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Abstract

Deep learning has demonstrated exceptional human activity recognition (HAR) performance by extracting complex
features from inertial data. However, this centralized training approach aggregates data from multiple user devices into a
central server and raises significant privacy concerns. Federated learning (FL) is proposed as an alternative. It provides a
privacy-preserving scheme by training data analytics models on local users’ devices rather than transferring raw data to a
central server for data processing. Although FL is widely applied to various pattern recognition applications, its use in
sensor-based HAR is limited, and reviews of the HAR application are even scarcer. Therefore, this paper provides a
comprehensive review of FL in HAR. This paper analyzes FL’s architectural design, data model training strategies, and
model aggregation techniques. A comparative analysis between FL-based and machine learning methods is presented. The
challenges, including data heterogeneity, data privacy, and communication costs, are identified through the findings, while
the potential research direction of FL in HAR is underscored. This paper provides insights into the current state of FL for
HAR, pinpoints research gaps, and outlines encountered challenges and potential research directions.
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1. Introduction

The deep learning approach has been extensively explored for data analysis and recognition in various fields in recent
years. This approach reveals hidden patterns and intrinsic data structures, which are crucial for data analysis. Previous
studies have demonstrated that deep learning models, such as convolutional neural networks (CNNSs) and recurrent neural
networks (RNNs), achieve exceptional recognition performances in various applications [1-5]. However, a huge amount
of training samples is required to achieve exceptional performance, and these data samples are centrally processed and
analyzed. In other words, each client's data samples must be transmitted/shared and stored in a central server. This raises
the risk of cybersecurity attacks, especially during data transmission and storage. A breach in a single system can
compromise all the data. Hence, crucial data security and privacy concerns are triggered when implementing a deep-
learning approach [6-9]. These concerns are amplified when handling personal and sensitive data [10]. To address these
challenges, federated learning (FL) has emerged as a promising alternative [11-13].
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Unlike deep learning methods, data learning and analysis are conducted in a decentralized practice in the FL
framework. In other words, data analytics models are trained directly on users' devices on the client side. This practice
eliminates the need to transfer the raw data to a central server and store it at a single location.

Human activity recognition (HAR) manipulates human activity data for activity detection and classification. This
technology is increasingly prevalent and applied in diverse applications, including fitness tracking, smart home
assistance, healthcare monitoring, and workplace monitoring [12, 14-17]. Privacy and data security concerns arise from
the pervasive applications of HAR. HAR systems collect and analyze personal inertial data about individuals'
movements, activities, and behaviors. This personal data possibly discloses sensitive information, such as the subject’s
location, health conditions, daily routine, and social interactions. Hence, the FL framework has been proposed for human
activity recognition [13, 18-20]. As aforementioned, FL is a technology that accommodates decentralized data processing
and analysis.

Each HAR data analytics model is trained at the local client side by using the respective user’s inertial motion data
as the training data and the validation data on their device. Then, the updates/model weights from the local client are
sent to the global server to update the weights of the global model during the training process. Figure 1 illustrates the
overview process flow of a federated learning HAR framework. Firstly, a global model is designed and initialized with
initial parameters at a central server. Next, the global model is broadcast to the selected clients using the current global
model parameters. On the client side, each local client now possesses a data analytics model trained locally using the
respective client’s inertial motion data. After completing the local model training, the updates/model weights of the local
model are sent back to the global server. The global server aggregates these updates/model weights with a federated
aggregation algorithm. The aggregated algorithm helps improve the global model by updating the weights of the global
model based on the aggregated values from the local clients. During this process, the data privacy of the raw data from
each device is preserved at each local client. The other local clients cannot access the raw data nor the global model
because the data sent from the local client to the global server is in the form of model weights. These model weights
signify the learned patterns from the inertial data but do not contain any raw data. In this way, FL can protect user privacy
while still collaborating with the machine or deep learning for better classification performance.
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Figure 1. The overview process flow of a federated learning HAR framework

Federated learning has recently shown great potential as a decentralized approach that could offer more privacy and
efficiency in diverse applications, especially those involving sensitive personal data. Since it keeps the data on local
devices, FL minimizes data transmission and central storage risks. Hence, it is well-suited for sensor-based human
activity recognition, where privacy is a top priority. FL offers several advantages:

e Minimizes risks of data breaches: By keeping data on local devices, FL reduces the risks associated with
transmitting raw inertial data over networks or storing it in centralized servers. This ensures that sensitive
information, such as human activity patterns, remains protected, reducing the possibility of exposure if there is a
system compromise.

o Protects user privacy: Unlike centralized approaches, FL ensures that raw sensor data never leaves the user's device.
Only model weights, as abstract representations of the learned patterns, are shared with the global server. This
privacy-preserving design is significant for HAR applications, where human activity data can reveal sensitive
information about the users' daily activities, health conditions, or location.

1080



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

e Improved generalization: FL enables models to train on diverse, heterogeneous data across users. This helps
improve the HAR models’ generalization capability to capture the variability in human activity dynamics
effectively.

Studies have explored FL in various pattern recognition tasks. However, the adoption of FL in sensor-based human
activity recognition remains limited, and reviews of the HAR application are even scarcer [21-27]. In particular, several
research gaps exist in this area:

o Limited systematic reviews on FL for sensor-based HAR: Although FL has been studied in healthcare, finance,
etc., comprehensive reviews focusing on its application in sensor-based HAR are scarce. Most literature reviews
emphasize general FL architecture without addressing HAR-specific challenges and limitations. A review tailored
to FL-based sensor-based HAR is needed to bridge this gap.

o Lack of comparative studies between FL and machine learning approaches for HAR: There are limited comparisons
against the machine learning approach in HAR-specific tasks. Examining how FL performs compared to machine
learning approaches in HAR applications, particularly regarding data processing architectures and privacy
implications, remains insufficient.

¢ Challenges in adapting FL for HAR in real-world deployments: Though FL provides a privacy-preserving solution,
its deployment for real-world HAR applications faces several challenges. These include data heterogeneity across
users and sensor modalities, communication constraints, and limited computational resources on edge devices.

While prior survey publications concentrated on the conceptual and technical issues of FL, the contributions of our
study are summarized as follows:

o Survey of federated learning in sensor-based HAR: This paper thoroughly reviews FL applied to sensor-based
HAR. It also includes the architecture of FL frameworks within the context of sensor-based HAR and the
comparisons between conventional machine learning and federated learning.

o Exploration of federated learning framework for sensor-based HAR: This includes local training models and model
aggregation algorithms used in the FL framework.

e Challenges of federated learning in the sensor-based HAR context: Challenges encountered when implementing
FL for HAR are discussed. These include data diversity, privacy and security concerns, and communication costs
associated with model updates.

The rest of the paper is organized as follows. Section 2 reviews related work on HAR and federated learning. Section
3 outlines the review methodology employed in our study, and Section 4 presents the fundamentals of federated learning
in the context of sensor-based HAR. Section 5 provides a comparative analysis of federated learning and machine
learning approaches for HAR-specific tasks. Section 6 discusses the challenges of deploying federated learning in real-
world human activity recognition, while Section 7 discusses algorithms for local model training and model aggregation
in FL. Section 8 outlines potential research directions of FL in sensor-based HAR, and Section 9 concludes the paper.

2. Related Work

Sensor-based human activity recognition (HAR) is a prevalent technology that utilizes sensors, either wearable
sensors or sensors embedded in smartphones, to analyze and understand human movements. The advancements in deep
learning significantly boost the performance and robustness of HAR models. However, conventional centralized deep-
learning models encounter risks concerning privacy [10]. In these deep learning models, large volumes of sensitive
personal data, such as daily activities, locations of the user, health metrics, etc., are transmitted and stored on central
servers, thereby raising the risk of data breaches. Furthermore, the continuous data transmission to and from the
centralized models may be susceptible to man-in-the-middle attacks. This further heightens the security risks. Federated
learning (FL) has recently emerged as an alternative solution [28-32]. This decentralized data processing framework
facilitates training HAR models on user devices to address privacy concerns. Various methods are proposed to improve
the robustness and efficiency of FL models in human activity recognition applications, yielding better classification
performance and model generalization across diverse user data and different devices [10, 18, 33-37].

One of the key contributions of FL frameworks is their design to maintain data privacy. Data analytics models are
trained on local devices, while only model updates are transferred to a central server [38, 39]. This decentralized approach
minimizes the risk of personal data exposure. In recent years, the Internet of Things (10T) has gained enormous popularity
due to its ability to automate devices and provide conveniences. The application of 10T has created a demand for secure
and efficient data processing. By leveraging FL, 10T systems can enhance data privacy-enhancing communication
efficiency [40-44]. To preserve user privacy and diminish delay, FL reduces the amount of data transferred between
devices and servers, improving system performance and ensuring scalability and efficiency. Implementing FL training
directly on devices reduces the requirement for extensive cloud-to-client communication. Thus, those issues associated
with communication overhead, privacy issues, and compliance with data protection regulations are mitigated.
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Instead of transmitting raw data, FedAvg, which was proposed by McMahan et al., averages model updates to reduce
communication overhead since the model updates are smaller than the entire dataset [37]. This requires less bandwidth
and improves communication efficiency. Ek et al. further explored the application of FedAvg for smartphone-based
HAR [45]. The authors claimed that although federated learning has been applied widely, it still stays at the conceptual
stage and needs to be clarified and tested. Their experimental findings demonstrate that FedAvg is more suitable for a
heterogeneous and imbalanced database (in their study, the REALWORLD dataset was used) than the in-lab and
balanced datasets (UCI was used).

The practicality of FedAvg is constrained by its inability to accommodate heterogeneous model architectures. Hence,
Gad and Zubair proposed a novel FL framework for distributed training of heterogeneous models [46]. This approach is
called Federated Learning via Augmented Knowledge Distillation, or FedAKD. This proposed approach is more flexible
because it can adapt to collaborative heterogeneous deep learning models with diverse learning capacities. From the
experimental results on HAR datasets, FedAKD exhibits superior classification performance, attaining up to 20% higher
accuracy than other model-agnostic FL models.

Additionally, the communication overhead of FedAKD is much less than that of other FL models that transmit
models’ gradients. The reduction of communication overhead improves the efficacy of the federated learning procedure.
Furthermore, Ek et al. proposed FedDist, a novel federated learning algorithm that revises deep learning models during
training to detect neuron dissimilarities among clients [47]. This attempt can ensure the preservation of client specificity
without compromising the model’s generalization. The authors evaluated their proposed system on three heterogeneous
mobile HAR datasets. The empirical results exhibit that the proposed FedDist is superior to the other state-of-the-art FL
algorithms for its adaptability to data heterogeneity.

Ouyang et al. devised an FL system specifically for human activity recognition, known as ClusterFL [13]. The
proposed ClusterFL is a similarity-aware FL model that facilitates high-performance accuracy while offering low
communication overhead for HAR applications. The model offers a strategy that maximizes the training performance of
different learned models. It also captures the underlying clustering relationship among data from different nodes. By
utilizing the learned cluster relationship, ClusterFL efficiently withdraws the nodes that converge more slowly or have
little correlation with other nodes in each cluster. This escalates the model’s convergence while retaining the
classification performance. Besides that, Shen et al. claimed that HAR is critical in healthcare applications, but collecting
personal information for training creates privacy problems [48]. Existing FL approaches have difficulty adapting to new
users due to individual variances in activity performance. Shen et al. proposed FedMAT, a new Federated Multi-task
Attention framework for human activity recognition, to address this challenge. FedMAT treats each user as a separate
learning task. The proposed FL system employs a shared network to learn common features and engages individual
attention modules to capture user-specific differences. With these implementations, FedMAT learns generalizable
features while adapting to specific users. The reported experimental results demonstrate that the proposed system can
perform better for existing and new users.

Yu et al. proposed a personalized federated human activity recognition framework to address the challenges of
privacy preservation, real-time, label scarcity, and heterogeneity patterns [20]. The proposed FL framework is known as
FedHAR. In FedHAR, distributed learning is conducted to perform model training on local devices for users’ privacy
preservation. The model adopts semi-supervised learning to aggregate the gradients of all the labeled and unlabeled
clients. The reported empirical results demonstrate that the proposed FedHAR is superior to the existing models on two
public datasets. Tu et al. highlighted that one of the challenges of the existing HAR-based FL models is the failure to
adequately describe the statistical diversity of user data [18]. Besides that, these FL models adopt static aggregation
techniques that scarcely adapt to the varying data distributions across subjects. These limitations result in suboptimal
recognition performance. Motivated by the challenges, the authors introduce a novel FL system to dynamically capture
the intrinsic intraclass similarities for data learning. This feature is vital in exhibiting the inherent environmental and
behavioral commonalities. The proposed model also employs a dynamic layer-sharing scheme to capture similarities
among users’ model weights. The proposed FL model outperforms the existing approaches regarding classification
accuracy and model convergence speed because of its lower communication overhead.

While FL provides a privacy-preserving alternative by training data analytics models on user devices, FL suffers
from non-independent and identically distributed (i.e., non-11D) data, which significantly varies in user behavior. To
overcome this issue, Presotto et al. introduced FedCLAR, a new federated clustering approach for HAR [19]. FedCLAR
classifies users with similar activity patterns by examining a subset of the model weights shared with a central server.
This selective analysis minimizes communication overhead. The system outperforms conventional FL solutions in HAR
tasks. Although FedCLAR can address non-11D data in FL-based HAR via user clustering, labeled data is still required
on all devices. Thus, Presotto et al. proposed a semi-supervised FedCLAR, coined SS-FedCLAR, to improve their
previously proposed FedCLAR model, which requires labeled data for model training [49]. This model combines
FedCLAR's federated clustering with the FedAR algorithm proposed by Presotto et al. to mitigate the labeled data
scarcity problem and leverage unlabeled data. SS-FedCLAR assigns pseudo-labels to the unlabeled data using active
learning and label propagation. This can extend the training dataset without needing additional labeling. The authors
reported that the SS-FedCLAR outperforms the previous algorithms by obtaining higher accuracy with less labeled data.
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Arikumar et al. highlighted that Smart Healthcare (SHC) solutions, which use wearable sensors to track human
activities, have difficulty managing much unlabeled data on cloud servers [50]. Thus, they proposed the Federated
Learning-Based Person Movement Identification (FL-PMI) to address this issue by labeling unlabeled data with deep
reinforcement learning. In this system, Bidirectional Long Short-Term Memory is employed to categorize the data for
SHC use. FL-PMI can reduce connectivity costs and cloud workloads by shifting computation to edge servers. This
approach detects motions with high accuracy (99.67%) while requiring minimal resources and data transfer. Shaik et al.
highlighted the challenges of traditional remote patient monitoring systems based on centralized learning [51]. These
systems struggle to integrate patient privacy and personalized monitoring with wearable sensors for human activity
recognition. The authors devised FedStack, an FL architecture that enables training several Al models on individual
devices. Fed-Stack trains models on local devices and sends predictions to a central server. The server combines these
predictions to improve a global model. Empirical results show that the proposed FedStack provides high activity
detection accuracy (99.6%) while respecting privacy.

Applications such as human activity recognition (HAR) raise privacy concerns and result in high communication
costs due to data transfer from edge devices [52]. To address this issue, Al-Saedi et al. introduced Cluster Analysis-based
Federated Learning (CA-FL), which enables collaborative model training directly on user devices such as smartphones
while keeping data private. CA-FL uses clustering analysis to detect comparable updates from devices. CA-FL uploads
only representative updates from each cluster to the central server. This implementation helps lower communication
overhead. The authors claimed that the proposed CA-FL provides a communication-efficient FL solution for HAR that
ensures accuracy while safeguarding user privacy.

Furthermore, Cheng et al. proposed a novel FL framework to address the challenges of traditional FL in sensor-based
human activity recognition, which struggles with non-identical data distributions across devices [10]. The non-identical
data distributions can result in slow convergence and inaccurate models. The proposed FL architecture is namely
ProtoHAR. This model overcomes the issue by dissociating the representation and classifier in the heterogeneous FL
setting. The performance of ProtoHAR was assessed on four datasets: HARBOX, USC-HAD, PAMAP2, and UNIMIB-
SHAR for controlled environments and real-world scenarios. The experimental results reveal that this proposed system
achieves an encouraging performance and improves model convergence.

In summary, Al models, whether machine learning or deep learning, are crucial for learning data characteristics to
achieve accurate outcomes. Model personalization within FL frameworks is vital for optimizing Al models across diverse
user populations and device capabilities [53-57]. In diverse environments, users show varying patterns, behaviors, and
preferences. By personalizing models, FL frameworks can adapt to the variations. Furthermore, personalization in FL
frameworks enriches the user experience by making Al systems more responsive and customized to individuals.
Specifically, these personalized models can better analyze and predict individual activities for more accurate monitoring
and assistance. Table 1 presents the literature summary of the relevant FL frameworks in HAR applications, recapping
various aggregation techniques and Al models employed in applying sensor-based human activity recognition.

Table 1. Summary of related works on FL frameworks for HAR applications

Literature The proposed system Database(s) Methodology Performance metrics (%)
New federated label-based aggregation, leveraging
Gudur & Perepu [58] federated  Federated Learning with overlapping information gain across activities using
learning with heterogeneous Model Distillation and HHAR Model Distillation Update. Federated transfer of model  Local update Accuracy 72.293
labels and models for mobile  Label-Based Averaging scores is proposed from device to server. Global update Accuracy 83.303
activity monitoring for Heterogeneous HAR Data models: CNN and Artificial Neural Network
(ANN).
Tllj_:;::]li'n[l?l]iaFegDnlzm'i:deiraetSd LiDAR, UWB, Uses a dynamic layer-sharing approach to learn the Mean zﬁac 98
pisini Ao Al A FedDL HARBOX-IMU, IMU similarity among users model weights, thenmergesthe o =8 P2 PE =0
4 L Y and Depth models accordingly data model: CNN. ~ Y
Recognition all datasets => 90
A federated representation learning framework - a signal ~ HHAR
embedding network is meta-learned in a federated  Meta-train user Accuracy 98.39
manner, while the learned signal representations are fed ~ Meta-test user Accuracy 92.50
Li et al. [59] Meta-HAR: HHAR, USC-HAD,  intoapersonalized classification network at each user for USC-HAD
Federated representation learning Meta-HAR and Newly collected  activity prediction. Meta-train user Accuracy 93.79
for human activity recognition dataset The HAR problem at each user is treated as a different Meta-test user Accuracy 91.07
task, and the shared embedding network is trained Collected Dataset
through a Model-Agnostic Meta-learning framework so  Meta-train user Accuracy 90.76
that the embedding network can generalize. Meta-test user Accuracy 93.29
Incorporates Graph Convolutional Networks (GCNs) in MHEALTH
Sarkar et al. [60] GraFeHTy: the federated learning context. Centralized Accuracy 98.7
i imilari Federated Accuracy 97.9
Graph Neural l\_letwork using GraFeHTy MHEALTH and WISDM A sm_nlarlt_y graph from sensor rr_leasurements for eac_h y
Federated Learning for Human user is built, and CGN is applied to perform semi- WISDM
Activity Recognition supervised classification of activities. Centralized Accuracy 91
Weights are averaged using FedAvg. Federated Accuracy 81.7
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Kirsten et al. [61] Sensor-Based
Obsessive- Compulsive Disorder
Detection with Personalized
Federated Learning

Al-Saedi et al. [52] Reducing

Communication Overhead of

Federated Learning through
Clustering Analysis

Presotto et al. [19] FedCLAR:
Federated Clustering for
Personalized Sensor-Based
Human Activity Recognition

Zhou et al. [14] 2D Federated
Learning for Personalized Human
Activity Recognition in Cyber-
Physical-Social Systems

Shen et al. [34] Federated Multi-
Task
Attention for Cross-Individual
Human Activity Recognition

Arikumar et al. [50] FL-PMI:
Federated Learning-Based Person
Movement Identification through

Wearable Devices in Smart
Healthcare Systems

Shaik et al. [51] FedStack:
Personalized activity monitoring
using stacked federated learning

Cho et al. [62] FLAME: Federated
Learning across Multi-device
Environments

Combined personalized

federated learning for OCD

detection

Cluster Analysis- based
Federated Learning (CA-
FL)

FedCLAR

2-Dimensional Federated
Learning (2DFL)

FedMAT

FL-PMI

FedStack

FLAME

OPPORTUNITY

mHealth and Pamap2

WISDM and MobiAct

Combined datasets of
UniMiB-SHAR and
Personal Gadget Dataset

HHAR, PAMAP2,
ExtraSensory and
SmartJLU

UniMiB-SHAR and
Realworld

MHEALTH

RealWorld, PAMAP2,
and Opportunity

Vol. 6, No. 3, September, 2025

Detects Obsessive-Compulsive Disorder (OCD) through
federated learning, augmented by the OPPORTUNITY
dataset-comprises repetitive activities that can indicate
OCD.

Data model: a two-layer bidirectional Long Short-Term
Memory (LSTM) with a fully connected output layer and
dropout between every layer.

Evaluates three personalized federated learning
strategies for OCD detection utilizing augmented sensor
data from the OPPORTUNITY dataset.

Lessens communication overhead without
compromising accuracy by diminishing the number of
worker updates transferred.

Initializes by clustering local updates from available
workers, then selects representative workers for training,
using only their data to build the global model.

The process is iterative, adapting worker partitioning and
selecting new representatives each round - aggregating
global model updates by representing groups of similar
local parameters.

Federated learning for personalized HAR using
hierarchical clustering and transfer learning.

User clustering technique that utilizes server-side
similarity computation.

Only a portion of the model weights is shared by each
participating user.

Solves the non-11D issue through the integration of
federated clustering with transfer learning.

Two federated learning schemes: the vertical and
horizontal FL schemes

Integrates shareable features across heterogeneous data
from different devices using vertical federated learning
and collects encrypted local models built from multiple
individual users’ data through horizontal federated
learning data model: CNN

Applies federated multi-task learning for HAR, where
each user’s HAR is considered a task.

Uses a central model combined with individual-specific
models.

CNN-RNN is used to analyze sensor data and attention-
based masks to extract individual characteristics.

FedAvg enables the aggregation of updates of local
models on 10T devices.

Leverages deep reinforcement learning for auto-labeling
the data.

Bidirectional Long Short-Term Memory (BIiLSTM) is
employed to analyze and classify the data.

Uses FedAvg to aggregate local model parameters from
edge devices.

Overcomes the limitations of traditional federated
learning (aggregating the heterogeneous model).

Build a heterogeneous global model across devices with
different Al models, using heterogeneous stacking to
aggregate non-identical architectural models

Supports ensembling heterogeneous architectural client
models.

Three Al models (ANN, CNN, and BiLSTM) are trained
on individual data.

The federated learning architecture is applied to these
models to build a local and global model.

Focusing on the user-centered synchronization of data
from different devices to overcome the statistical and
systematic  heterogeneity, providing  maximized
inference performance with minimized required
resources.

Integrates model personalization to adjust the global
model for each device and thus improve the inference
performance and multi-device consistency.
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OPPORTUNITY
AUPRC ~95

MHealth

F1 score (11D) (round 100) 56.7
F1 score (non 11D) (round 20) 57.4

Pampa2

F1 score (11D) (round 20) 96.2
F1 score (non 11D) (round 80) 96.6

WISDM
Accuracy 89

MobiAct
Accuracy 94

Combined dataset

Accuracy 93
Recall 89
F1 score 90

HHAR
Accuracy 96.88
Macro F1 96.81

PAMAP2
Accuracy 92.61
Macro F1 91.84

ExtraSensory
Accuracy 75.72
Macro F1 75.03

SmartJLU
Accuracy 89.78
Macro F1 83.02

Accuracy 99.67

Precision 99.37

F1-Score 98.92
Recall 99.11

MHEALTH
ANN
Accuracy 99.6
CNN
Accuracy 99.6

Bi-LSTM
Accuracy 98.6

Realworld
Device Macro F1 83.8
Global Macro F1 52.6

F1 score 58.0

Opportunity
Device Macro F157.5

Global Macro F1 48.5
F1 score 50.5

PAMAP2
Device Macro F1 53.0
Global Macro F1 39.7

F1 score 39.0



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

Develops a novel lightweight  transformer,
complemented by the proposed TransFed framework for
privacy-preserving collaborative model training across
distributed devices.

. . WISDM
Raza etal. [28] Lightweight The proposed TransFed is the first framework for Accuracy 96.89
Transformer in Federated Setting WISDM, activity classification based on federated learning and Y98
for Human Activity Recognition TransFed Self-collected dataset  transformers. Self-collected Dataset
in Home Healthcare Applications . .
A central server distributes a transformer model to edge ~ Federated Setting Accuracy 98.74
devices for local training. Centralized Setting Accuracy 99.14
Trained parameters are returned to the server for
aggregation, creating a global model. Edge devices then
download and update their local models accordingly.
Combines federated learning with the semi-supervised
Presotto et al. [49] Federated learning scheme to solve the non-11D and data scarcity WISDM
Clustering, and Semi-Supervised Issues. Hierarchical F1 score 88
learning: A new partnership for SS-FedCLAR WISDM and MobiAct  Each client employs a mix of active learning and label )
personalized Human Activity propagation to create pseudo labels for unlabeled data, MobiAct
Recognition which is subsequently utilized to train a Federated Hierarchical F1 score 96

Clustering model collaboratively.

Works with unlabeled data and considers issues such as
computation limitations, communication costs, and
deadlines.

Involves an initialization phase in which the model and
10T devices’ parameters are determined, then multiple
training rounds in which the server gathers the devices’
Over Heterogeneous Wireless Federate_d semi-supervised HAR, CIFAR-10, and mform_atlon,_ sets the flme deac_ill_nes, and selects devices
. learning (FedSemL) MNIST that will be involved in the training process.
loT Edge Networks: Framework

and Algorithms Devices complete local updates by pseudo-labelling,
labeling the unlabeled data, and applying strong
augmentation during training. The server aggregates
these updates to create a new global model, optimizing
resource  constraints usage, like energy and
communication costs.

Albaseer et al. [63] Semi-
Supervised Federated Learning Testing accuracy
>095 (with >100 global

training rounds)

uwB
By grouping users into activity similarity for learning Balanced mean accuracy 89.06
within clusters, reducing excessive communication Unbalanced mean accuracy 92.71
Ouyang et al. [13] ClusterFL: A overhead through straggler removal and significant IMU

Similarity- Aware Federated nodes’ selection.

Learning System for Human ClusterFL UWB, IMU, and Depth Perform aggregate using the Alternating Direction UBEIaInced dmean accuracy 925‘35
Activity Recognition Method of Multipliers (ADMM). nbalanced mean accuracy 89.
Data modeling: SVM (UWB), DNN (IMU), CNN Depth
(Depth) Balanced mean accuracy 71.82
Unbalanced mean accuracy 70.68
Federated learning with semi-supervised online learning
to handle label scarcity, the need for real-time
processing, and the heterogeneity of human activity
recognition. Real-world
Yu et al. [20] FedHAR: Semi- Combines both supervised and unsupervised gradients Accuracy 65.31
Supervised Online Learning for FedHAR RealWorld and HAR-  while permitting the intermediate model fine-tuning for F1 score 62.77
Personalized Federated Human € ucl local performance enhancement. HAR-UCI
Activity Recognition The aggregation method combines supervised gradients Accuracy 82.61
from labeled data with unsupervised gradients F1 score 81.62

(calculated based on similar sensor sequences) using a
semi-supervised loss function.

Data model: hierarchical attention-based neural network.

PAMAP2
Accuracy 87.727
The prototype aggregation-based algorithm for activity F1 score 87.336
recognition in the heterogeneous FL scenario. AUC 97.839
Uses prototypes to refine the global representation, USC-HAD
decoupling feature representation, and the classifier. Accuracy 76.416
. i ; ; ; F1 score 71.714
Cheng et al. _[10] ProtoHAR. PAMAP2, UNIMIB- Exchanges_ information via sharing prototypes and AUC 96.515
Prototype Guided Personalized representations.
Federated Learning for Human ProtoHAR SHAR, USC-HAD, o . UNIMIB-SHAR
i g Tor and HARBOX Each abstract prototype is viewed as an activity class by =2VEDo AR
Activity Recognition. the mean representations of the observed samples from Accuracy 94.470
the same activity category. F1 score 92.088
Data model: CNN (three convolutional layers, two max- AUC 99.678
pooling layers, two fully connected layers, and one HARBOX
SoftMax layer). Accuracy 95.110
F1 score 95.034
AUC 99.086
A federated multi-task transfer learning incorporated
. with the Deep Convolutional and Long Short-Term
Isgtider et al. [35] FedOpenHAR: Memory (DeepConvLSTM) for human activity
Federated multi-task transfer classification and device position identification with OpenHAR
! FedOpenHAR OpenHAR :
learning for sensor-based human motion sensor data. Accuracy 72.4

activity recognition Server’s aggregation algorithm: FedAvg.

Data model: DeepConvLSTM.
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Wang et al. [64] Hydra: Hybrid-
model federated learning for
human activity recognition on
heterogeneous devices

Hydra

Pham et al. [65] Extension of
physical activity recognition with
3D CNN using encrypted multiple
sensory data to federated learning
based on multi-key homomorphic

encryption

Shen et al. [48] Federated Meta-
Learning with Attention for
Diversity-Aware Human Activity
Recognition

DivAR

Khan et al. [66] A Privacy and
Energy-Aware Federated
Framework for Human Activity
Recognition

Chai et al. [36] A profile
similarity-based personalized
federated learning method for
wearable sensor-based human

activity recognition

PS-PFL

Orzikulova et al. [29] Federated
Learning with Incomplete Sensing
Modalities

FLISM

Jiang et al. [67] FLSys: Toward an
Open Ecosystem for Federated FLSys
Learning Mobile Apps

3D CNN model

Integrating spiking neural
networks (SNNs) with long
short-term memory
(LST™M)

HHAR, HARBOX,
and MobiAct

Daily and Sports
Activities (Sport) and
Daily Life Activities
(DaLiAc)

Two multi-individual
heterogeneous

UCI and Realworld

RealWorld
Sisfall

PAMAP2, RealWorld,
and WESAD

Self-collected dataset

Vol. 6, No. 3, September, 2025

A hybrid-model FL framework that enables
heterogeneous devices to co-train high-performance
models with large and small sizes tailored to their diverse
computing capabilities.

Introduces loss-based sample selection for effective co-
training among high-performance computing devices
(HCDs)and  low-performance computing  devices
(LCDs).

Formulates a large-to-small knowledge distillation to
enhance the efficiency of transferring knowledge from
HCD to LCD.

Data model: CNN for HAR task.

Recognizes human activities using data from wearable
sensors by employing 3D convolutional neural networks
(3D-CNNSs).

Uses bitwise XOR operator for data encryption.

Further enhances the models for FL by incorporating
federated averaging and multi-key homomorphic
encryption to improve privacy.

Considers user differences by making various user
groups for social-related factors and then personalizing
the model for those various groups.

Classifies individuals into clusters based on their
behavior and social relations, fine-tuning a federated
meta- learning model with local models endowed with a
CNN-based attention mechanism to learn cluster-
specific features, and updating a global model that learns
across the population while maintaining privacy.

The aggregation method consists of averaging the
updated parameters from the decentralized local models
to improve the central model’s parameters.

Combines spiking neural networks (SNNs) and LSTM
for data modeling the model is trained using surrogate
gradient learning, backpropagation.

FL on devices without sharing data.

A new personalized federated learning approach by
leveraging profile-based similarity, enhancing model
personalization and generalizability by considering
individual profile features.

Computes similarities between individuals based on
their profiles and uses these similarities to aggregate
personalized global models.

Data models: CNN and Long Short-Term Memory
(LSTM).

Note: Avg_A is average accuracy; Avg_P is average precision Avg_R is
average recall, Avg_F1 is average f1.

Federated Learning with Incomplete Sensing Modalities
(FLISM) to enable multimodal FL with incomplete
modalities.

Employ simulation techniques to learn robust
representations - handling missing modalities and
transferring model knowledge across clients with diverse
modality sets.

A mobile-cloud FL system smartphone with mobile
sensing data.

A complete prototype of FLSys is developed in Android
and AWS.

Balances model utility with resource consumption on the
phones, tolerates client failures, supports multiple deep
learning models, provides support for advanced privacy
protection mechanisms, and acts as a “central hub” on
the phone for managing training, updating, and access
control of FL models for different apps.

Data model: CNN

Aggregators:  FedAvg,
FedAdagrad are available

FedYogi, FedAdam, and

HHAR
Accuracy 94.1

MobiAct
Accuracy 98.6

HARBox
Accuracy 94.4

Sport Accuracy 94.6
DaLiAc Accuracy 94.9

Datasetl
Accuracy 93.48
F1 Score 90.37

Dataset2
Accuracy 89.55
F1 Score 83.19

DatasetMix

Accuracy 83.95
F1 Score 78.36

uclt
Accuracy 97.36
RealWorld
Accuracy 89.69
Realworld

CNN
Avg_A 94.88
Avg_P 95.42
Avg_R 94.69
Avg_F194.95

RNN
Avg_A 93.65
Avg_P 94.22
Avg_R 93.85
Avg_F193.88

SisFall

CNN
Avg_A 94.50
Avg_P 92.91
Avg_R 92.41
Avg_F191.29

RNN

Avg_A 78.57
Avg_P 65.81
Avg_R 65.02
Avg_F170.53

PAMAP2
F1 score 77

WESAD
F1 score 58.9

RealWorld
F1 score 77.8

HAR-W-128-centralized
Accuracy 82.62
Precision 85.29

Recall 84.49
F1-score 84.84

FLSys
Using Android Emulation
Accuracy 69.07
Precision 59.22 ~86.06
Recall 64.50~86.55
F1-score 66.68 ~76.80

1086



HighTech and Innovation Journal Vol. 6, No. 3, September, 2025

To provide a structured comparison, we consolidate previous studies from the above table into Table 2 under four
key aspects to understand the methods. The comparison aspects are: (1) Types of FL — Distinguishing different FL
paradigms, i.e., horizontal, vertical, or hybrid, based on data partitioning mechanisms; (2) Data Model Implementation
—specifying the models or algorithms used to process the captured inertial data, (3) Privacy and Security — about security
measures such as differential privacy or cryptographic techniques, and (4) Communication Architecture — differentiating
between centralized and decentralized FL structures. From Table 2, we can observe that most FL approaches implement
a horizontal FL paradigm. This may be because horizontal FL is more suitable for scenarios with different clients, but
recording the same types of activity data. Specifically, the studies collected similar types of sensor data, i.e.,
accelerometer and gyroscope, from multiple clients. It is worth noting that the work of Zhou et al. [14] incorporates a
hybrid FL paradigm. This method is unique because it integrates horizontal and vertical FL paradigms, facilitating the

incorporation of heterogeneous data from different sources.

Table 2. Comparison of Federated Learning approaches for HARs

Data Model . ) Communication
Method Types of FL Implementation Privacy Security Architecture
Gudur & Perepu [58] federated learning with .
heterogeneous labels and models for mobile activity Horizontal Convolyt_lo_n Neural Network Not specified Centralized
L2 and Artificial Neural Network
monitoring
Zhou et al. [14] 2D federated learning for 2-dimensional FL framework, Convolutional Neural Somewhat Homomorphic
personalized human activity recognition in cyber- including the vertical and P Centralized

physical-social systems

Shen et al. [34] federated multi-task attention for
cross- individual human activity recognition

Arikumar et al. [50] FL-PMI: federated learning-based
person movement identification through wearable
devices in smart healthcare systems

Jiang et al. [67] Flsys: toward anopen ecosystem for
federated learning mobile apps

Presotto et al. [19] Fedclar: federated clustering for
personalized sensor-based human activity recognition

horizontal FL phases

Networks

Convolution Neural Network-

Horizontal

Horizontal

Horizontal (with an option for
extension to Vertical FLand  Con
Federated Transfer Learning)

Horizontal

Recurrent Neural Network

Bidirectional Long Short-term

Memory

volution Neural Network

Feed-forward deep neural

network

Encryption (SWHE)

Not specified

Not specified

Differential privacy

Not specified

A shared feature representation
network (central server) with
individual-specific attention
modules (decentralized nodes)

Centralized

Centralized

Centralized

Additionally, it is noticed that most HAR-specific FL implementations work on a centralized communication
architecture. Clients transmit the generated model updates to a central server to perform aggregation and redistribute the
updated model to the clients. The wide use of the centralized approach may be due to the fact that this kind of central
server simplifies model updates, diminishing coordination complexity. Nevertheless, the study of Shen et al. [34]
employs a decentralized FL approach. In this framework, a federated multi-task model constituted of a shared feature
representation network is managed by a central server. In contrast, multiple individual-specific networks with attention
modules are stored in decentralized nodes.

3. Review Methodology

This section outlines the methodology used to review FL for sensor-based HAR. The review process involved
systematically searching and screening for relevant literature from diverse electronic academic databases. These
include but are not limited to IEEE Xplore, arXiv, Google Scholar, ResearchGate, ACM Digital Library, and
ScienceDirect. The cited research articles in this study were downloaded from these electronic databases.
Furthermore, the queried keywords used in the search engine were “Federated Learning”, “Human Activity
Recognition”, “sensor”, and “smartphone”, and combinations of the terms. After performing all the queries, we
initially downloaded 150 articles. Next, the collected articles were selected by examining their titles, publication
years, abstracts, and conclusions. We selected papers published between 2019 and 2024 to ensure up-to-date and
comprehensive information. Since our core focus was to gather articles on sensor-based human activity recognition
in which FL is employed for data privacy and model training in the sensor-based HAR context, 80 articles were
excluded because they were unsuitable for this review study. 70 selected articles were further studied, and 31
research articles out of these 70 articles were determined to be the most appropriate to be referred to in this review
paper. The reviews and discussions of some of these articles are outlined in the Related Work section and Table 1.
The review methodology process is depicted in Figure 2.
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Figure 2. Review methodology

4. Federated Learning

Federated Learning (FL) was introduced by Google and used for the first time in 2016 to improve text input
predictions of the Google Keyboard on many Android devices [68]. The primary idea is to enhance the predictive text
function while keeping users’ data local instead of transmitting it to the central server for processing [69]. In other words,
FL is a machine learning approach that facilitates decentralized model training without centralizing the data. Unlike
traditional machine learning models that aggregate raw data from various sources, FL allows every edge device to build
its local data model using its own data. Only the generated model updates are then shared with a central server. This
server will then aggregate these model updates to construct and optimize a universal model, which is disseminated to
the local devices for further localized learning.

There are apparent advantages to using Federated Learning in HAR applications. HAR systems rely on information
feeds from clients’ devices, such as wearable fitness trackers or smartphones, that collect the users’ physical movement
data [70]. FL enables these devices to train a central activity recognition model collaboratively while keeping the activity
data local and private. Every edge device first trains its model using its data, then only transmits the generated model
updates to a central server. The global server aggregates these updates to fine-tune the global HAR model, which will
then be redistributed to the edge devices for further training. This iterative process guarantees that personal activity data
remains secure on local devices while diverse data sources from different devices are utilized to improve the recognition
of the activities model.
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4.1. The Architecture of Federated Learning

Federated Learning (FL) is an innovative approach that enhances user data privacy by enabling decentralized machine
learning. The FL framework has several key components to ensure privacy-preserving and efficient model training [65,
66]: the devices, the central server (also called the global server), and the communication framework. The devices are
local edge devices with different specifications that generate and own the data. They contribute to local model training
using local data and share the generated model updates with the central server rather than the raw data. The central server
aggregates the model updates and fine-tunes the global HAR model. This process is iterative and facilitated by the
communication framework for continuous improvement of the data model while preserving user data privacy. While the
data computation aspect focuses on training the local and global models, the communication aspect handles the transfer
of model updates between the devices and the central server. This iterative training strategy, which involves local
training, model aggregation, and model update communication, relies on the three aforementioned key components of

the FL architecture (see Figure 3).

lea |
model update / Sensor Nodes

0 A
share data X
I Q
model update / I

share data x
Monitoring Device

Sensor Nodes model update /

share data x

model update /

Smartphone share data X

‘// Server

model update J J
model update

share data X

Monitoring Device sharedata X Smartphone

Figure 3. The conceptual idea of FL, where model updates are shared instead of raw data

Federated Learning (FL) provides a robust approach to safeguarding user privacy by enabling decentralized machine
learning directly on user devices. This design choice addresses privacy concerns inherent in centralized data handling.
Unlike traditional approaches that rely on collecting and processing raw data centrally, FL ensures that data remains on
users' devices, reducing the risk of unauthorized access and data breaches. This is particularly crucial for sensitive HAR
data, where privacy is paramount. In FL, model training occurs locally on each device, and only model updates, such as
gradients or weights, are sent to a central server. This aggregated information allows for global model improvement
without exposing any individual’s raw data.

Additionally, secure aggregation protocols ensure that the server can only access the combined contributions from
all devices, preventing it from viewing any single user's update, while differential privacy techniques further enhance
security by adding controlled noise to model updates, protecting against potential inference attacks. This layered
approach allows FL to mitigate privacy risks at each step, and the framework’s iterative communication process focuses
on transmitting only essential information, reducing exposure and communication costs. Together, these mechanisms,
like data locality, secure aggregation, and differential privacy, establish FL as a powerful method for HAR applications,
balancing high model performance with strong privacy protections.

Figure 4 shows the architecture of Basic Federated Learning. A central server connects to multiple devices, and there
is a two-way data flow between the server and the devices. The devices locally train a model using their local data and
return the model updates to the server. Then, the central server aggregates these updates, thus refining the global model.
This process is decentralized, facilitating collaborative model training without sharing raw data, thereby illustrating a
privacy-preserving system [67].
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Figure 4. Basic Federated Learning

4.2. Types of Federated Learning

Federated Learning (FL) incorporates different approaches for data distribution scenarios and applications [71-73].
In the literature, we can categorize the types of FL into three: horizontal federated learning, vertical federated learning,
and federated transfer learning. Each of these will be discussed in the following section.

4.2.1. Horizontal Federated Learning

In horizontal federated learning, devices are similar but have different user data [32]. In other words, the devices
have identical feature types (i.e., the same feature space), but the individual users’ data may differ. For instance, in the
application of fitness tracker human activity recognition, horizontal federated learning allows multiple trackers, each
with similar sensor data types (i.e., the number of steps, heart rates, etc.) but from different individuals, to train a model
collaboratively, as depicted in Figure 5.

Cloud server

.
>

User 1 o User 2 O User 3 Q

A~ -

LN Tracker 1 e e Tracker 2 ._. Tracker 3
& = =

Figure 5. Horizontal Federated Learning

4.2.2. Vertical Federated Learning

Vertical federated learning is devised to handle scenarios where different datasets have overlapping users but distinct
feature spaces. Specifically, the clients share the same users but have different features [74, 75]. This approach is useful
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in applications where multiple health monitoring systems are engaged. For instance, consider a fitness tracker company
(Client I) that collects users’ physical activities, such as steps and heart rate, and a sleep tracking app (Client Il) that
tracks users’ sleep behaviors. By incorporating these datasets with different features but shared users through vertical
federated learning, the global model can utilize these combined data profiles to interpret better and comprehend complex
user behaviors. It is worth noting that a sample alignment procedure is required to ensure that data from multiple sources
are accurately associated with the same users before joint training. This avoids mismatches between user data from
different sources, affecting model learning and degrading performance, as shown in Figure 6.

N

Server

/\

Personalized model training

£ - Feature synchronization

Sharing intermediate results

ClientI Client IT

Figure 6. Vertical Federated Learning

4.2.3. Federated Transfer Learning

Federated transfer learning addresses scenarios where datasets are either non-overlapping or minimally overlapping
regarding features and users [76]. For instance, a fitness tracker company, Client (III), collects data on users’ physical
activities (i.e., steps and heart rates), and a smart home service company (Client IV) collects data on users’ home
movement patterns. In such cases, federated transfer learning can transfer knowledge from the fitness tracking data to
improve the HAR model for home activity monitoring. This approach is valuable when the adopted datasets are highly
differing. Although the datasets may involve different attributes and populations, federated transfer learning can assist
in constructing a global HAR model by leveraging knowledge from source and target domains [77].

5. Differences Between Federated Learning and Machine Learning

Federated Learning (FL) and machine learning have a common objective: achieving effective data learning outcomes.
In this paper, machine learning encompasses conventional machine learning models such as Random Forest, Decision
Tree, Support Vector Machine, etc., and deep learning models like Convolutional Neural Networks, Long Short-Term
Memory Networks, Recurrent Neural Networks, etc. However, FL and machine learning differ fundamentally in their
architecture and data handling methodologies. Machine learning can be categorized into centralized and distributed
approaches. In centralized machine learning, data from users’ inertial sensors embedded in smartphones or wearable
devices is collected and transmitted to a centralized server. The entire model training process takes place on this single
server. Since all computations are implemented on a single machine, training models, especially deep learning models,
requires substantial computational resources. Furthermore, this centralized approach increases the risk of privacy
breaches and security vulnerabilities because users’ data is stored and processed in a single location. In other words, this
centralized processing approach poses data privacy and security concerns.
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In contrast, FL decentralizes the model training process on users’ local devices, keeping raw sensor data locally.
Instead of sharing raw data, only model updates, such as model weight adjustments or gradient updates, are transmitted
to a central aggregation server. Therefore, FL enhances data privacy security by ensuring that personal activity data
remains on the user’s device while facilitating collaborative learning across multiple users. While distributed ML and
FL possess similar data processing architectures where the computational load is distributed across multiple devices,
their data handling manners differ. Distributed ML analyzes and processes data on central servers. In other words, raw
data from different sources can be stored in the central servers, raising the risk of privacy breaches. Although some
distributed systems may use techniques to minimize data sharing, it is less common than FL. Conversely, FL provides a
privacy-heightening solution where data model training is performed directly on the users’ local devices. Only model
updates are shared with a central server instead of raw sensor data. Specifically, private and sensitive activity data is kept
in the users’ devices, reducing the need for sensitive data transfers. The architectural differences between FL, centralized,
and distributed MLs are depicted in Figure 7. A summary of the differences in data privacy, access, and communication
is presented in Table 3.
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Figure 7. Comparison between centralized, distributed, and federated learning

Table 3. Federated Learning VS Machine Learning

Classical Machine Learning Decentralized Machine Learning Federated Learning
Privacy High risk Moderate risk Enhanced privacy
Access to data The central server has full access The central server has full access ~ The central server has access to model updates only

6. Challenges in Federated Learning
6.1. Privacy Security

Federated Learning (FL) is a new, innovative approach to machine learning. It reduces privacy risks associated with
data centralization and provides model training across multiple users while keeping their data local and decentralized
[78]. However, the decentralized approach introduces other security vulnerabilities. Thus, privacy-preserving techniques
such as Secure Multi-Party Computation (SMC) and Homomaorphic Encryption (HE) are required to harden the privacy
and security of FL.

SMC secures the input data of each involved party by using encryption. This is to ensure that parties gain no
information about others’ data. On the other hand, HE is an encryption method that enables the central server to perform
algebraic operations directly on encrypted model parameters, such as model updates, without requiring decryption.
Nevertheless, user privacy security can barely be guaranteed in the FL scheme with HE technology, particularly if
participants with the same secret key collude. Furthermore, SMC and HE technologies encounter limitations due to their
high communication costs and computational complexity associated with preserving privacy [74]. In HAR systems,
inertial data is gathered from multiple users and different devices, producing huge amounts of information. The
encryption and decryption processes to secure this personal data can be computationally intensive. The situation becomes
worse for low-resource devices with limited processing power. The study in Khan et al. [66] highlights that the increased
communication costs and latency negatively impact system performance, leading to inefficiencies in real-time
applications.

6.2. Communication

Generally, FL diminishes the risk of privacy violation by decentralizing data and sharing only model updates, which
is beneficial in sensor-based HAR applications since personal sensitive data is involved [52, 79]. Even though FL
complements the benefits of privacy, it suffers from significant communication challenges. These challenges can impact
its practicability and efficiency, especially when numerous devices are involved. The cost of transmitting model updates
from devices to the central server exceeds the computation cost, resulting in increased communication overhead in FL.
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In HAR, real-time activity recognition requires frequent model updates since human movements and behavior patterns
are dynamically changing. The timely data transmission of model updates from edge devices is crucial for achieving
instantaneous and accurate activity recognition and monitoring. However, frequent data transmission increases network
latency and congestion, especially for resource-constrained, low-power devices with limited bandwidth.

Furthermore, data from diverse devices, such as fitness trackers and smartphones, must be continuously analyzed and
processed for pattern recognition [80]. Consequently, each edge device must frequently transmit its local model updates
to the central server. This frequent data transmission raises the communication overhead in FL and further impacts the
model processing and updating, resulting in substantial delays. The high communication cost results in low application
efficiency, hindering the feasibility of FL in real-world applications, particularly in real-time HAR recognition and
monitoring, which require continuous model updates with minimal delay.

6.3. Data Heterogeneity

Data heterogeneity presents significant challenges in Federated Learning (FL) for human activity recognition
applications [10]. Data heterogeneity arises due to inconsistencies and variability in the data collected by diverse clients.
This includes the variations in environmental conditions, human activities, types of edge devices and/or sensors, and
their specifications. Consequently, the collected data can vary significantly in distribution, quality, and quantity. These
inconsistencies lead to non-independent and identically distributed data, resulting in difficulties training a global model
that performs well for all users.

One major factor contributing to data heterogeneity is HAR's diversity in sensing devices. A smartwatch that tracks
activities of daily living continuously gathers accelerometer and gyroscope data throughout the day and generates a
complete dataset of the user's daily activities. This dataset contains detailed motion patterns of activities such as standing,
sitting, walking, cycling, etc. Conversely, a smartphone, typically carried in a pocket or bag, may only collect less activity
data from less frequent interactions, yielding incomplete daily activity representations. This variability results in
heterogeneous data, challenging this information's effective aggregation and modeling. Furthermore, imbalanced data
distributions across clients can skew the global model’s learning process, as some devices collect sparse, low-frequency
samples while others provide rich, high-frequency data.

7. Algorithms in Federated Learning

In this section, we will further discuss different Federated Learning (FL) algorithms, focusing on aggregation
techniques and data model approaches.

7.1. Aggregation Techniques

Data heterogeneity presents significant challenges in Federated Learning (FL), particularly in the context of human
activity recognition applications [10]. Data heterogeneity occurs due to inconsistencies and variability in the data
collected by diverse clients. This includes the differences in environmental conditions, human activities, types of edge
devices and/or sensors, and their specifications. Consequently, the collected data can vary significantly in distribution,
quality, and quantity. For instance, a smartwatch that tracks activities of daily living continuously throughout the day
will generate a complete dataset of the user's daily activities. Conversely, smartphones may only gather less activity data
from less frequent interactions. This variability results in heterogeneous data, challenging this information's effective
aggregation and modeling.

7.1.1. Federated Averaging (FedAvg)

The central server aggregates local model updates in FL to form a global model. The aggregation is performed using
a weighted average, where the weights are proportional to the number of data samples on each client [37]. Specifically,
the global model at the next iteration is computed as follows:

1vK k
Wiy1 = EZk:l Wii1 1)

where w,, is the updated global model, X is the total number of clients and wf is the model update from device &
at iteration ¢ In summary, FedAvg updates the global model by aggregating model updates from each client with a
weightage corresponding to the data contribution. In other words, clients with more data will have a greater
weightage/influence on updating the global model. In other words, FedAvg reduces communication costs by enabling
multiple local updates per communication round. It leverages local stochastic gradient descent to calculate updated
averages among the clients to facilitate the training of deep networks.

7.1.2. Federated Proximal (FedProx)

By keeping local models in reasonable proximity to the global model, FedProx enhances performance, particularly when
dealing with datasets that exhibit significant differences. It can address the problem of data heterogeneity and improve
the reliability of the federated learning process [81].
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hie(w, wp) = Fi(w) + 2 llw — w||? )

where h; (w,w,) represents the modified local objective function incorporating a proximal term. The goal is to minimize
a function that includes two parts: the local loss function F; (w) measuring the model’s performance on the client’s data,
and a proximal term ‘2—1 lw — w,I? penalizing deviations from the global model w,. u is a regularization parameter that

controls the strength of this proximal constraint such that local models do not drift too far from the global model. The
proximal term helps keep the local model close to the global model, improving overall stability and convergence in
federated learning. FedProx addresses system heterogeneity by adding a proximal term to local loss functions such that
even partially trained models can contribute meaningfully to the global model.

7.1.3. Federated Normalized Averaging (FedNova)

Wang et al. [82] highlighted that FedAvg faces challenges when dealing with non-l1ID data across clients.
Specifically, the substantial variations in client data distributions may make local models distinct from global ones,
thereby degrading the overall model performance and stability. FedNova is proposed to address these limitations. This
aggregation technique normalizes and scales local model updates before averaging and aggregating them into the global
model. This implementation could guarantee a more stable and balanced aggregation process. The update rule for Fed-
Nova is defined as follows:

m
W(t+1,0) — W(t0) = _Tgf)f Z bi -ndi(t) 3)
®,® i=1
where dft) =% % The normalized stochastic gradients d; are aggregated. When the local solver is vanilla SGD,

©
la; 111

a; = [1,...,1]eR%and dft) is a simple average over the current round’s gradients.

Combining these strategies helps FedNova better manage the impact of client heterogeneity on the global model for
more stable and effective federated training. FedNova normalizes the local updates against the local epoch, which aids
in achieving fair aggregation and reducing bias for non-11D environments.

7.1.4. Federated Stochastic Gradient Descent (FedSGD)

Unlike the aforementioned aggregation techniques, which aggregate local model updates from clients, FedSGD
aggregates the gradients computed from each client [37]. In this technique, each client computes the gradient of its local
objective function. Then, the gradients are passed to the central server. The global model is then updated based on the
aggregated gradients. This update process ensures that while each client owns their data, they can contribute to the global
model through their gradients. The local objective function Fr(w) of client k is calculated as:

Fiw) = - Siep, fiw) (4)

where n is the number of data samples on the client k, p« is the set of data samples on the client k, and f:(w) is the loss
function for the ith sample with model parameter w. The gradient gk of this local objective function for the current
model parameters w: is then computed:

gk = VEK(we) (%)

where V denotes the gradient operator concerning the current model parameters w:. The server aggregates these gradients
gk to update the global model using a weighted average. The weights are proportional to the number of data samples on
each client, ensuring that clients with more data have a greater influence on the model update. The global model is
updated based on the following rule:

(1)t+1:Wt_nZIk<=1%gk ©)
where 7 is the learning rate, K is the total number of clients, and % is the proportion of data samples on client k, and gk
is the gradient from client k. The updated global model w. +1 is obtained by subtracting the weighted sum of the gradients
from the current model parameters w:. FedSGD synchronizes all clients' gradients at every round, maximizing model
utility and minimizing drift in the event of heterogeneous data. Even though this synchronization renders it less
communication-efficient than techniques like FedAvg, FedSGD enhances the overall model convergence consistency.

7.2. Data Model

Deep learning is a prevalent data modeling tool in sensor-based HAR applications. Deep learning has exhibited
exceptional performance in the literature due to its exclusive capability to capture intricate features from raw inertial
signals. This ability enables deep learning models to discriminate complex inertial patterns in human activities, yielding
substantial improvements in accuracy over traditional machine learning approaches. This section briefly describes the
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popular deep learning algorithms widely used in sensor-based HAR applications, exploring their architecture and
characteristics.

7.2.1. Artificial Neural Network (ANN)

ANN is a computational model inspired by the human brain to perform complex pattern analysis and recognition
[80]. An ANN comprises an input layer, one or more hidden layers, and an output layer. Each layer is made of neurons,
which are linked by weights. These weights adjust the strength of the interconnections between neurons. The input layer
receives raw data and passes it to the hidden layer(s) for data computation. In the hidden layer(s), nonlinear
transformations are performed via activation functions. This process is crucial for introducing nonlinearity into the model
because real-world data is complex and nonlinear. Nonlinearity enables the model to learn and capture intricate data
patterns. A simple feed-forward neural network with one hidden layer is illustrated in Figure 8, and the formulation is
below.

Hidden layer

Input layer Output layer

Input —_— : .......... » Output
,//l“
Input _ >
\\“ __________ » Output
Input _— - //
Figure 8. Architecture for ANN
The output of the hidden layer, denoted as Hou, is computed as follows:
Howw = ACT(W1X + b1) ©)

where W represents the weight matrix that links the input layer to the hidden layer, X denotes the input vector, b, is the
bias vector for the hidden layer, and ACT represents an activation function (e.g. sigmoid function, hyperbolic tangent,
Rectified Linear Unit (ReLU)).

The output of the ANN is computed as below:
Your = ACT(W2 Hout + b2) (8)

where W3 represents the weight matrix that links the hidden layer to the output layer, and b, is the bias vector for the
output layer.

7.2.2. One-Dimensional Convolutional Neural Networks (1D CNNSs)

Convolutional Neural Networks are widely used for processing data that is sampled on a grid, such as image data
[83]. On the other hand, 1D-CNN is particularly designed to process one-dimensional input data, such as biomedical
signals and inertial signals. For a one-dimensional input signal S and a kernel W, the convolution is defined as below:

SW) =3 WS +n—1) (9)
Or = Swap *W3aI, ) (10)

* denotes the discrete convolution process, S is the input data, W is the convolutional filter, Sw j represents the elements
in S from n to the dimension of W (i, j).
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Figure 9 depicts a 1D Convolutional Neural Network sample for Human Activity Recognition. Six data inputs
corresponding to the 3-axis data from an accelerometer and a gyroscope are inputted to the model. Each input is
processed by convolutional and pooling layers. The outputs are then concatenated and fed into fully connected layers,
respectively. Lastly, activities are classified using a SoftMax layer.

g
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?30 d:) il g %’ — \‘K‘/
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Figure 9. Architecture of a 1D CNN structure

7.2.3. Long Short-Term Memory (LSTM) Networks

LSTM networks are recurrent neural networks capable of extracting and modeling temporal dependencies in time-
series data [83]. Unlike traditional recurrent neural networks, LSTM addresses the problem of vanishing gradients
associated with long-term dependencies in time-series data. LSTMs consist of multiple memory cells that store and
process information over time, as depicted in Figure 10. LSTM networks use input gates, output gates, and forget gates.
The inputs are divided into two components: input state at t(x:) and output state at t — 1(h ¢1). The input gate can be
represented as:

it = a(W[xt, h t1, Ce-1] + bi) (11)

Ce = fr. Cea+ i. tanh(W[xe, h -1, Cea] + be) (12)
The forget gate determines what data will be forgotten from the cell memory.

fe=o(Wylh c-1x] + by) (13)
The forget gate and the input gate both update the cell unit state.

Ce= Ceafe+ Cuic (14)
Finally, the output is produced via the output gate.

ot =a(W|xt, ht—1, Ct] + bo) (15)

ht = tanh(Ct) . ot (16)

where it is the state of the current input gate, f: is the state of the current forget gate, x: is the input sequence, and h ¢
is the output. C: and Ce-1 are the current cell state and the previous cell state, respectively. b is the bias vector, and W is
the weight vector for each input. o is the logistic sigmoid function.

h1 hz hs ht
T 5 T 5 ot = output gate
. ! - . input gate
! | I R T it
i information \
Cell —> Cell — Cell L~ = Cell Xt

| fam 00—t —— [ 00—
T | I T T ;"'l?;)

C

X1 X2 Xz Xt T

ft  forget gate

Figure 10. The Architecture for LSTM
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7.2.4. Bidirectional LSTM (BiLSTM)

LSTM models process data in a single direction, which can limit their capability to comprehend the data. Thus,
BiLSTM is proposed to enhance ordinary LSTMs by processing data in both forward and backward directions, as
depicted in Figure 11. This implementation facilitates BiLSTM to capture information from past and coming data,
yielding better model performance.

In a BiLSTM model, the output of the backward layer (h?) and forward layer (h[ ) are used to produce the final
hidden state at time ¢, i.e. h ¢, using weighting factors « and g (or trainable parameters) that control how the forward and
backward states are combined in the BiLSTM model is generated as:

he = ah! + Bh? (17)
x5 =y = o(hy) (18)

where x} is the final output from the BiLSTM at time ¢, y: denotes the output at time t, and ¢ is the sigmoid activation
function. BiLSTM is useful in HAR because it can further improve the temporal dependencies learned from the sensor
data of wearable devices by considering both previous and future readings. This results in higher accuracy of classifying
activities and increased ability to handle noise. HAR activities include data gathering and preprocessing, feature
extraction with BiLSTMs, activity classification, and performance assessment, leading to better activity recognition and
lower error levels. The BiLSTM networks make HAR models more effective in dealing with temporal patterns because
bidirectional processing yields better classification accuracy and makes the activity recognition systems more efficient.
The structure of BiLSTM is shown in Figure 11.

_.") \ y - N /-
Yo E“ yio IL‘
N d .\( ,/"‘ A
-— LSTM LSTM Forward
LsTM™ > LsTM > LSTM — > Backward
Xo X1 X2 Input

Figure 11. The architecture for BiLSTM

8. Analysis of Federated Learning Methods for Human Activity Recognition

Federated learning (FL) is a decentralized data processing approach that allows multiple devices to collaboratively
train a model while keeping the data at the local devices. In the FL framework of human activity recognition, each
device, such as smartphones or wearable sensors, trains a local model using its sensor data for basic data learning. After
that, the local model updates of each device are transmitted to a central server to integrate these updates using aggregation
algorithms. This collaborative process facilitates the development of accurate models while preserving data privacy.
This is beneficial for HAR applications since the data involved is usually personal.

Table 4 summarizes several popular model aggregation techniques and local training models used in HAR. FedAvg
is a simple and widely used aggregation technique that averages local model updates. However, it struggles with non-
IID data. On the other hand, FedProx enhances stability in diverse data settings with an added regularization term.
FedNova scales model updates to ensure fair aggregation, but its performance heavily depends on hyperparameter tuning.
FedSGD synchronizes the model gradients closely. However, frequent communication is required, making it less
efficient for real-time applications. For local training models, various architectures are proposed to learn inertial patterns
of sensor data. ANN is a brain-inspired model composed of input, hidden, and output layers. The model can recognize
diverse data by learning complex patterns through weight updates.
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Table 4. Summary of the model aggregation techniques and local training models

Aggreg_atlon Description Remarks
Technique
e Simple and easy to implement, reduced communication cost with fewer update rounds
Averages local model updates, weighted i : : )
FedAvg by each device’s data amount, e Sensitive to differences in data (non-11D data)
o Unreliable clients may lead to slower model convergence
Adds a penalty term during local training o Improves stability and convergence in diverse data settings
FedProx to keep each device’s model close to the o Better handles data heterogeneity
global model. o Increase the computation burden on resource-limited sensors
e Ensures fairer aggregation in non-uniform  settings
Normalizes and scales local updates « Reduces bias in model updates
FedNova before combining themto balance .
contributions from all devices. e Extracomputational overhead

e Sensitive to hyperparameter selection

¢ Reduces model drift by synchronizing gradients closely
o Requires frequent communication
* May not be efficient for real-time applications due to high communication overhead

Aggregates gradients computed on each
FedSGD device rather than full model updates.

On the other hand, 1D CNN is efficient for sequential data such as inertial signals. Its low computational cost makes
it suitable for real-time and low-cost applications. LSTM models temporal dependencies in time-series data using
memory cells. Unlike RNNs, LSTM effectively resolves vanishing gradient problems. BiLSTM is an enhanced LSTM
variant that captures both past and future data context. This feature improves richer temporal relations, yielding
promising classification performance for sequential tasks.

9. Future Directions

Human activity recognition (HAR) using sensor data has gained significant attention due to its applications in health
monitoring, fitness tracking, and smart environments. Sensor-based HAR typically relies on data from accelerometers,
gyroscopes, and other wearable devices to detect and classify activities. However, the sensitive nature of this data poses
substantial privacy challenges. Recent studies leveraging FL in sensor-based HAR have demonstrated its potential to
preserve privacy while achieving competitive performance. Building on this foundation, future advancements in FL
could focus on resolving challenges such as integrating heterogeneous multi-source data, improving personalization, and
ensuring resource-efficient deployment in real-world HAR applications.

Federated Learning for Heterogeneous Multi-source Data: FL can improve the quality of human activity
recognition by integrating data from multiple sources, including accelerometers, gyroscopes, heart rate monitors, and
other wearable devices. Multi-modal sensor fusion allows models to capture more complementary information, which
is particularly important for correctly identifying complex activities [84]. Besides that, systems such as the Passive Multi-
Modal Sensor Fusion for Human Identification and Activity Recognition (PRF-PIR) framework, incorporating passive
and non-intrusive sensing devices, constitute a sound example of how sensor fusion may enhance accuracy because of
external interference or limited fields of view challenges [85]. Nonetheless, the heterogeneity of multi-source data poses
significant challenges in FL frameworks. Diverse data formats, sampling rates, sensor modalities, and noise across
devices can negatively impact the model's performance.

Furthermore, sensor placements and user gait/motion variations also contribute to the diversity. Advanced
aggregation techniques, reliable data harmonization strategies, and innovative architectures are essential to deal with the
complexities. Future research may focus on developing scalable methods for effectively integrating these heterogeneous
data.

Federated Learning for Personalized HAR Models: FL facilitates personalizing HAR models to individual users
without compromising privacy. For instance, FedHAR represents a semi-supervised federated learning framework,
combining active learning and label propagation to overcome the problem of scarcity of data through semi-automatic
annotation of sensor data for activity recognition on mobile devices [20]. Personalization is crucial in healthcare and
fitness tracking, where users exhibit different behaviors, characteristics, and needs. To advance this field, future research
should prioritize scalable and flexible personalization approaches to improve user-focused HAR in federated settings.
Designing adaptive learning procedures may be investigated further.

Federated Learning for Resource-efficient HAR on Wearable Devices: Wearables, including smartwatches and
trackers, are an increasingly common device type for HAR. However, these devices face resource constraints in terms
of battery life, computation power, and storage [86]. These device constraints could limit the efficacy of HAR models
in real-world applications. Future research should be directed to the design of lightweight FL architectures, energy-aware
algorithms, and communication-efficient protocols to optimize resource usage in these devices. Developing strategies
for adaptive computation, where the model can dynamically adjust its complexity based on available resources, could
be a good alternative for real-time HAR in diverse settings.
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10. Conclusion

Deep learning methods have demonstrated superior performance in identifying human activities from inertial
data by learning high-level, intricate features. However, these centralized architectures that transmit raw sensor data
to a central server present critical privacy and security concerns. Federated Learning (FL) offers an alternative
solution by decentralizing the training process. Specifically, only model updates are shared, while personal data
remains on local devices in FL environments. This is particularly valuable for human activity recognition
applications since human activity data can reveal sensitive and confidential information. This paper provides a
comprehensive overview of FL in sensor-based HAR, highlighting how it surpasses traditional machine learning in
distributed environments. This paper also discusses key FL components, such as local training models and model
aggregation strategies. The limitations of HAR-specific FL models, including data heterogeneity, communication,
and privacy challenges, are also deliberated.

In summary, FL demonstrates its potential to transform sensor-based HAR by achieving an optimal balance between
system reliability, scalability, and privacy. Future research should optimize communication efficiency, address
heterogeneous data distributions, and enhance privacy-preserving approaches to meet the demands of even more
advanced applications. Furthermore, exploring adaptive aggregation techniques and developing reliable local models is
vital to overcoming limitations in HAR-specific federated learning environments. With these advancements, FL-based
HAR solutions will be capable of achieving robust, secure, and efficient activity recognition in real-world environments
to enhance healthcare, fitness, and smart homes. We anticipate further advancements in this area to lead to more
integrated, user-centric systems that ensure improved overall quality of life.
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