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Abstract 

Deep learning has demonstrated exceptional human activity recognition (HAR) performance by extracting complex 

features from inertial data. However, this centralized training approach aggregates data from multiple user devices into a 

central server and raises significant privacy concerns. Federated learning (FL) is proposed as an alternative. It provides a 

privacy-preserving scheme by training data analytics models on local users’ devices rather than transferring raw data to a 

central server for data processing. Although FL is widely applied to various pattern recognition applications, its use in 

sensor-based HAR is limited, and reviews of the HAR application are even scarcer. Therefore, this paper provides a 

comprehensive review of FL in HAR. This paper analyzes FL’s architectural design, data model training strategies, and 

model aggregation techniques. A comparative analysis between FL-based and machine learning methods is presented. The 

challenges, including data heterogeneity, data privacy, and communication costs, are identified through the findings, while 

the potential research direction of FL in HAR is underscored. This paper provides insights into the current state of FL for 

HAR, pinpoints research gaps, and outlines encountered challenges and potential research directions. 

Keywords: Artificial Intelligence; Federated Learning; Human Activity Recognition; Sensor-Based; Data Privacy-Preserving. 

1. Introduction 

The deep learning approach has been extensively explored for data analysis and recognition in various fields in recent 

years. This approach reveals hidden patterns and intrinsic data structures, which are crucial for data analysis. Previous 

studies have demonstrated that deep learning models, such as convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), achieve exceptional recognition performances in various applications [1-5]. However, a huge amount 

of training samples is required to achieve exceptional performance, and these data samples are centrally processed and 

analyzed. In other words, each client's data samples must be transmitted/shared and stored in a central server. This raises 

the risk of cybersecurity attacks, especially during data transmission and storage. A breach in a single system can 

compromise all the data. Hence, crucial data security and privacy concerns are triggered when implementing a deep-

learning approach [6-9]. These concerns are amplified when handling personal and sensitive data [10]. To address these 

challenges, federated learning (FL) has emerged as a promising alternative [11-13]. 
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Unlike deep learning methods, data learning and analysis are conducted in a decentralized practice in the FL 

framework. In other words, data analytics models are trained directly on users' devices on the client side. This practice 

eliminates the need to transfer the raw data to a central server and store it at a single location. 

Human activity recognition (HAR) manipulates human activity data for activity detection and classification. This 

technology is increasingly prevalent and applied in diverse applications, including fitness tracking, smart home 

assistance, healthcare monitoring, and workplace monitoring [12, 14-17]. Privacy and data security concerns arise from 

the pervasive applications of HAR. HAR systems collect and analyze personal inertial data about individuals' 

movements, activities, and behaviors. This personal data possibly discloses sensitive information, such as the subject’s 

location, health conditions, daily routine, and social interactions. Hence, the FL framework has been proposed for human 

activity recognition [13, 18-20]. As aforementioned, FL is a technology that accommodates decentralized data processing 

and analysis. 

Each HAR data analytics model is trained at the local client side by using the respective user’s inertial motion data 

as the training data and the validation data on their device. Then, the updates/model weights from the local client are 

sent to the global server to update the weights of the global model during the training process. Figure 1 illustrates the 

overview process flow of a federated learning HAR framework. Firstly, a global model is designed and initialized with 

initial parameters at a central server. Next, the global model is broadcast to the selected clients using the current global 

model parameters. On the client side, each local client now possesses a data analytics model trained locally using the 

respective client’s inertial motion data. After completing the local model training, the updates/model weights of the local 

model are sent back to the global server. The global server aggregates these updates/model weights with a federated 

aggregation algorithm. The aggregated algorithm helps improve the global model by updating the weights of the global 

model based on the aggregated values from the local clients. During this process, the data privacy of the raw data from 

each device is preserved at each local client. The other local clients cannot access the raw data nor the global model 

because the data sent from the local client to the global server is in the form of model weights. These model weights 

signify the learned patterns from the inertial data but do not contain any raw data. In this way, FL can protect user privacy 

while still collaborating with the machine or deep learning for better classification performance. 

 

Figure 1. The overview process flow of a federated learning HAR framework 

Federated learning has recently shown great potential as a decentralized approach that could offer more privacy and 

efficiency in diverse applications, especially those involving sensitive personal data. Since it keeps the data on local 

devices, FL minimizes data transmission and central storage risks. Hence, it is well-suited for sensor-based human 

activity recognition, where privacy is a top priority. FL offers several advantages: 

 Minimizes risks of data breaches: By keeping data on local devices, FL reduces the risks associated with 

transmitting raw inertial data over networks or storing it in centralized servers. This ensures that sensitive 

information, such as human activity patterns, remains protected, reducing the possibility of exposure if there is a 

system compromise. 

 Protects user privacy: Unlike centralized approaches, FL ensures that raw sensor data never leaves the user's device. 

Only model weights, as abstract representations of the learned patterns, are shared with the global server. This 

privacy-preserving design is significant for HAR applications, where human activity data can reveal sensitive 

information about the users' daily activities, health conditions, or location. 
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 Improved generalization: FL enables models to train on diverse, heterogeneous data across users. This helps 

improve the HAR models’ generalization capability to capture the variability in human activity dynamics 

effectively. 

Studies have explored FL in various pattern recognition tasks. However, the adoption of FL in sensor-based human 

activity recognition remains limited, and reviews of the HAR application are even scarcer [21-27]. In particular, several 

research gaps exist in this area: 

 Limited systematic reviews on FL for sensor-based HAR: Although FL has been studied in healthcare, finance, 

etc., comprehensive reviews focusing on its application in sensor-based HAR are scarce. Most literature reviews 

emphasize general FL architecture without addressing HAR-specific challenges and limitations. A review tailored 

to FL-based sensor-based HAR is needed to bridge this gap. 

 Lack of comparative studies between FL and machine learning approaches for HAR: There are limited comparisons 

against the machine learning approach in HAR-specific tasks. Examining how FL performs compared to machine 

learning approaches in HAR applications, particularly regarding data processing architectures and privacy 

implications, remains insufficient. 

 Challenges in adapting FL for HAR in real-world deployments: Though FL provides a privacy-preserving solution, 

its deployment for real-world HAR applications faces several challenges. These include data heterogeneity across 

users and sensor modalities, communication constraints, and limited computational resources on edge devices. 

While prior survey publications concentrated on the conceptual and technical issues of FL, the contributions of our 

study are summarized as follows: 

 Survey of federated learning in sensor-based HAR: This paper thoroughly reviews FL applied to sensor-based 

HAR. It also includes the architecture of FL frameworks within the context of sensor-based HAR and the 

comparisons between conventional machine learning and federated learning. 

 Exploration of federated learning framework for sensor-based HAR: This includes local training models and model 

aggregation algorithms used in the FL framework. 

 Challenges of federated learning in the sensor-based HAR context: Challenges encountered when implementing 

FL for HAR are discussed. These include data diversity, privacy and security concerns, and communication costs 

associated with model updates. 

The rest of the paper is organized as follows. Section 2 reviews related work on HAR and federated learning. Section 

3 outlines the review methodology employed in our study, and Section 4 presents the fundamentals of federated learning 

in the context of sensor-based HAR. Section 5 provides a comparative analysis of federated learning and machine 

learning approaches for HAR-specific tasks. Section 6 discusses the challenges of deploying federated learning in real-

world human activity recognition, while Section 7 discusses algorithms for local model training and model aggregation 

in FL. Section 8 outlines potential research directions of FL in sensor-based HAR, and Section 9 concludes the paper. 

2. Related Work 

Sensor-based human activity recognition (HAR) is a prevalent technology that utilizes sensors, either wearable 

sensors or sensors embedded in smartphones, to analyze and understand human movements. The advancements in deep 

learning significantly boost the performance and robustness of HAR models. However, conventional centralized deep-

learning models encounter risks concerning privacy [10]. In these deep learning models, large volumes of sensitive 

personal data, such as daily activities, locations of the user, health metrics, etc., are transmitted and stored on central 

servers, thereby raising the risk of data breaches. Furthermore, the continuous data transmission to and from the 

centralized models may be susceptible to man-in-the-middle attacks. This further heightens the security risks. Federated 

learning (FL) has recently emerged as an alternative solution [28-32]. This decentralized data processing framework 

facilitates training HAR models on user devices to address privacy concerns. Various methods are proposed to improve 

the robustness and efficiency of FL models in human activity recognition applications, yielding better classification 

performance and model generalization across diverse user data and different devices [10, 18, 33-37]. 

One of the key contributions of FL frameworks is their design to maintain data privacy. Data analytics models are 

trained on local devices, while only model updates are transferred to a central server [38, 39]. This decentralized approach 

minimizes the risk of personal data exposure. In recent years, the Internet of Things (IoT) has gained enormous popularity 

due to its ability to automate devices and provide conveniences. The application of IoT has created a demand for secure 

and efficient data processing. By leveraging FL, IoT systems can enhance data privacy-enhancing communication 

efficiency [40-44]. To preserve user privacy and diminish delay, FL reduces the amount of data transferred between 

devices and servers, improving system performance and ensuring scalability and efficiency. Implementing FL training 

directly on devices reduces the requirement for extensive cloud-to-client communication. Thus, those issues associated 

with communication overhead, privacy issues, and compliance with data protection regulations are mitigated. 
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Instead of transmitting raw data, FedAvg, which was proposed by McMahan et al., averages model updates to reduce 

communication overhead since the model updates are smaller than the entire dataset [37]. This requires less bandwidth 

and improves communication efficiency. Ek et al. further explored the application of FedAvg for smartphone-based 

HAR [45]. The authors claimed that although federated learning has been applied widely, it still stays at the conceptual 

stage and needs to be clarified and tested. Their experimental findings demonstrate that FedAvg is more suitable for a 

heterogeneous and imbalanced database (in their study, the REALWORLD dataset was used) than the in-lab and 

balanced datasets (UCI was used). 

The practicality of FedAvg is constrained by its inability to accommodate heterogeneous model architectures. Hence, 

Gad and Zubair proposed a novel FL framework for distributed training of heterogeneous models [46]. This approach is 

called Federated Learning via Augmented Knowledge Distillation, or FedAKD. This proposed approach is more flexible 

because it can adapt to collaborative heterogeneous deep learning models with diverse learning capacities. From the 

experimental results on HAR datasets, FedAKD exhibits superior classification performance, attaining up to 20% higher 

accuracy than other model-agnostic FL models. 

Additionally, the communication overhead of FedAKD is much less than that of other FL models that transmit 

models’ gradients. The reduction of communication overhead improves the efficacy of the federated learning procedure. 

Furthermore, Ek et al. proposed FedDist, a novel federated learning algorithm that revises deep learning models during 

training to detect neuron dissimilarities among clients [47]. This attempt can ensure the preservation of client specificity 

without compromising the model’s generalization. The authors evaluated their proposed system on three heterogeneous 

mobile HAR datasets. The empirical results exhibit that the proposed FedDist is superior to the other state-of-the-art FL 

algorithms for its adaptability to data heterogeneity. 

Ouyang et al. devised an FL system specifically for human activity recognition, known as ClusterFL [13]. The 

proposed ClusterFL is a similarity-aware FL model that facilitates high-performance accuracy while offering low 

communication overhead for HAR applications. The model offers a strategy that maximizes the training performance of 

different learned models. It also captures the underlying clustering relationship among data from different nodes. By 

utilizing the learned cluster relationship, ClusterFL efficiently withdraws the nodes that converge more slowly or have 

little correlation with other nodes in each cluster. This escalates the model’s convergence while retaining the 

classification performance. Besides that, Shen et al. claimed that HAR is critical in healthcare applications, but collecting 

personal information for training creates privacy problems [48]. Existing FL approaches have difficulty adapting to new 

users due to individual variances in activity performance. Shen et al. proposed FedMAT, a new Federated Multi-task 

Attention framework for human activity recognition, to address this challenge. FedMAT treats each user as a separate 

learning task. The proposed FL system employs a shared network to learn common features and engages individual 

attention modules to capture user-specific differences. With these implementations, FedMAT learns generalizable 

features while adapting to specific users. The reported experimental results demonstrate that the proposed system can 

perform better for existing and new users. 

Yu et al. proposed a personalized federated human activity recognition framework to address the challenges of 

privacy preservation, real-time, label scarcity, and heterogeneity patterns [20]. The proposed FL framework is known as 

FedHAR. In FedHAR, distributed learning is conducted to perform model training on local devices for users’ privacy 

preservation. The model adopts semi-supervised learning to aggregate the gradients of all the labeled and unlabeled 

clients. The reported empirical results demonstrate that the proposed FedHAR is superior to the existing models on two 

public datasets. Tu et al. highlighted that one of the challenges of the existing HAR-based FL models is the failure to 

adequately describe the statistical diversity of user data [18]. Besides that, these FL models adopt static aggregation 

techniques that scarcely adapt to the varying data distributions across subjects. These limitations result in suboptimal 

recognition performance. Motivated by the challenges, the authors introduce a novel FL system to dynamically capture 

the intrinsic intraclass similarities for data learning. This feature is vital in exhibiting the inherent environmental and 

behavioral commonalities. The proposed model also employs a dynamic layer-sharing scheme to capture similarities 

among users’ model weights. The proposed FL model outperforms the existing approaches regarding classification 

accuracy and model convergence speed because of its lower communication overhead. 

While FL provides a privacy-preserving alternative by training data analytics models on user devices, FL suffers 

from non-independent and identically distributed (i.e., non-IID) data, which significantly varies in user behavior. To 

overcome this issue, Presotto et al. introduced FedCLAR, a new federated clustering approach for HAR [19]. FedCLAR 

classifies users with similar activity patterns by examining a subset of the model weights shared with a central server. 

This selective analysis minimizes communication overhead. The system outperforms conventional FL solutions in HAR 

tasks. Although FedCLAR can address non-IID data in FL-based HAR via user clustering, labeled data is still required 

on all devices. Thus, Presotto et al. proposed a semi-supervised FedCLAR, coined SS-FedCLAR, to improve their 

previously proposed FedCLAR model, which requires labeled data for model training [49]. This model combines 

FedCLAR's federated clustering with the FedAR algorithm proposed by Presotto et al. to mitigate the labeled data 

scarcity problem and leverage unlabeled data. SS-FedCLAR assigns pseudo-labels to the unlabeled data using active 

learning and label propagation. This can extend the training dataset without needing additional labeling. The authors 

reported that the SS-FedCLAR outperforms the previous algorithms by obtaining higher accuracy with less labeled data. 
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Arikumar et al. highlighted that Smart Healthcare (SHC) solutions, which use wearable sensors to track human 

activities, have difficulty managing much unlabeled data on cloud servers [50]. Thus, they proposed the Federated 

Learning-Based Person Movement Identification (FL-PMI) to address this issue by labeling unlabeled data with deep 

reinforcement learning. In this system, Bidirectional Long Short-Term Memory is employed to categorize the data for 

SHC use. FL-PMI can reduce connectivity costs and cloud workloads by shifting computation to edge servers. This 

approach detects motions with high accuracy (99.67%) while requiring minimal resources and data transfer. Shaik et al. 

highlighted the challenges of traditional remote patient monitoring systems based on centralized learning [51]. These 

systems struggle to integrate patient privacy and personalized monitoring with wearable sensors for human activity 

recognition. The authors devised FedStack, an FL architecture that enables training several AI models on individual 

devices. Fed-Stack trains models on local devices and sends predictions to a central server. The server combines these 

predictions to improve a global model. Empirical results show that the proposed FedStack provides high activity 

detection accuracy (99.6%) while respecting privacy. 

Applications such as human activity recognition (HAR) raise privacy concerns and result in high communication 

costs due to data transfer from edge devices [52]. To address this issue, Al-Saedi et al. introduced Cluster Analysis-based 

Federated Learning (CA-FL), which enables collaborative model training directly on user devices such as smartphones 

while keeping data private. CA-FL uses clustering analysis to detect comparable updates from devices. CA-FL uploads 

only representative updates from each cluster to the central server. This implementation helps lower communication 

overhead. The authors claimed that the proposed CA-FL provides a communication-efficient FL solution for HAR that 

ensures accuracy while safeguarding user privacy. 

Furthermore, Cheng et al. proposed a novel FL framework to address the challenges of traditional FL in sensor-based 

human activity recognition, which struggles with non-identical data distributions across devices [10]. The non-identical 

data distributions can result in slow convergence and inaccurate models. The proposed FL architecture is namely 

ProtoHAR. This model overcomes the issue by dissociating the representation and classifier in the heterogeneous FL 

setting. The performance of ProtoHAR was assessed on four datasets: HARBOX, USC-HAD, PAMAP2, and UNIMIB-

SHAR for controlled environments and real-world scenarios. The experimental results reveal that this proposed system 

achieves an encouraging performance and improves model convergence. 

In summary, AI models, whether machine learning or deep learning, are crucial for learning data characteristics to 

achieve accurate outcomes. Model personalization within FL frameworks is vital for optimizing AI models across diverse 

user populations and device capabilities [53-57]. In diverse environments, users show varying patterns, behaviors, and 

preferences. By personalizing models, FL frameworks can adapt to the variations. Furthermore, personalization in FL 

frameworks enriches the user experience by making AI systems more responsive and customized to individuals. 

Specifically, these personalized models can better analyze and predict individual activities for more accurate monitoring 

and assistance. Table 1 presents the literature summary of the relevant FL frameworks in HAR applications, recapping 

various aggregation techniques and AI models employed in applying sensor-based human activity recognition. 

Table 1. Summary of related works on FL frameworks for HAR applications 

Literature The proposed system Database(s) Methodology Performance metrics (%) 

Gudur & Perepu [58] federated 

learning with heterogeneous 

labels and models for mobile 

activity monitoring 

Federated Learning with 

Model Distillation and 

Label-Based Averaging 

for Heterogeneous HAR 

HHAR 

New federated label-based aggregation, leveraging 

overlapping information gain across activities using 

Model Distillation Update. Federated transfer of model 

scores is proposed from device to server. 

Data models: CNN and Artificial Neural Network 

(ANN). 

Local update Accuracy 72.293 

Global update Accuracy 83.303 

Tu et al. [18] FedDL: Federated 

Learning via Dynamic Layer 

Sharing for Human Activity 

Recognition 

FedDL 

LiDAR, UWB, 

HARBOX-IMU, IMU 

and Depth 

Uses a dynamic layer-sharing approach to learn the 

similarity among users’ model weights, then merges the 

models accordingly data model: CNN. 

Lidar 

Mean accuracy 98 

Overall mean accuracy for 

all datasets => 90 

Li et al. [59] Meta-HAR: 

Federated representation learning 

for human activity recognition 

Meta-HAR 

HHAR, USC-HAD, 

and Newly collected 

dataset 

A federated representation learning framework - a signal 

embedding network is meta-learned in a federated 

manner, while the learned signal representations are fed 

into a personalized classification network at each user for 

activity prediction. 

The HAR problem at each user is treated as a different 

task, and the shared embedding network is trained 

through a Model-Agnostic Meta-learning framework so 

that the embedding network can generalize. 

HHAR 

Meta-train user Accuracy 98.39 

Meta-test user Accuracy 92.50 

USC-HAD 

Meta-train user Accuracy 93.79 

Meta-test user Accuracy 91.07 

Collected Dataset 

Meta-train user Accuracy 90.76 

Meta-test user Accuracy 93.29 

Sarkar et al. [60] GraFeHTy: 

Graph Neural Network using 

Federated Learning for Human 

Activity Recognition 

GraFeHTy MHEALTH and WISDM 

Incorporates Graph Convolutional Networks (GCNs) in 

the federated learning context. 
MHEALTH 

Centralized Accuracy 98.7 

Federated Accuracy 97.9 

WISDM 

Centralized Accuracy 91 

Federated Accuracy 81.7 

A similarity graph from sensor measurements for each 

user is built, and CGN is applied to perform semi-

supervised classification of activities. 

Weights are averaged using FedAvg. 
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Kirsten et al. [61] Sensor-Based 

Obsessive- Compulsive Disorder 

Detection with Personalized 

Federated Learning 

Combined personalized 

federated learning for OCD 

detection 

OPPORTUNITY 

Detects Obsessive-Compulsive Disorder (OCD) through 

federated learning, augmented by the OPPORTUNITY 

dataset-comprises repetitive activities that can indicate 

OCD. 

Data model: a two-layer bidirectional Long Short-Term 

Memory (LSTM) with a fully connected output layer and 

dropout between every layer. 

Evaluates three personalized federated learning 

strategies for OCD detection utilizing augmented sensor 

data from the OPPORTUNITY dataset. 

OPPORTUNITY 

AUPRC ~95 

Al-Saedi et al. [52] Reducing 

Communication Overhead of 

Federated Learning through 

Clustering Analysis 

Cluster Analysis- based 

Federated Learning (CA-

FL) 

mHealth and Pamap2 

Lessens communication overhead without 

compromising accuracy by diminishing the number of 

worker updates transferred. 

Initializes by clustering local updates from available 

workers, then selects representative workers for training, 

using only their data to build the global model. 

The process is iterative, adapting worker partitioning and 

selecting new representatives each round - aggregating 

global model updates by representing groups of similar 

local parameters. 

MHealth 

F1 score (IID) (round 100) 56.7 

F1 score (non IID) (round 20) 57.4 

Pampa2 

F1 score (IID) (round 20) 96.2 

F1 score (non IID) (round 80) 96.6 

Presotto et al. [19] FedCLAR: 

Federated Clustering for 

Personalized Sensor-Based 

Human Activity Recognition 

FedCLAR WISDM and MobiAct 

Federated learning for personalized HAR using 

hierarchical clustering and transfer learning. 

User clustering technique that utilizes server-side 

similarity computation. 

Only a portion of the model weights is shared by each 

participating user. 

Solves the non-IID issue through the integration of 

federated clustering with transfer learning. 

WISDM 

Accuracy 89 

MobiAct 

Accuracy 94 

Zhou et al. [14] 2D Federated 

Learning for Personalized Human 

Activity Recognition in Cyber- 

Physical-Social Systems 

2-Dimensional Federated 

Learning (2DFL) 

Combined datasets of 

UniMiB-SHAR and 

Personal Gadget Dataset 

Two federated learning schemes: the vertical and 

horizontal FL schemes  

Integrates shareable features across heterogeneous data 

from different devices using vertical federated learning 

and collects encrypted local models built from multiple 

individual users’ data through horizontal federated 

learning data model: CNN 

Combined dataset 

Accuracy 93 

Recall 89 

F1 score 90 

Shen et al. [34] Federated Multi-

Task 

Attention for Cross-Individual 

Human Activity Recognition 

FedMAT 

HHAR, PAMAP2, 

ExtraSensory and 

SmartJLU 

Applies federated multi-task learning for HAR, where 

each user’s HAR is considered a task. 

Uses a central model combined with individual-specific 

models. 

CNN-RNN is used to analyze sensor data and attention-

based masks to extract individual characteristics. 

FedAvg enables the aggregation of updates of local 

models on IoT devices. 

HHAR 

Accuracy 96.88 

Macro F1 96.81 

PAMAP2 

Accuracy 92.61 

Macro F1 91.84 

ExtraSensory 

Accuracy 75.72 

Macro F1 75.03 

SmartJLU 

Accuracy 89.78 

Macro F1 83.02 

Arikumar et al. [50] FL-PMI: 

Federated Learning-Based Person 

Movement Identification through 

Wearable Devices in Smart 

Healthcare Systems 

FL-PMI 
UniMiB-SHAR and 

Realworld 

Leverages deep reinforcement learning for auto-labeling 

the data. 

Bidirectional Long Short-Term Memory (BiLSTM) is 

employed to analyze and classify the data. 

Uses FedAvg to aggregate local model parameters from 

edge devices. 

Accuracy 99.67 

Precision 99.37 

F1-Score 98.92 

Recall 99.11 

Shaik et al. [51] FedStack: 

Personalized activity monitoring 

using stacked federated learning 

FedStack MHEALTH 

Overcomes the limitations of traditional federated 

learning (aggregating the heterogeneous model). 

Build a heterogeneous global model across devices with 

different AI models, using heterogeneous stacking to 

aggregate non-identical architectural models 

Supports ensembling heterogeneous architectural client 

models. 

Three AI models (ANN, CNN, and BiLSTM) are trained 

on individual data. 

The federated learning architecture is applied to these 

models to build a local and global model. 

MHEALTH  

ANN 

Accuracy 99.6 

CNN 

Accuracy 99.6 

Bi-LSTM 

Accuracy 98.6 

Cho et al. [62] FLAME: Federated 

Learning across Multi-device 

Environments 

FLAME 
RealWorld, PAMAP2, 

and Opportunity 

Focusing on the user-centered synchronization of data 

from different devices to overcome the statistical and 

systematic heterogeneity, providing maximized 

inference performance with minimized required 

resources. 

Integrates model personalization to adjust the global 

model for each device and thus improve the inference 

performance and multi-device consistency. 

RealWorld 

Device Macro F1 83.8 

Global Macro F1 52.6 

F1 score 58.0 

Opportunity 

Device Macro F1 57.5 

Global Macro F1 48.5 

F1 score 50.5 

PAMAP2 

Device Macro F1 53.0 

Global Macro F1 39.7 

F1 score 39.0 
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Raza et al. [28] Lightweight 

Transformer in Federated Setting 

for Human Activity Recognition 

in Home Healthcare Applications 

 

TransFed 
WISDM, 

Self-collected dataset 

Develops a novel lightweight transformer, 

complemented by the proposed TransFed framework for 

privacy-preserving collaborative model training across 

distributed devices. 

The proposed TransFed is the first framework for 

activity classification based on federated learning and 

transformers. 

A central server distributes a transformer model to edge 

devices for local training. 

Trained parameters are returned to the server for 

aggregation, creating a global model. Edge devices then 

download and update their local models accordingly. 

WISDM 

Accuracy 98.89 

Self-collected Dataset 

Federated Setting Accuracy 98.74 

Centralized Setting Accuracy 99.14 

Presotto et al. [49] Federated 

Clustering, and Semi-Supervised 

learning: A new partnership for 

personalized Human Activity 

Recognition 

SS-FedCLAR WISDM and MobiAct 

Combines federated learning with the semi-supervised 

learning scheme to solve the non-IID and data scarcity 

issues. 

Each client employs a mix of active learning and label 

propagation to create pseudo labels for unlabeled data, 

which is subsequently utilized to train a Federated 

Clustering model collaboratively. 

WISDM 

Hierarchical F1 score 88 

MobiAct 

Hierarchical F1 score 96 

Albaseer et al. [63] Semi-

Supervised Federated Learning 

Over Heterogeneous Wireless 

IoT Edge Networks: Framework 

and Algorithms 

Federated semi-supervised 

learning (FedSemL) 

HAR, CIFAR-10, and 

MNIST 

Works with unlabeled data and considers issues such as 

computation limitations, communication costs, and 

deadlines. 

Involves an initialization phase in which the model and 

IoT devices’ parameters are determined, then multiple 

training rounds in which the server gathers the devices’ 

information, sets the time deadlines, and selects devices 

that will be involved in the training process. 

Devices complete local updates by pseudo-labelling, 

labeling the unlabeled data, and applying strong 

augmentation during training. The server aggregates 

these updates to create a new global model, optimizing 

resource constraints usage, like energy and 

communication costs. 

Testing accuracy 

>95 (with >100 global 

training rounds) 

Ouyang et al. [13] ClusterFL: A 

Similarity- Aware Federated 

Learning System for Human 

Activity Recognition 

ClusterFL UWB, IMU, and Depth 

By grouping users into activity similarity for learning 

within clusters, reducing excessive communication 

overhead through straggler removal and significant 

nodes’ selection. 

Perform aggregate using the Alternating Direction 

Method of Multipliers (ADMM). 

Data modeling: SVM (UWB), DNN (IMU), CNN 

(Depth) 

UWB 

Balanced mean accuracy 89.06 

Unbalanced mean accuracy 92.71 

IMU 

Balanced mean accuracy 90.47 

Unbalanced mean accuracy 89.05 

Depth 

Balanced mean accuracy 71.82 

Unbalanced mean accuracy 70.68 

Yu et al. [20] FedHAR: Semi-

Supervised Online Learning for 

Personalized Federated Human 

Activity Recognition 

FedHAR 
RealWorld and HAR-

UCI 

Federated learning with semi-supervised online learning 

to handle label scarcity, the need for real-time 

processing, and the heterogeneity of human activity 

recognition. 

Combines both supervised and unsupervised gradients 

while permitting the intermediate model fine-tuning for 

local performance enhancement. 

The aggregation method combines supervised gradients 

from labeled data with unsupervised gradients 

(calculated based on similar sensor sequences) using a 

semi-supervised loss function. 

Data model: hierarchical attention-based neural network. 

Real-world 

Accuracy 65.31 

F1 score 62.77 

HAR-UCI 

Accuracy 82.61 

F1 score 81.62 

Cheng et al. [10] ProtoHAR: 

Prototype Guided Personalized 

Federated Learning for Human 

Activity Recognition. 

ProtoHAR 

PAMAP2, UNIMIB- 

SHAR, USC-HAD, 

and HARBOX 

The prototype aggregation-based algorithm for activity 

recognition in the heterogeneous FL scenario. 

Uses prototypes to refine the global representation, 

decoupling feature representation, and the classifier. 

Exchanges information via sharing prototypes and 

representations. 

Each abstract prototype is viewed as an activity class by 

the mean representations of the observed samples from 

the same activity category. 

Data model: CNN (three convolutional layers, two max-

pooling layers, two fully connected layers, and one 

SoftMax layer). 

PAMAP2 

Accuracy 87.727 

F1 score 87.336 

AUC 97.839 

USC-HAD 

Accuracy 76.416 

F1 score 71.714 

AUC 96.518 

UNIMIB-SHAR 

Accuracy 94.470 

F1 score 92.088 

AUC 99.678 

HARBOX 

Accuracy 95.110 

F1 score 95.034 

AUC 99.086 

İsgüder et al. [35] FedOpenHAR: 

Federated multi-task transfer 

learning for sensor-based human 

activity recognition 

FedOpenHAR OpenHAR 

A federated multi-task transfer learning incorporated 

with the Deep Convolutional and Long Short-Term 

Memory (DeepConvLSTM) for human activity 

classification and device position identification with 

motion sensor data. 

Server’s aggregation algorithm: FedAvg. 

Data model: DeepConvLSTM. 

OpenHAR 

Accuracy 72.4 
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Wang et al. [64] Hydra: Hybrid-

model federated learning for 

human activity recognition on 

heterogeneous devices 

Hydra 
HHAR, HARBox, 

and MobiAct 

A hybrid-model FL framework that enables 

heterogeneous devices to co-train high-performance 

models with large and small sizes tailored to their diverse 

computing capabilities. 

Introduces loss-based sample selection for effective co-

training among high-performance computing devices 

(HCDs)and low-performance computing devices 

(LCDs). 

Formulates a large-to-small knowledge distillation to 

enhance the efficiency of transferring knowledge from 

HCD to LCD. 

Data model: CNN for HAR task. 

HHAR 

Accuracy 94.1 

MobiAct 

Accuracy 98.6 

HARBox 

Accuracy 94.4 

Pham et al. [65] Extension of 

physical activity recognition with 

3D CNN using encrypted multiple 

sensory data to federated learning 

based on multi-key homomorphic 

encryption 

3D CNN model 

Daily and Sports 

Activities (Sport) and 

Daily Life Activities 

(DaLiAc) 

Recognizes human activities using data from wearable 

sensors by employing 3D convolutional neural networks 

(3D-CNNs). 

Uses bitwise XOR operator for data encryption. 

Further enhances the models for FL by incorporating 

federated averaging and multi-key homomorphic 

encryption to improve privacy. 

Sport Accuracy 94.6 

DaLiAc Accuracy 94.9 

Shen et al. [48] Federated Meta-

Learning with Attention for 

Diversity-Aware Human Activity 

Recognition 

 

DivAR 
Two multi-individual 

heterogeneous 

Considers user differences by making various user 

groups for social-related factors and then personalizing 

the model for those various groups. 

Classifies individuals into clusters based on their 

behavior and social relations, fine-tuning a federated 

meta- learning model with local models endowed with a 

CNN-based attention mechanism to learn cluster-

specific features, and updating a global model that learns 

across the population while maintaining privacy. 

The aggregation method consists of averaging the 

updated parameters from the decentralized local models 

to improve the central model’s parameters. 

Dataset1 

Accuracy 93.48 

F1 Score 90.37 

Dataset2 

Accuracy 89.55 

F1 Score 83.19 

DatasetMix 

Accuracy 83.95 

F1 Score 78.36 

Khan et al. [66] A Privacy and 

Energy-Aware Federated 

Framework for Human Activity 

Recognition 

Integrating spiking neural 

networks (SNNs) with long 

short-term memory 

(LSTM) 

UCI and Realworld 

Combines spiking neural networks (SNNs) and LSTM 

for data modeling the model is trained using surrogate 

gradient learning, backpropagation. 

FL on devices without sharing data. 

UCI 

Accuracy 97.36 

RealWorld 

Accuracy 89.69 

Chai et al. [36] A profile 

similarity-based personalized 

federated learning method for 

wearable sensor-based human 

activity recognition 

PS-PFL 
RealWorld 

Sisfall 

A new personalized federated learning approach by 

leveraging profile-based similarity, enhancing model 

personalization and generalizability by considering 

individual profile features. 

Computes similarities between individuals based on 

their profiles and uses these similarities to aggregate 

personalized global models. 

Data models: CNN and Long Short-Term Memory 

(LSTM). 

 

Note: Avg_A is average accuracy; Avg_P is average precision Avg_R is 

average recall, Avg_F1 is average f1. 

RealWorld 

CNN 

Avg_A 94.88 

Avg_P 95.42 

Avg_R 94.69 

Avg_F1 94.95 

RNN 

Avg_A 93.65 

Avg_P 94.22 

Avg_R 93.85 

Avg_F1 93.88 

SisFall 

CNN 

Avg_A 94.50 

Avg_P 92.91 

Avg_R 92.41 

Avg_F1 91.29 

RNN 

Avg_A 78.57 

Avg_P 65.81 

Avg_R 65.02 

Avg_F1 70.53 

Orzikulova et al. [29] Federated 

Learning with Incomplete Sensing 

Modalities 

FLISM 
PAMAP2, RealWorld, 

and WESAD 

Federated Learning with Incomplete Sensing Modalities 

(FLISM) to enable multimodal FL with incomplete 

modalities. 

Employ simulation techniques to learn robust 

representations - handling missing modalities and 

transferring model knowledge across clients with diverse 

modality sets. 

PAMAP2 

F1 score 77 

WESAD 

F1 score 58.9 

RealWorld 

F1 score 77.8 

Jiang et al. [67] FLSys: Toward an 

Open Ecosystem for Federated 

Learning Mobile Apps 

FLSys Self-collected dataset 

A mobile-cloud FL system smartphone with mobile 

sensing data. 

A complete prototype of FLSys is developed in Android 

and AWS. 

Balances model utility with resource consumption on the 

phones, tolerates client failures, supports multiple deep 

learning models, provides support for advanced privacy 

protection mechanisms, and acts as a “central hub” on 

the phone for managing training, updating, and access 

control of FL models for different apps. 

Data model: CNN 

Aggregators: FedAvg, FedYogi, FedAdam, and 

FedAdagrad are available 

HAR-W-128-centralized 

Accuracy 82.62 

Precision 85.29 

Recall 84.49 

F1-score 84.84 

FLSys 

Using Android Emulation 

Accuracy 69.07 

Precision 59.22 ~86.06 

Recall 64.50~86.55 

F1-score 66.68 ~76.80 
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To provide a structured comparison, we consolidate previous studies from the above table into Table 2 under four 

key aspects to understand the methods. The comparison aspects are: (1) Types of FL – Distinguishing different FL 

paradigms, i.e., horizontal, vertical, or hybrid, based on data partitioning mechanisms; (2) Data Model Implementation 

– specifying the models or algorithms used to process the captured inertial data, (3) Privacy and Security – about security 

measures such as differential privacy or cryptographic techniques, and (4) Communication Architecture – differentiating 

between centralized and decentralized FL structures. From Table 2, we can observe that most FL approaches implement 

a horizontal FL paradigm. This may be because horizontal FL is more suitable for scenarios with different clients, but 

recording the same types of activity data. Specifically, the studies collected similar types of sensor data, i.e., 

accelerometer and gyroscope, from multiple clients. It is worth noting that the work of Zhou et al. [14] incorporates a 

hybrid FL paradigm. This method is unique because it integrates horizontal and vertical FL paradigms, facilitating the 

incorporation of heterogeneous data from different sources. 

Table 2. Comparison of Federated Learning approaches for HARs 

Method Types of FL 
Data Model 

Implementation 
Privacy Security 

Communication 

Architecture 

Gudur & Perepu [58] federated learning with 

heterogeneous labels and models for mobile activity 

monitoring 

Horizontal 
Convolution Neural Network 

and Artificial Neural Network 
Not specified Centralized 

Zhou et al. [14] 2D federated learning for 

personalized human activity recognition in cyber-

physical-social systems 

2-dimensional FL framework, 

including the vertical and 

horizontal FL phases 

Convolutional Neural 

Networks 

Somewhat Homomorphic 

Encryption (SWHE) 
Centralized 

Shen et al. [34] federated multi-task attention for 

cross- individual human activity recognition 
Horizontal 

Convolution Neural Network-

Recurrent Neural Network 
Not specified 

A shared feature representation 

network (central server) with 

individual-specific attention 

modules (decentralized nodes) 

Arikumar et al. [50] FL-PMI: federated learning-based 

person movement identification through wearable 

devices in smart healthcare systems 

Horizontal 
Bidirectional Long Short-term 

Memory 
Not specified Centralized 

Jiang et al. [67] Flsys: toward an open ecosystem for 

federated learning mobile apps 

Horizontal (with an option for 

extension to Vertical FL and 

Federated Transfer Learning) 

Convolution Neural Network Differential privacy Centralized 

Presotto et al. [19] Fedclar: federated clustering for 

personalized sensor-based human activity recognition 
Horizontal 

Feed-forward deep neural 

network 
Not specified Centralized 

Additionally, it is noticed that most HAR-specific FL implementations work on a centralized communication 

architecture. Clients transmit the generated model updates to a central server to perform aggregation and redistribute the 

updated model to the clients. The wide use of the centralized approach may be due to the fact that this kind of central 

server simplifies model updates, diminishing coordination complexity. Nevertheless, the study of Shen et al. [34] 

employs a decentralized FL approach. In this framework, a federated multi-task model constituted of a shared feature 

representation network is managed by a central server. In contrast, multiple individual-specific networks with attention 

modules are stored in decentralized nodes. 

3. Review Methodology 

This section outlines the methodology used to review FL for sensor-based HAR. The review process involved 

systematically searching and screening for relevant literature from diverse electronic academic databases. These 

include but are not limited to IEEE Xplore, arXiv, Google Scholar, ResearchGate, ACM Digital Library, and 

ScienceDirect. The cited research articles in this study were downloaded from these electronic databases. 

Furthermore, the queried keywords used in the search engine were “Federated Learning”, “Human Activity 

Recognition”, “sensor”, and “smartphone”, and combinations of the terms. After performing all the queries, we 

initially downloaded 150 articles. Next, the collected articles were selected by examining their titles, publication 

years, abstracts, and conclusions. We selected papers published between 2019 and 2024 to ensure up-to-date and 

comprehensive information. Since our core focus was to gather articles on sensor-based human activity recognition 

in which FL is employed for data privacy and model training in the sensor-based HAR context, 80 articles were 

excluded because they were unsuitable for this review study. 70 selected articles were further studied, and 31 

research articles out of these 70 articles were determined to be the most appropriate to be referred to in this review 

paper. The reviews and discussions of some of these articles are outlined in the Related Work section and Table 1. 

The review methodology process is depicted in Figure 2. 
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Figure 2. Review methodology 

4. Federated Learning 

Federated Learning (FL) was introduced by Google and used for the first time in 2016 to improve text input 

predictions of the Google Keyboard on many Android devices [68]. The primary idea is to enhance the predictive text 

function while keeping users’ data local instead of transmitting it to the central server for processing [69]. In other words, 

FL is a machine learning approach that facilitates decentralized model training without centralizing the data. Unlike 

traditional machine learning models that aggregate raw data from various sources, FL allows every edge device to build 

its local data model using its own data. Only the generated model updates are then shared with a central server. This 

server will then aggregate these model updates to construct and optimize a universal model, which is disseminated to 

the local devices for further localized learning. 

There are apparent advantages to using Federated Learning in HAR applications. HAR systems rely on information 

feeds from clients’ devices, such as wearable fitness trackers or smartphones, that collect the users’ physical movement 

data [70]. FL enables these devices to train a central activity recognition model collaboratively while keeping the activity 

data local and private. Every edge device first trains its model using its data, then only transmits the generated model 

updates to a central server. The global server aggregates these updates to fine-tune the global HAR model, which will 

then be redistributed to the edge devices for further training. This iterative process guarantees that personal activity data 

remains secure on local devices while diverse data sources from different devices are utilized to improve the recognition 

of the activities model. 
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4.1. The Architecture of Federated Learning 

Federated Learning (FL) is an innovative approach that enhances user data privacy by enabling decentralized machine 

learning. The FL framework has several key components to ensure privacy-preserving and efficient model training [65, 

66]: the devices, the central server (also called the global server), and the communication framework. The devices are 

local edge devices with different specifications that generate and own the data. They contribute to local model training 

using local data and share the generated model updates with the central server rather than the raw data. The central server 

aggregates the model updates and fine-tunes the global HAR model. This process is iterative and facilitated by the 

communication framework for continuous improvement of the data model while preserving user data privacy. While the 

data computation aspect focuses on training the local and global models, the communication aspect handles the transfer 

of model updates between the devices and the central server. This iterative training strategy, which involves local 

training, model aggregation, and model update communication, relies on the three aforementioned key components of 

the FL architecture (see Figure 3). 

 

Figure 3. The conceptual idea of FL, where model updates are shared instead of raw data 

Federated Learning (FL) provides a robust approach to safeguarding user privacy by enabling decentralized machine 

learning directly on user devices. This design choice addresses privacy concerns inherent in centralized data handling. 

Unlike traditional approaches that rely on collecting and processing raw data centrally, FL ensures that data remains on 

users' devices, reducing the risk of unauthorized access and data breaches. This is particularly crucial for sensitive HAR 

data, where privacy is paramount. In FL, model training occurs locally on each device, and only model updates, such as 

gradients or weights, are sent to a central server. This aggregated information allows for global model improvement 

without exposing any individual’s raw data. 

Additionally, secure aggregation protocols ensure that the server can only access the combined contributions from 

all devices, preventing it from viewing any single user's update, while differential privacy techniques further enhance 

security by adding controlled noise to model updates, protecting against potential inference attacks. This layered 

approach allows FL to mitigate privacy risks at each step, and the framework’s iterative communication process focuses 

on transmitting only essential information, reducing exposure and communication costs. Together, these mechanisms, 

like data locality, secure aggregation, and differential privacy, establish FL as a powerful method for HAR applications, 

balancing high model performance with strong privacy protections. 

Figure 4 shows the architecture of Basic Federated Learning. A central server connects to multiple devices, and there 

is a two-way data flow between the server and the devices. The devices locally train a model using their local data and 

return the model updates to the server. Then, the central server aggregates these updates, thus refining the global model. 

This process is decentralized, facilitating collaborative model training without sharing raw data, thereby illustrating a 

privacy-preserving system [67]. 



HighTech and Innovation Journal         Vol. 6, No. 3, September, 2025 

1090 

 

 

Figure 4. Basic Federated Learning 

4.2. Types of Federated Learning 

Federated Learning (FL) incorporates different approaches for data distribution scenarios and applications [71-73]. 

In the literature, we can categorize the types of FL into three: horizontal federated learning, vertical federated learning, 

and federated transfer learning. Each of these will be discussed in the following section. 

4.2.1. Horizontal Federated Learning 

In horizontal federated learning, devices are similar but have different user data [32]. In other words, the devices 

have identical feature types (i.e., the same feature space), but the individual users’ data may differ. For instance, in the 

application of fitness tracker human activity recognition, horizontal federated learning allows multiple trackers, each 

with similar sensor data types (i.e., the number of steps, heart rates, etc.) but from different individuals, to train a model 

collaboratively, as depicted in Figure 5. 

 

Figure 5. Horizontal Federated Learning 

4.2.2. Vertical Federated Learning 

Vertical federated learning is devised to handle scenarios where different datasets have overlapping users but distinct 

feature spaces. Specifically, the clients share the same users but have different features [74, 75]. This approach is useful 
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in applications where multiple health monitoring systems are engaged. For instance, consider a fitness tracker company 

(Client I) that collects users’ physical activities, such as steps and heart rate, and a sleep tracking app (Client II) that 

tracks users’ sleep behaviors. By incorporating these datasets with different features but shared users through vertical 

federated learning, the global model can utilize these combined data profiles to interpret better and comprehend complex 

user behaviors. It is worth noting that a sample alignment procedure is required to ensure that data from multiple sources 

are accurately associated with the same users before joint training. This avoids mismatches between user data from 

different sources, affecting model learning and degrading performance, as shown in Figure 6. 

 

Figure 6. Vertical Federated Learning 

4.2.3. Federated Transfer Learning 

Federated transfer learning addresses scenarios where datasets are either non-overlapping or minimally overlapping 

regarding features and users [76]. For instance, a fitness tracker company, Client (III), collects data on users’ physical 

activities (i.e., steps and heart rates), and a smart home service company (Client IV) collects data on users’ home 

movement patterns. In such cases, federated transfer learning can transfer knowledge from the fitness tracking data to 

improve the HAR model for home activity monitoring. This approach is valuable when the adopted datasets are highly 

differing. Although the datasets may involve different attributes and populations, federated transfer learning can assist 

in constructing a global HAR model by leveraging knowledge from source and target domains [77]. 

5. Differences Between Federated Learning and Machine Learning 

Federated Learning (FL) and machine learning have a common objective: achieving effective data learning outcomes. 

In this paper, machine learning encompasses conventional machine learning models such as Random Forest, Decision 

Tree, Support Vector Machine, etc., and deep learning models like Convolutional Neural Networks, Long Short-Term 

Memory Networks, Recurrent Neural Networks, etc. However, FL and machine learning differ fundamentally in their 

architecture and data handling methodologies. Machine learning can be categorized into centralized and distributed 

approaches. In centralized machine learning, data from users’ inertial sensors embedded in smartphones or wearable 

devices is collected and transmitted to a centralized server. The entire model training process takes place on this single 

server. Since all computations are implemented on a single machine, training models, especially deep learning models, 

requires substantial computational resources. Furthermore, this centralized approach increases the risk of privacy 

breaches and security vulnerabilities because users’ data is stored and processed in a single location. In other words, this 

centralized processing approach poses data privacy and security concerns. 
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In contrast, FL decentralizes the model training process on users’ local devices, keeping raw sensor data locally. 

Instead of sharing raw data, only model updates, such as model weight adjustments or gradient updates, are transmitted 

to a central aggregation server. Therefore, FL enhances data privacy security by ensuring that personal activity data 

remains on the user’s device while facilitating collaborative learning across multiple users. While distributed ML and 

FL possess similar data processing architectures where the computational load is distributed across multiple devices, 

their data handling manners differ. Distributed ML analyzes and processes data on central servers. In other words, raw 

data from different sources can be stored in the central servers, raising the risk of privacy breaches. Although some 

distributed systems may use techniques to minimize data sharing, it is less common than FL. Conversely, FL provides a 

privacy-heightening solution where data model training is performed directly on the users’ local devices. Only model 

updates are shared with a central server instead of raw sensor data. Specifically, private and sensitive activity data is kept 

in the users’ devices, reducing the need for sensitive data transfers. The architectural differences between FL, centralized, 

and distributed MLs are depicted in Figure 7. A summary of the differences in data privacy, access, and communication 

is presented in Table 3. 

 

Figure 7. Comparison between centralized, distributed, and federated learning 

Table 3. Federated Learning VS Machine Learning 

 Classical Machine Learning Decentralized Machine Learning Federated Learning 

Privacy High risk Moderate risk Enhanced privacy 

Access to data The central server has full access The central server has full access The central server has access to model updates only 

6.  Challenges in Federated Learning 

6.1. Privacy Security 

Federated Learning (FL) is a new, innovative approach to machine learning. It reduces privacy risks associated with 

data centralization and provides model training across multiple users while keeping their data local and decentralized 

[78]. However, the decentralized approach introduces other security vulnerabilities. Thus, privacy-preserving techniques 

such as Secure Multi-Party Computation (SMC) and Homomorphic Encryption (HE) are required to harden the privacy 

and security of FL. 

SMC secures the input data of each involved party by using encryption. This is to ensure that parties gain no 

information about others’ data. On the other hand, HE is an encryption method that enables the central server to perform 

algebraic operations directly on encrypted model parameters, such as model updates, without requiring decryption. 

Nevertheless, user privacy security can barely be guaranteed in the FL scheme with HE technology, particularly if 

participants with the same secret key collude. Furthermore, SMC and HE technologies encounter limitations due to their 

high communication costs and computational complexity associated with preserving privacy [74]. In HAR systems, 

inertial data is gathered from multiple users and different devices, producing huge amounts of information. The 

encryption and decryption processes to secure this personal data can be computationally intensive. The situation becomes 

worse for low-resource devices with limited processing power. The study in Khan et al. [66] highlights that the increased 

communication costs and latency negatively impact system performance, leading to inefficiencies in real-time 

applications. 

6.2. Communication 

Generally, FL diminishes the risk of privacy violation by decentralizing data and sharing only model updates, which 

is beneficial in sensor-based HAR applications since personal sensitive data is involved [52, 79]. Even though FL 

complements the benefits of privacy, it suffers from significant communication challenges. These challenges can impact 

its practicability and efficiency, especially when numerous devices are involved. The cost of transmitting model updates 

from devices to the central server exceeds the computation cost, resulting in increased communication overhead in FL. 



HighTech and Innovation Journal         Vol. 6, No. 3, September, 2025 

1093 

 

In HAR, real-time activity recognition requires frequent model updates since human movements and behavior patterns 

are dynamically changing. The timely data transmission of model updates from edge devices is crucial for achieving 

instantaneous and accurate activity recognition and monitoring. However, frequent data transmission increases network 

latency and congestion, especially for resource-constrained, low-power devices with limited bandwidth. 

Furthermore, data from diverse devices, such as fitness trackers and smartphones, must be continuously analyzed and 

processed for pattern recognition [80]. Consequently, each edge device must frequently transmit its local model updates 

to the central server. This frequent data transmission raises the communication overhead in FL and further impacts the 

model processing and updating, resulting in substantial delays. The high communication cost results in low application 

efficiency, hindering the feasibility of FL in real-world applications, particularly in real-time HAR recognition and 

monitoring, which require continuous model updates with minimal delay. 

6.3. Data Heterogeneity 

Data heterogeneity presents significant challenges in Federated Learning (FL) for human activity recognition 

applications [10]. Data heterogeneity arises due to inconsistencies and variability in the data collected by diverse clients. 

This includes the variations in environmental conditions, human activities, types of edge devices and/or sensors, and 

their specifications. Consequently, the collected data can vary significantly in distribution, quality, and quantity. These 

inconsistencies lead to non-independent and identically distributed data, resulting in difficulties training a global model 

that performs well for all users. 

One major factor contributing to data heterogeneity is HAR's diversity in sensing devices. A smartwatch that tracks 

activities of daily living continuously gathers accelerometer and gyroscope data throughout the day and generates a 

complete dataset of the user's daily activities. This dataset contains detailed motion patterns of activities such as standing, 

sitting, walking, cycling, etc. Conversely, a smartphone, typically carried in a pocket or bag, may only collect less activity 

data from less frequent interactions, yielding incomplete daily activity representations. This variability results in 

heterogeneous data, challenging this information's effective aggregation and modeling. Furthermore, imbalanced data 

distributions across clients can skew the global model’s learning process, as some devices collect sparse, low-frequency 

samples while others provide rich, high-frequency data. 

7. Algorithms in Federated Learning 

In this section, we will further discuss different Federated Learning (FL) algorithms, focusing on aggregation 

techniques and data model approaches. 

7.1. Aggregation Techniques 

Data heterogeneity presents significant challenges in Federated Learning (FL), particularly in the context of human 

activity recognition applications [10]. Data heterogeneity occurs due to inconsistencies and variability in the data 

collected by diverse clients. This includes the differences in environmental conditions, human activities, types of edge 

devices and/or sensors, and their specifications. Consequently, the collected data can vary significantly in distribution, 

quality, and quantity. For instance, a smartwatch that tracks activities of daily living continuously throughout the day 

will generate a complete dataset of the user's daily activities. Conversely, smartphones may only gather less activity data 

from less frequent interactions. This variability results in heterogeneous data, challenging this information's effective 

aggregation and modeling. 

7.1.1. Federated Averaging (FedAvg) 

The central server aggregates local model updates in FL to form a global model. The aggregation is performed using 

a weighted average, where the weights are proportional to the number of data samples on each client [37]. Specifically, 

the global model at the next iteration is computed as follows: 

𝑤𝑡+1 =  
1

𝐾
∑ 𝑤𝑡+1

𝑘𝐾
𝑘=1   (1) 

where 𝑤𝑡+1
  is the updated global model, K  is the total number of clients and 𝑤𝑡

𝑘  is the model update from device k 
at iteration t. In summary, FedAvg updates the global model by aggregating model updates from each client with a 

weightage corresponding to the data contribution. In other words, clients with more data will have a greater 

weightage/influence on updating the global model. In other words, FedAvg reduces communication costs by enabling 

multiple local updates per communication round. It leverages local stochastic gradient descent to calculate updated 

averages among the clients to facilitate the training of deep networks. 

7.1.2. Federated Proximal (FedProx) 

By keeping local models in reasonable proximity to the global model, FedProx enhances performance, particularly when 

dealing with datasets that exhibit significant differences. It can address the problem of data heterogeneity and improve 

the reliability of the federated learning process [81]. 
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ℎ𝑘(𝑤, 𝑤𝑡) = 𝐹𝑘(𝑤) +
𝜇

2
‖𝑤 − 𝑤𝑡‖2  (2) 

where ℎ𝑘(𝑤,𝑤𝑡) represents the modified local objective function incorporating a proximal term. The goal is to minimize 

a function that includes two parts: the local loss function 𝐹𝑘(𝑤) measuring the model’s performance on the client’s data, 

and a proximal term 
μ

2
 ‖𝑤 − 𝑤𝑡‖2 penalizing deviations from the global model 𝑤𝑡 . 𝜇 is a regularization parameter that 

controls the strength of this proximal constraint such that local models do not drift too far from the global model. The 

proximal term helps keep the local model close to the global model, improving overall stability and convergence in 

federated learning. FedProx addresses system heterogeneity by adding a proximal term to local loss functions such that 

even partially trained models can contribute meaningfully to the global model. 

7.1.3. Federated Normalized Averaging (FedNova) 

Wang et al. [82] highlighted that FedAvg faces challenges when dealing with non-IID data across clients. 

Specifically, the substantial variations in client data distributions may make local models distinct from global ones, 

thereby degrading the overall model performance and stability. FedNova is proposed to address these limitations. This 

aggregation technique normalizes and scales local model updates before averaging and aggregating them into the global 

model. This implementation could guarantee a more stable and balanced aggregation process. The update rule for Fed-

Nova is defined as follows: 

𝑤(𝑡+1,0) − 𝑤(𝑡,0) = −𝜏𝑒𝑓𝑓
(𝑡)

∑ 𝑝𝑖

=

. 𝜂𝑑𝑖
(𝑡)

 (3) 

where 𝑑𝑖
(𝑡)

=
𝐺𝑖

(𝑡)
𝑎𝑖

(𝑡)

||𝑎
𝑖
(𝑡)

||1
. The normalized stochastic gradients 𝑑𝑖 are aggregated. When the local solver is vanilla SGD,           

𝑎𝑖 = [1, … ,1]𝜖ℝ𝜏𝑖and 𝑑𝑖
(𝑡)

 is a simple average over the current round’s gradients.  

Combining these strategies helps FedNova better manage the impact of client heterogeneity on the global model for 

more stable and effective federated training. FedNova normalizes the local updates against the local epoch, which aids 

in achieving fair aggregation and reducing bias for non-IID environments. 

7.1.4. Federated Stochastic Gradient Descent (FedSGD) 

Unlike the aforementioned aggregation techniques, which aggregate local model updates from clients, FedSGD 

aggregates the gradients computed from each client [37]. In this technique, each client computes the gradient of its local 

objective function. Then, the gradients are passed to the central server. The global model is then updated based on the 

aggregated gradients. This update process ensures that while each client owns their data, they can contribute to the global 

model through their gradients. The local objective function 𝐹𝑘(𝑤) of client k is calculated as: 

𝐹𝑘(𝑤) = 
1

𝑛𝑘
 ∑ 𝑓𝑖(𝑤)𝑖∈𝑝𝑘

 (4) 

where 𝑛𝑘 is the number of data samples on the client k, 𝑝𝑘 is the set of data samples on the client k, and 𝑓𝑖(𝑤) is the loss 

function for the ith sample with model parameter w. The gradient 𝑔𝑘 of this local objective function for the current 

model parameters 𝑤𝑡 is then computed: 

𝑔𝑘 = 𝛻𝐹𝑘(𝑤𝑡) (5) 

where 𝛻 denotes the gradient operator concerning the current model parameters 𝑤𝑡. The server aggregates these gradients 

gk to update the global model using a weighted average. The weights are proportional to the number of data samples on 

each client, ensuring that clients with more data have a greater influence on the model update. The global model is 

updated based on the following rule: 

𝜔𝑡 + 1 = 𝑤𝑡 – 𝜂 ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝑔𝑘 (6) 

where 𝜂 is the learning rate, K is the total number of clients, and  
𝑛𝑘

𝑛
 is the proportion of data samples on client k, and 𝑔𝑘 

is the gradient from client k. The updated global model 𝜔𝑡 + 1 is obtained by subtracting the weighted sum of the gradients 

from the current model parameters 𝑤𝑡. FedSGD synchronizes all clients' gradients at every round, maximizing model 

utility and minimizing drift in the event of heterogeneous data. Even though this synchronization renders it less 

communication-efficient than techniques like FedAvg, FedSGD enhances the overall model convergence consistency. 

7.2. Data Model 

Deep learning is a prevalent data modeling tool in sensor-based HAR applications. Deep learning has exhibited 

exceptional performance in the literature due to its exclusive capability to capture intricate features from raw inertial 

signals. This ability enables deep learning models to discriminate complex inertial patterns in human activities, yielding 

substantial improvements in accuracy over traditional machine learning approaches. This section briefly describes the 

𝑚

𝑖 =  1
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popular deep learning algorithms widely used in sensor-based HAR applications, exploring their architecture and 

characteristics. 

7.2.1. Artificial Neural Network (ANN) 

ANN is a computational model inspired by the human brain to perform complex pattern analysis and recognition 

[80]. An ANN comprises an input layer, one or more hidden layers, and an output layer. Each layer is made of neurons, 

which are linked by weights. These weights adjust the strength of the interconnections between neurons. The input layer 

receives raw data and passes it to the hidden layer(s) for data computation. In the hidden layer(s), nonlinear 

transformations are performed via activation functions. This process is crucial for introducing nonlinearity into the model 

because real-world data is complex and nonlinear. Nonlinearity enables the model to learn and capture intricate data 

patterns. A simple feed-forward neural network with one hidden layer is illustrated in Figure 8, and the formulation is 

below. 

 

Figure 8. Architecture for ANN 

The output of the hidden layer, denoted as Hout, is computed as follows: 

𝐻𝑜𝑢𝑡 = 𝐴𝐶𝑇(𝑊1𝑋 + 𝑏1) (7) 

where 𝑊1 represents the weight matrix that links the input layer to the hidden layer, 𝑋 denotes the input vector, 𝑏1 is the 

bias vector for the hidden layer, and 𝐴𝐶𝑇 represents an activation function (e.g. sigmoid function, hyperbolic tangent, 

Rectified Linear Unit (ReLU)). 

The output of the ANN is computed as below: 

𝑌𝑜𝑢𝑡 = 𝐴𝐶𝑇(𝑊2 𝐻𝑜𝑢𝑡 + 𝑏2) (8) 

where 𝑊2 represents the weight matrix that links the hidden layer to the output layer, and 𝑏2 is the bias vector for the 

output layer. 

7.2.2. One-Dimensional Convolutional Neural Networks (1D CNNs) 

Convolutional Neural Networks are widely used for processing data that is sampled on a grid, such as image data 

[83]. On the other hand, 1D-CNN is particularly designed to process one-dimensional input data, such as biomedical 

signals and inertial signals. For a one-dimensional input signal 𝑆 and a kernel 𝑊, the convolution is defined as below: 

(𝑆∗𝑊)𝑛 = ∑ 𝑊𝑖𝑆(𝑖 + 𝑛 − 1)
|𝑤|
𝑖=1   (9) 

𝑂𝑛
′ = (𝑆|𝑊(𝑖.𝑗)| ∗ 𝑊(𝑖, 𝑗))  (10) 

* denotes the discrete convolution process, S is the input data, W is the convolutional filter, 𝑆|𝑊(𝑖,𝑗)| represents the elements 

in 𝑆 from 𝑛 to the dimension of 𝑊(𝑖, 𝑗). 
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Figure 9 depicts a 1D Convolutional Neural Network sample for Human Activity Recognition. Six data inputs 

corresponding to the 3-axis data from an accelerometer and a gyroscope are inputted to the model. Each input is 

processed by convolutional and pooling layers. The outputs are then concatenated and fed into fully connected layers, 

respectively. Lastly, activities are classified using a SoftMax layer. 

 

Figure 9. Architecture of a 1D CNN structure 

7.2.3. Long Short-Term Memory (LSTM) Networks 

LSTM networks are recurrent neural networks capable of extracting and modeling temporal dependencies in time-

series data [83]. Unlike traditional recurrent neural networks, LSTM addresses the problem of vanishing gradients 

associated with long-term dependencies in time-series data. LSTMs consist of multiple memory cells that store and 

process information over time, as depicted in Figure 10. LSTM networks use input gates, output gates, and forget gates. 

The inputs are divided into two components: input state at t(𝑥𝑡) and output state at 𝑡 − 1(ℎ 𝑡−1). The input gate can be 

represented as: 

𝑖𝑡 = 𝜎(𝑊[𝑥𝑡, ℎ 𝑡−1, 𝐶𝑡−1] + 𝑏𝑖) (11) 

𝐶𝑡 = 𝑓𝑡. 𝐶𝑡−1 + i. 𝑡𝑎𝑛ℎ(𝑊[𝑥𝑡, ℎ 𝑡−1, 𝐶𝑡−1] + 𝑏𝑐) (12) 

The forget gate determines what data will be forgotten from the cell memory. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ 𝑡−1𝑥𝑡] + 𝑏𝑓) (13) 

The forget gate and the input gate both update the cell unit state. 

𝐶𝑡 = 𝐶𝑡-1𝑓𝑡 + 𝐶̃𝑡𝑖𝑡 (14) 

Finally, the output is produced via the output gate. 

𝑜𝑡 = 𝜎(𝑊[𝑥𝑡, ℎ𝑡−1, 𝐶𝑡] + 𝑏𝑜) (15) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) . 𝑜𝑡 (16) 

where 𝑖𝑡 is the state of the current input gate, 𝑓𝑡 is the state of the current forget gate, 𝑥𝑡 is the input sequence, and ℎ 𝑡−1 

is the output. 𝐶𝑡 and 𝐶𝑡−1 are the current cell state and the previous cell state, respectively. 𝑏 is the bias vector, and 𝑊 is 

the weight vector for each input. 𝜎 is the logistic sigmoid function. 

 

Figure 10. The Architecture for LSTM 
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7.2.4. Bidirectional LSTM (BiLSTM) 

LSTM models process data in a single direction, which can limit their capability to comprehend the data. Thus, 

BiLSTM is proposed to enhance ordinary LSTMs by processing data in both forward and backward directions, as 

depicted in Figure 11. This implementation facilitates BiLSTM to capture information from past and coming data, 

yielding better model performance. 

In a BiLSTM model, the output of the backward layer (ℎ𝑡
𝑏) and forward layer (ℎ𝑡

𝑓
) are used to produce the final 

hidden state at time 𝑡, i.e. ℎ 𝑡, using weighting factors 𝛼 and 𝛽 (or trainable parameters) that control how the forward and 

backward states are combined in the BiLSTM model is generated as: 

ℎt = 𝛼ℎ𝑡
𝑓

 + 𝛽ℎ𝑡
𝑏  (17) 

𝑥0
1 = 𝑦𝑡 = 𝜎(ℎ𝑡) (18) 

where 𝑥0
1 is the final output from the BiLSTM at time 𝑡, 𝑦𝑡 denotes the output at time t, and 𝜎 is the sigmoid activation 

function. BiLSTM is useful in HAR because it can further improve the temporal dependencies learned from the sensor 

data of wearable devices by considering both previous and future readings. This results in higher accuracy of classifying 

activities and increased ability to handle noise. HAR activities include data gathering and preprocessing, feature 

extraction with BiLSTMs, activity classification, and performance assessment, leading to better activity recognition and 

lower error levels. The BiLSTM networks make HAR models more effective in dealing with temporal patterns because 

bidirectional processing yields better classification accuracy and makes the activity recognition systems more efficient. 

The structure of BiLSTM is shown in Figure 11. 

 

Figure 11. The architecture for BiLSTM 

8. Analysis of Federated Learning Methods for Human Activity Recognition 

Federated learning (FL) is a decentralized data processing approach that allows multiple devices to collaboratively 

train a model while keeping the data at the local devices. In the FL framework of human activity recognition, each 

device, such as smartphones or wearable sensors, trains a local model using its sensor data for basic data learning. After 

that, the local model updates of each device are transmitted to a central server to integrate these updates using aggregation 

algorithms. This collaborative process facilitates the development of accurate models while preserving data privacy. 

This is beneficial for HAR applications since the data involved is usually personal. 

Table 4 summarizes several popular model aggregation techniques and local training models used in HAR. FedAvg 

is a simple and widely used aggregation technique that averages local model updates. However, it struggles with non-

IID data. On the other hand, FedProx enhances stability in diverse data settings with an added regularization term. 

FedNova scales model updates to ensure fair aggregation, but its performance heavily depends on hyperparameter tuning. 

FedSGD synchronizes the model gradients closely. However, frequent communication is required, making it less 

efficient for real-time applications. For local training models, various architectures are proposed to learn inertial patterns 

of sensor data. ANN is a brain-inspired model composed of input, hidden, and output layers. The model can recognize 

diverse data by learning complex patterns through weight updates. 
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Table 4. Summary of the model aggregation techniques and local training models 

Aggregation 

Technique 
Description Remarks 

FedAvg 
Averages local model updates, weighted 

by each device’s data amount. 

 Simple and easy to implement, reduced communication cost with fewer update rounds 

 Sensitive to differences in data (non-IID data) 

 Unreliable clients may lead to slower model convergence 

FedProx 
Adds a penalty term during local training 

to keep each device’s model close to the 

global model. 

 Improves stability and convergence in diverse data settings 

 Better handles data heterogeneity 

 Increase the computation burden on resource-limited sensors 

FedNova 
Normalizes and scales local updates 

before combining them to balance 

contributions from all devices. 

 Ensures fairer aggregation in non-uniform settings 

 Reduces bias in model updates 

 Extra computational overhead 

 Sensitive to hyperparameter selection 

FedSGD 
Aggregates gradients computed on each 

device rather than full model updates. 

 Reduces model drift by synchronizing gradients closely 

 Requires frequent communication 

 May not be efficient for real-time applications due to high communication overhead 

On the other hand, 1D CNN is efficient for sequential data such as inertial signals. Its low computational cost makes 

it suitable for real-time and low-cost applications. LSTM models temporal dependencies in time-series data using 

memory cells. Unlike RNNs, LSTM effectively resolves vanishing gradient problems. BiLSTM is an enhanced LSTM 

variant that captures both past and future data context. This feature improves richer temporal relations, yielding 

promising classification performance for sequential tasks. 

9. Future Directions 

Human activity recognition (HAR) using sensor data has gained significant attention due to its applications in health 

monitoring, fitness tracking, and smart environments. Sensor-based HAR typically relies on data from accelerometers, 

gyroscopes, and other wearable devices to detect and classify activities. However, the sensitive nature of this data poses 

substantial privacy challenges. Recent studies leveraging FL in sensor-based HAR have demonstrated its potential to 

preserve privacy while achieving competitive performance. Building on this foundation, future advancements in FL 

could focus on resolving challenges such as integrating heterogeneous multi-source data, improving personalization, and 

ensuring resource-efficient deployment in real-world HAR applications. 

Federated Learning for Heterogeneous Multi-source Data: FL can improve the quality of human activity 

recognition by integrating data from multiple sources, including accelerometers, gyroscopes, heart rate monitors, and 

other wearable devices. Multi-modal sensor fusion allows models to capture more complementary information, which 

is particularly important for correctly identifying complex activities [84]. Besides that, systems such as the Passive Multi-

Modal Sensor Fusion for Human Identification and Activity Recognition (PRF-PIR) framework, incorporating passive 

and non-intrusive sensing devices, constitute a sound example of how sensor fusion may enhance accuracy because of 

external interference or limited fields of view challenges [85]. Nonetheless, the heterogeneity of multi-source data poses 

significant challenges in FL frameworks. Diverse data formats, sampling rates, sensor modalities, and noise across 

devices can negatively impact the model's performance. 

Furthermore, sensor placements and user gait/motion variations also contribute to the diversity. Advanced 

aggregation techniques, reliable data harmonization strategies, and innovative architectures are essential to deal with the 

complexities. Future research may focus on developing scalable methods for effectively integrating these heterogeneous 

data. 

Federated Learning for Personalized HAR Models: FL facilitates personalizing HAR models to individual users 

without compromising privacy. For instance, FedHAR represents a semi-supervised federated learning framework, 

combining active learning and label propagation to overcome the problem of scarcity of data through semi-automatic 

annotation of sensor data for activity recognition on mobile devices [20]. Personalization is crucial in healthcare and 

fitness tracking, where users exhibit different behaviors, characteristics, and needs. To advance this field, future research 

should prioritize scalable and flexible personalization approaches to improve user-focused HAR in federated settings. 

Designing adaptive learning procedures may be investigated further. 

Federated Learning for Resource-efficient HAR on Wearable Devices: Wearables, including smartwatches and 

trackers, are an increasingly common device type for HAR. However, these devices face resource constraints in terms 

of battery life, computation power, and storage [86]. These device constraints could limit the efficacy of HAR models 

in real-world applications. Future research should be directed to the design of lightweight FL architectures, energy-aware 

algorithms, and communication-efficient protocols to optimize resource usage in these devices. Developing strategies 

for adaptive computation, where the model can dynamically adjust its complexity based on available resources, could 

be a good alternative for real-time HAR in diverse settings. 
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10. Conclusion 

Deep learning methods have demonstrated superior performance in identifying human activities from inertial 

data by learning high-level, intricate features. However, these centralized architectures that transmit raw sensor data 

to a central server present critical privacy and security concerns. Federated Learning (FL) offers an alternative 

solution by decentralizing the training process. Specifically, only model updates are shared, while personal data 

remains on local devices in FL environments. This is particularly valuable for human activity recognition 

applications since human activity data can reveal sensitive and confidential information. This paper provides a 

comprehensive overview of FL in sensor-based HAR, highlighting how it surpasses traditional machine learning in 

distributed environments. This paper also discusses key FL components, such as local training models and model 

aggregation strategies. The limitations of HAR-specific FL models, including data heterogeneity, communication, 

and privacy challenges, are also deliberated. 

In summary, FL demonstrates its potential to transform sensor-based HAR by achieving an optimal balance between 

system reliability, scalability, and privacy. Future research should optimize communication efficiency, address 

heterogeneous data distributions, and enhance privacy-preserving approaches to meet the demands of even more 

advanced applications. Furthermore, exploring adaptive aggregation techniques and developing reliable local models is 

vital to overcoming limitations in HAR-specific federated learning environments. With these advancements, FL-based 

HAR solutions will be capable of achieving robust, secure, and efficient activity recognition in real-world environments 

to enhance healthcare, fitness, and smart homes. We anticipate further advancements in this area to lead to more 

integrated, user-centric systems that ensure improved overall quality of life. 
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