faster and more convenient responses. Based on the

collected feedback, the MABAC method was employed to define the matrix structure for each smart city alternative.

The results of the Weighted Matrix Elements (V) calculations are presented in Table 6. Subsequently, the Estimated

Border Area (G) Matrix for each criterion was computed by taking the geometric mean of all alternatives under each

criterion. The outcomes of this calculation are illustrated in Figure 3.

Table 6. Results of calculation of the weighted matrix elements (V)
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Figure 3. Final normalized weight values of criteria (c1-c20) based on the estimated border area matrix

The Estimated Border Area Matrix calculation results in Figure 3 illustrate significant variations in the collective
performance between the evaluated criteria. Criteria such as C4 (0.510), C11 (0.479), and C9 (0.473) occupy the highest
scores, indicating that most cities have performed well and consistently in aspects such as geographical accessibility,
ease of use, and trust in digital systems. These high values represent the system's strength that can be used as a strategic
pillar for strengthening Al-based service personalization policies. On the other hand, criteria with the lowest G-values
such as C14 (0.022), C19 (0.022), and C20 (0.019) indicate inequality and weaknesses that need to be addressed
immediately, as they reflect the low average performance of cities in these dimensions. Therefore, the recommended
managerial approach is to focus policy interventions on low-value criteria to improve digital readiness equally, while
maintaining and expanding excellence in high-value areas to ensure sustainability and inclusivity in the development of
Al-based smart cities.

The final stage of the MABAC process involves calculating the Alternative Distance Matrix Element derived from
the Approximate Border Area (Q), as depicted in Figure 4.
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Figure 4. The result of calculating the alternative distance matrix element with the approximate border area
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The MABAC method calculates the result to determine the class as the initial target for each smart city. The outcomes
of the MCDM process are presented in Table 7.

Table 7. Result of calculation of MABAC method

No. City Value Initial Class

1 Batam 0.1468 Good

2 Bandung -1.1906 Moderate

3 Jakarta 0.0898 Good

4 Semarang -0.6537 Moderate

5 Surabaya -0.0225 Moderate

6 Denpasar -0.5011 Moderate

7 Medan 0.3149 Good

8 Balikpapan -0.3408 Moderate

9 Sleman 0.6773 Good
10 Palembang -0.8623 Moderate
11 Bojonegoro -0.6587 Moderate
12 Manado -0.4246 Moderate
13 Malang -0.1188 Moderate
14 Tangerang -0.4013 Moderate
15 Depok -0.1861 Moderate
16 Bekasi -0.3677 Moderate
17 Solo -0.5550 Moderate
18 Banjarmasin -0.0867 Moderate
19 Pontianak -0.2378 Moderate
20 Makassar 0.5924 Good
21 Badung -0.2840 Moderate
22 Banyuwangi -0.9401 Moderate
23 Yogyakarta 0.8259 Good
24 Kulon Progo -0.6123 Moderate

Based on the results obtained through all stages of the MCDM implementation, it is known that of the 24 smart cities
designated as samples, 6 cities are in the Good-Performance class, and 18 are in the Moderate-Performance class.
4.2. Sensitivity Analysis

The application of MDCM, which involves many alternatives and criteria, requires measuring a data set through
performance analysis [53]. A sensitivity analysis was conducted on the MCDM results by incrementally increasing each
criterion weight by 0.02. The outcomes of this assessment are detailed in Tables 8 and 9.

Table 8. Results of the sensitivity analysis for criteria

_ C1 C2-C13 C3-C4-C5-C6-C7
v Value  Class Value Class Value Class

Batam -0.464 M 0.173 0.186 G 0.180 0.173 0.187 0.180 0.180 G
Bandung -1.788 M -1.157 -1.163 M -1.157 -1.170 -1.163 -1.170 -1.157 M
Jakarta -0.501 M 0.123 0.116 G 0.116 0.123 0.116 0.116 0.116 G
Semarang -1.251 M -0.613 -0.620 M -0.627 -0.627 -0.620 -0.627 -0.633 M
Surabaya -0.613 M -0.002 -0.002 M 0.017 0.004 0.004 0.004 -0.002 G
Denpasar -1.112 M -0.481 -0.461 M -0.474 -0.474 -0.461 -0.467 -0.481 M
Medan -0.283 M 0.334 0.348 G 0.348 0.341 0.355 0.354 0.355 G
Balikpapan -0.945 M -0.300 -0.307 M -0.307 -0.307 -0.307 -0.320 -0.320 M
Sleman 0.073 G 0.717 0.697 G 0.711 0.717 0.704 0.703 0.711 G
Palembang -1.466 M -0.842 -0.828 M -0.842 -0.842 -0.842 -0.835 -0.835 M
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Table 9. Results of the sensitivity analysis for criteria (continued)
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Based on the results of the calculation of the sensitivity value for each criterion, it was found that the smart city
assessment needs to be focused on criteria that have high sensitivity, namely C1, C2, and C13 because these criteria are
proven to have a significant influence on changing class status. Thus, these criteria must be the top priority in the
evaluation process to produce more accurate decisions. On the other hand, the criteria C3, C4, C5, C6, C7, C8, C9, C10,
C11, C12, C14, C15, C16, C17, C18, C19, and C20 did not show a significant impact on the change in class status,
despite an increase in the weight value. Therefore, these criteria can be considered as secondary factors in determining
the classification of smart cities and do not require the same attention in decision-making.

4.3. Machine Learning Using MCDM-Random Forest

The application of the classification process in this study began by making improvements to the target class that was
worked on by looking for similarities in the results of hybrid SMART, Lg-ROFNs, and MABAC with the random forest
decision tree. Supervised learning by random forest requires a labelled target variable to guide the training process [54],
which the target variable is essential as it defines the output classes the model aims to predict. This study collected the
dataset as the input in Table 10.

Table 10. The dataset as input data in Random Forest

CITY Cl C2 C3 C4 C5 C6 Cr C8 C(C9 Cl10 C11 Ci12 C13 Ci4 Ci15 Ci6 C17 C18 C19 C20 CLASS

Batam 5 4 3 4 2 3 3 2 2 4 2 2 2 5 4 4 4 5 3 3
Bandung 3 3 3 5 4 5 3 5 4 5 3 4 4 4 4 4 4 5 4 4
Jakarta 2 3 4 3 4 4 4 5 2 5 2 2 4 4 3 5 2 4 5 2
Semarang 3 2 4 4 3 4 5 5 5 3 2 4 3 5 4 3 5 4 3 2
Surabaya 2 5 2 4 4 4 5 2 2 4 2 4 5 2 4 3 3 4 2 2

Denpasar 5 5 4 4 2 3 5 5 2 3 5 3 2 2 3 4 2 5 3 5

Medan 3 5 3 4 2 2 2 4 3 5 2 5 3 4 2 5 2 2 2 2
Balik 4 2 3 3 3 5 5 4 2 4 4 3 3 4 5 4 3 4 3 4
Sleman 4 2 3 2 4 4 3 3 3 2 2 2 5 3 2 3 2 5 4 4

Palembang 4 5 5 5 5 4 4 3 5 5 2 2 3 3 4 2 4 3 2 5
Bojonegoro 4 2 4 4 5 4 4 2 4 2 4 5 2 2 5 4 3 5 5 3
Manado 3 5 3 3 5 5 4 5 5 5 3 2 2 2 2 3 2 4 5 2
Malang 4 5 2 2 5 2 5 4 4 2 4 4 2 4 3 3 3 4 2 5

Tangerang 5 5 4 3 4 4 3 2 3 3 5 3 2 5 3 5 2 5 2 3

Depok 5 5 4 2 2 4 5 5 3 2 5 3 2 5 3 5 2 3 2 4
Bekasi 5 4 3 5 5 5 3 3 3 2 4 4 2 3 4 3 2 3 3 5
Solo 4 5 4 3 4 3 4 4 5 3 5 2 4 3 3 3 2 5 2 2

Banjarmasin 2 5 4 3 3 5 4 5 4 2 4 2 2 3 5 2 5 2 3 4
Pontianak 3 2 5 5 4 3 5 4 3 2 2 2 5 5 4 5 5 2 2 5
Makassar 2 3 2 2 3 5 3 4 2 5 2 5 2 5 2 5 2 2 5 5

Badung 2 4 4 2 2 5 4 4 3 5 2 4 5 3 3 5 3 5 2 2

Banyuwangi 3 4 4 4 5 4 4 3 4 5 2 2 3 4 5 5 5 5 2 5

Yogyakarta 4 2 2 2 2 2 2 3 3 5 3 3 5 5 2 3 2 3 2 4

< ®& £ £ o £ £ £ £ £ £ L £ £ £ 0O L ®@ 2L L2 @ L

KulonProgo 5 5 4 2 2 5 4 4 5 3 2 4 5 4 2 4 3 5 2 2

Based on the data in Table 10, the input data is defined as a 2D array, with each row representing a sample of 20
features. The data is split into training (50%) and test (50%) sets. The Random Forest classifier is trained using the
training set and applied to predict class labels for new data. The predicted numeric labels are converted to the original
class labels: 'Good' and 'Moderate'. Figure 5 illustrates the tree formation process.
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Figure 5. The visual illustration of the tree formation process

Based on the illustration of the process flow, an example of the calculation stages that occur on the Root Node: Top
Node: x(6) <= 3 as follows:

o The decision rule here is based on the feature at index 6 (denoted x(6)). When x(6) is less than or equal to 3.5, the
samples are classified to the left branch (True). Otherwise, they go to the right branch (False).

e Gini Indeks: 0.332 = This measures the impurity or disorder in the node.
e Samples: 12 = 12 samples or data points reach the node.

e Value: [4, 15] = This represents the number of samples in each class. In this case, 4 samples are of class ‘Good’,
and 15 are of class ‘Moderate’.

e Class [MODERATE]= Most of the samples (15 out of 19) belong to the 'Moderate’ class, so this node is
classified as 'Moderate'.

The calculation of the Gini value on the Root Node (x(6) <= 3.5) is as follows:

4

Proportions(Good)= 5= 0.211.

Proportions(Moderate) = g: 0.789.
GiNiroot = 1-0.211%-0.789% = 1-0.0445 - 0.6229 = 0.332.

The Giniroot result for root nodes with a value of about 0.332 indicates moderate impurity with the predominance of
the Moderate class. This reflects the partial classification of mixtures, which are effectively refined by the Random
Forest algorithm, as presented in Table 11.

Based on the result in Table 11, it was known that out of 24 cities, 22 were correctly classified according to their
initial labels, showing an accuracy rate of 91.67%. This indicates that the model has good generalization capabilities
even though it was trained on a relatively small subset of data that reflects the actual labels of individual cities. In-depth
testing was carried out by comparing the performance of the random forest model based on 20%, 30%, 40%, and 50%
training data, which are shown in Figure 6.
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Table 11. The results of refined the classification

Classification

City Status
Before After
Batam Good Moderate Invalid
Bandung Moderate Moderate Valid
Jakarta Good Good Valid
Semarang Moderate Moderate Valid
Surabaya Moderate Moderate Valid
Denpasar Moderate Moderate Valid
Medan Good Good Valid
Balikpapan Moderate Moderate Valid
Sleman Good Moderate Invalid
Palembang Moderate Moderate Valid
Bojonegoro Moderate Moderate Valid
Manado Moderate Moderate Valid
Malang Moderate Moderate Valid
Tangerang Moderate Moderate Valid
Depok Moderate Moderate Valid
Bekasi Moderate Moderate Valid
Solo Moderate Moderate Valid
Banjarmasin Moderate Moderate Valid
Pontianak Moderate Moderate Valid
Makassar Good Good Valid
Badung Moderate Moderate Valid
Banyuwangi Moderate Moderate Valid
Yogyakarta Good Good Valid
Kulon Progo Moderate Moderate Valid
1.0 1.0
Good - 0.00 0.00 0.00 08 0.50 067 0.9
v 0.6 % 0.8
= £
he -04 he -0.7
Moderate .75 02 Moderate 06
-0.0 -0.5
precision recall fl-score precision recall fl-score
Metric Metric
(a) (b)
1.0 1.0
Good 0.9 Good 050 067 0.9
5 08 iy 08
= S
o -0.7 = -0.7
Moderate 06 Moderate 06
()8 -0.5
precision recall fl-score precision recall fl-score
Metric Metric
(© (d)

Figure 6. (a) Random forest prediction with 20% training data; (b) Random Forest prediction with 30% training data; (c)
Random Forest prediction with 40% training data; (d) Random Forest prediction with 50% training data

Based on the results of the evaluation of the Random Forest model with variations in the proportion of training data
of 20%, 30%, 40%, and 50%, it can be seen that the increase in the proportion of training data significantly improves
the model's ability to classify both classes, especially the Good class which was previously undetected in the proportion
of 20% and 30%. At 40% proportion, the model began to show a significant improvement with the recall for the Good
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class reaching 0.50, while the precision remained high. The best performance is achieved at 50% proportions, where the
model maintains a balance between precision and sensitivity, with a precision of 1.00 and a recall of 0.50 for the Good
class, as well as a very high F1 score for the Moderate class. These results indicate that Random Forest is an effective
classification approach in mapping the readiness of Al-based personalization at the city level. The high consistency of

the classification reinforces the belief that the features used in the model collectively represent critical characteristics in
determining a city's digital readiness class.

4.4. Comparison of Evaluation

To evaluate the performance of each classification method in distinguishing the level of city readiness based on digital
indicators, tests were carried out on six different machine learning models, namely Random Forest (RF), Decision Tree
(DT), K-Nearest Neighbors (K-NN), Logistic Regression (LR), Artificial Neural Network (ANN), and Naive Bayes
(NB). This evaluation used a confusion matrix that compares the actual and prediction labels for two target classes: Good
and Moderate. Visualization of each model's prediction results and overall accuracy value is shown in Figure 7.

Random Forest Decision Tree
Accuracy: 88.24%

Accuracy: 76.47%
Good A 2 2 Good A 2 2
- @
= =
= 2
o o
£ g
= =
Moderate 0 Moderate 1 2
Good Moderate Good Moderate
Predicted label Predicted label
K-Nearest Neighbors Logistic Regression
Accuracy: 76.47% Accuracy: 82.35%
Good 0 4 Good 3 1
) )
=) )
= =
L) 53
E E
= =
Moderate - 0 Moderate A 2
Good Moderate Good Moderate
Predicted label Predicted label
Artificial Neural Network Naive Bayes
Accuracy: 70.59% Accuracy: 76.47%
Good A <) 1 Good 0 4
B T)
=3 =1
= Ay
o o
=] =
= =
Moderate - 4 Moderate 0
Good Moderate Good Moderate
Predicted label

Predicted label

Figure 7. Comparative confusion matrix visualization of classification models

The confusion matrices in Figure 7 demonstrate that high accuracy does not necessarily indicate balanced
performance across classes, particularly in datasets with class imbalance. Consequently, model evaluation should not
rely solely on accuracy but incorporate additional metrics such as precision, recall, and F1-score. To provide a
comprehensive assessment, precision, recall, and F1-score calculations were conducted for the KNN, Decision Tree,
Logistic Regression, Artificial Neural Network, Naive Bayes, and Random Forest methods in identifying the Good and

Moderate classes. Results are displayed in Figure 8.
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Figure 8. Result of Precision, Recall, and F1-Score for different models

Based on the evaluation and visualization results of the model performance comparison, Random Forest showed the
best classification performance compared to other methods. The Random Forest performed most consistently with a
precision score of 1.00, a recall of 0.83, and an F1-score of 0.91 in the Good class, as well as a precision of 0.86, a recall
of 1.00, and an F1-score of 0.92 in the Moderate class. Meanwhile, ANN recorded a precision of 0.75, a recall of 0.60,
and an F1-score of 0.67 in the Good class, a precision of 0.81, a recall of 0.90, and an F1-score of 0.85 in the Moderate
class. The Logistic Regression and Decision Tree are at medium performance levels; for instance, the Decision Tree
produces an F1-score of 0.67 (Good) and 0.83 (Moderate), while Logistic Regression records an F1-score of 0.73 (Good)
and 0.82 (Moderate). On the other hand, K-Nearest Neighbors shows an imbalance in performance, with an F1-score of
just 0.57 in the Good class despite reaching 0.86 in the Moderate class. Naive Bayes recorded high performance in the
Moderate class (F1-score 0.86) but very low in the Good class (F1-score 0.50), showing weakness in dealing with
dependency between features.

The in-depth analysis results show that although Random Forest is worthy of being recommended as the main model
in supporting digital-based urban readiness classification decision-making, other models can be used selectively or after
advanced parameter tuning and optimization.

4.5. Comparison with Previous Studies

The integration of fuzzy MCDM methods with Random Forest classification in this study contributes to the evolving
research on evaluating Al-driven personalization in smart cities. This hybrid approach aligns with prior methodological
advancements and extends them through empirical validation and uncertainty modeling.

Fayyaz et al. (2024) [55] introduced a comprehensive framework combining fuzzy Delphi, Analytical Network
Process (ANP), and Game Theory to optimize smart city street design, thereby emphasizing the utility of multi-method
decision-making models in addressing urban complexity. Similarly, a recent study published in Scientific Reports
proposed a decision-support system that integrates machine learning-based feature selection (RF-RFE) with fuzzy
MCDM, particularly g-Rung Orthopair Fuzzy Sets (q-ROFS), to facilitate sustainable urban planning under conditions
of uncertainty. These studies underscore the importance of combining ML with fuzzy logic to enhance decision quality
in complex urban environments.

Aljohani [2] explored the role of Al and deep learning in optimizing energy systems in smart cities, they often lack
a structured evaluation of inclusivity or personalization readiness. Our framework addresses this gap through both
quantitative evaluation and classification validation. Khanyile [56] further demonstrated the comparative performance
of Fuzzy Overlay and Random Forest classification in post-mining land assessment, concluding that fuzzy methods offer
superior accuracy in capturing spatial ambiguity. Building upon these insights, our study introduces a novel application
of a fuzzy MCDM-RF hybrid framework tailored specifically to assess Al personalization readiness. The incorporation
of Lg-Rung Orthopair Fuzzy Numbers (Lg-ROFNs) allows for more nuanced representation of expert uncertainty, while
the Random Forest model enables robust and interpretable classification. This framework provides a replicable and
scalable tool for policymakers to assess digital inclusion and personalization maturity within smart city ecosystems.

4.6. Limitation of the Study

While this study offers a robust framework for evaluating Al-driven personalization in smart cities by integrating
fuzzy MCDM and Random Forest classification, some limitations must be acknowledged. Firstly, empirical
validation is limited to 24 cities in Indonesia, which can limit the generalization of findings to other national or
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regional contexts with different levels of digital maturity or governance frameworks. Secondly, the framework
presents a static evaluation, not considering dynamic shifts in Al implementation or personalization maturity over
time. Lastly, contextual factors such as infrastructure disparities and the power of policy enforcement are not
explicitly modeled, although they are likely to influence the outcomes of Al personalization. Future research can
overcome these limitations by combining longitudinal data, expanding algorithmic comparisons, and exploring
broader cross-regional applications.

5. Conclusion

This study proposed and validated a hybrid evaluation framework that integrates fuzzy Multi-Criteria Decision-
Making techniques, specifically using SWARA and MABAC with the Random Forest classifier to assess Al
personalization readiness in smart cities. The framework was empirically applied to ten Indonesian cities, evaluating
five critical dimensions of Al-driven service delivery: accessibility, affordability, user engagement, privacy, and
personalization effectiveness. The results indicate that accessibility and engagement are pivotal for fostering inclusive
Al service delivery, whereas affordability and privacy remain underdeveloped. Theoretically, this research contributes
to the growing body of knowledge by integrating fuzzy MCDM with supervised machine learning to enable robust and
interpretable evaluations. The use of Lg-ROFNs enhances the handling of uncertainty in expert-based assessments, while
the Random Forest classifier strengthens empirical validation and readiness classification. This methodological synthesis
supports the development of transparent, adaptive tools for digital governance.

Despite its strengths, the study is constrained by its reliance on expert judgment, which may introduce subjectivity,
and its geographic focus on Indonesian cities, potentially limiting the generalizability of findings. Future research should
apply the framework across diverse urban contexts and incorporate longitudinal data to capture temporal dynamics in
Al personalization readiness. This research advances the field by offering a replicable, scalable, and data-driven decision-
support model for inclusive Al personalization strategies. It provides practical utility for urban policymakers and offers
novel insights into how hybrid intelligent systems can bridge the gap between technological innovation and social equity
in smart city ecosystems. Additionally, it underscores the need to examine how infrastructure disparities and governance
mechanisms shape personalization readiness across different socio-political settings.
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